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1 INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.
HAL: I’m sorry Dave, I’m afraid I can’t do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay of2001: A Space Odyssey

This book is about a new interdisciplinary field variously called computer speech
and language processingor human language technologyor natural language pro-
cessingor computational linguistics. The goal of this new field is to get computers
to perform useful tasks involving human language, tasks like enabling human-machine
communication, improving human-human communication, or simply doing useful pro-
cessing of text or speech.

One example of a useful such task is aconversational agent. The HAL 9000 com-CONVERSATIONAL
AGENT

puter in Stanley Kubrick’s film2001: A Space Odysseyis one of the most recognizable
characters in twentieth-century cinema. HAL is an artificial agent capable of such ad-
vanced language-processing behavior as speaking and understanding English, and at a
crucial moment in the plot, even reading lips. It is now clearthat HAL’s creator Arthur
C. Clarke was a little optimistic in predicting when an artificial agent such as HAL
would be available. But just how far off was he? What would it take to create at least
the language-related parts of HAL? We call programs like HALthat converse with hu-
mans via natural languageconversational agentsor dialogue systems. In this text weCONVERSATIONAL

AGENTS

DIALOGUE SYSTEMS study the various components that make up modern conversational agents, including
language input (automatic speech recognitionandnatural language understand-
ing) and language output (natural language generationandspeech synthesis).

Let’s turn to another useful language-related task, that ofmaking available to non-
English-speaking readers the vast amount of scientific information on the Web in En-
glish. Or translating for English speakers the hundreds of millions of Web pages written
in other languages like Chinese. The goal ofmachine translation is to automaticallyMACHINE

TRANSLATION

translate a document from one language to another. Machine translation is far from
a solved problem; we will cover the algorithms currently used in the field, as well as
important component tasks.

Many other language processing tasks are also related to theWeb. Another such
task isWeb-based question answering. This is a generalization of simple web search,QUESTION

ANSWERING

where instead of just typing keywords a user might ask complete questions, ranging
from easy to hard, like the following:
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• What does “divergent” mean?
• What year was Abraham Lincoln born?
• How many states were in the United States that year?
• How much Chinese silk was exported to England by the end of the18th century?
• What do scientists think about the ethics of human cloning?

Some of these, such asdefinition questions, or simplefactoid questions like dates
and locations, can already be answered by search engines. But answering more com-
plicated questions might require extracting information that is embedded in other text
on a Web page, or doinginference (drawing conclusions based on known facts), or
synthesizing and summarizing information from multiple sources or web pages. In this
text we study the various components that make up modern understanding systems of
this kind, includinginformation extraction , word sense disambiguation, and so on.

Although the subfields and problems we’ve described above are all very far from
completely solved, these are all very active research areasand many technologies are
already available commercially. In the rest of this chapterwe briefly summarize the
kinds of knowledge that is necessary for these tasks (and others likespell correction,
grammar checking, and so on), as well as the mathematical models that will be intro-
duced throughout the book.

1.1 KNOWLEDGE IN SPEECH ANDLANGUAGE PROCESSING

What distinguishes language processing applications fromother data processing sys-
tems is their use ofknowledge of language. Consider the Unixwc program, which is
used to count the total number of bytes, words, and lines in a text file. When used to
count bytes and lines,wc is an ordinary data processing application. However, when it
is used to count the words in a file it requiresknowledge about what it means to be a
word, and thus becomes a language processing system.

Of course,wc is an extremely simple system with an extremely limited and im-
poverished knowledge of language. Sophisticated conversational agents like HAL,
or machine translation systems, or robust question-answering systems, require much
broader and deeper knowledge of language. To get a feeling for the scope and kind of
required knowledge, consider some of what HAL would need to know to engage in the
dialogue that begins this chapter, or for a question answering system to answer one of
the questions above.

HAL must be able to recognize words from an audio signal and togenerate an
audio signal from a sequence of words. These tasks ofspeech recognitionandspeech
synthesistasks require knowledge aboutphonetics and phonology; how words are
pronounced in terms of sequences of sounds, and how each of these sounds is realized
acoustically.

Note also that unlike Star Trek’s Commander Data, HAL is capable of producing
contractions likeI’m andcan’t. Producing and recognizing these and other variations
of individual words (e.g., recognizing thatdoors is plural) requires knowledge about
morphology, the way words break down into component parts that carry meanings like
singularversusplural.
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Moving beyond individual words, HAL must use structural knowledge to properly
string together the words that constitute its response. Forexample, HAL must know
that the following sequence of words will not make sense to Dave, despite the fact that
it contains precisely the same set of words as the original.

I’m I do, sorry that afraid Dave I’m can’t.

The knowledge needed to order and group words together comesunder the heading of
syntax.

Now consider a question answering system dealing with the following question:

• How much Chinese silk was exported to Western Europe by the end of the 18th
century?

In order to answer this question we need to know something about lexical seman-
tics, the meaning of all the words (export, or silk) as well ascompositional semantics
(what exactly constitutesWestern Europeas opposed to Eastern or Southern Europe,
what doesendmean when combined withthe 18th century. We also need to know
something about the relationship of the words to the syntactic structure. For example
we need to know thatby the end of the 18th centuryis a temporal end-point, and not a
description of the agent, as the by-phrase is in the following sentence:

• How much Chinese silk was exported to Western Europe by southern merchants?

We also need the kind of knowledge that lets HAL determine that Dave’s utterance
is a request for action, as opposed to a simple statement about the world or a question
about the door, as in the following variations of his original statement.

REQUEST: HAL, open the pod bay door.
STATEMENT: HAL, the pod bay door is open.
INFORMATION QUESTION: HAL, is the pod bay door open?

Next, despite its bad behavior, HAL knows enough to be politeto Dave. It could,
for example, have simply repliedNo or No, I won’t open the door. Instead, it first
embellishes its response with the phrasesI’m sorry andI’m afraid, and then only indi-
rectly signals its refusal by sayingI can’t, rather than the more direct (and truthful)I
won’t.1 This knowledge about the kind of actions that speakers intend by their use of
sentences ispragmatic or dialogueknowledge.

Another kind of pragmatic ordiscourseknowledge is required to answer the ques-
tion

• How many states were in the United Statesthat year?

What year isthat year? In order to interpret words likethat yeara question answer-
ing system need to examine the the earlier questions that were asked; in this case the
previous question talked about the year that Lincoln was born. Thus this task ofcoref-
erence resolutionmakes use of knowledge about how words likethator pronouns like
it or sherefer to previous parts of thediscourse.

To summarize, engaging in complex language behavior requires various kinds of
knowledge of language:

1 For those unfamiliar with HAL, it is neither sorry nor afraid, nor is it incapable of opening the door. It
has simply decided in a fit of paranoia to kill its crew.
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• Phonetics and Phonology — knowledge about linguistic sounds

• Morphology — knowledge of the meaningful components of words

• Syntax — knowledge of the structural relationships betweenwords

• Semantics — knowledge of meaning

• Pragmatics — knowledge of the relationship of meaning to thegoals and inten-
tions of the speaker.

• Discourse — knowledge about linguistic units larger than a single utterance

1.2 AMBIGUITY

A perhaps surprising fact about these categories of linguistic knowledge is that most
tasks in speech and language processing can be viewed as resolving ambiguity at oneAMBIGUITY

of these levels. We say some input isambiguousif there are multiple alternative lin-AMBIGUOUS

guistic structures that can be built for it. Consider the spoken sentenceI made her duck.
Here’s five different meanings this sentence could have (seeif you can think of some
more), each of which exemplifies an ambiguity at some level:

(1.1) I cooked waterfowl for her.

(1.2) I cooked waterfowl belonging to her.

(1.3) I created the (plaster?) duck she owns.

(1.4) I caused her to quickly lower her head or body.

(1.5) I waved my magic wand and turned her into undifferentiated waterfowl.

These different meanings are caused by a number of ambiguities. First, the wordsduck
andher are morphologically or syntactically ambiguous in their part-of-speech.Duck
can be a verb or a noun, whileher can be a dative pronoun or a possessive pronoun.
Second, the wordmakeis semantically ambiguous; it can meancreateor cook. Finally,
the verbmakeis syntactically ambiguous in a different way.Makecan be transitive,
that is, taking a single direct object (1.2), or it can be ditransitive, that is, taking two
objects (1.5), meaning that the first object (her) got made into the second object (duck).
Finally,makecan take a direct object and a verb (1.4), meaning that the object (her) got
caused to perform the verbal action (duck). Furthermore, in a spoken sentence, there
is an even deeper kind of ambiguity; the first word could have beeneyeor the second
wordmaid.

We will often introduce the models and algorithms we presentthroughout the book
as ways toresolveor disambiguatethese ambiguities. For example deciding whether
duckis a verb or a noun can be solved bypart-of-speech tagging. Deciding whether
makemeans “create” or “cook” can be solved byword sense disambiguation. Reso-
lution of part-of-speech and word sense ambiguities are twoimportant kinds oflexical
disambiguation. A wide variety of tasks can be framed as lexical disambiguation
problems. For example, a text-to-speech synthesis system reading the wordleadneeds
to decide whether it should be pronounced as inlead pipeor as inlead me on. By
contrast, deciding whetherherandduckare part of the same entity (as in (1.1) or (1.4))
or are different entity (as in (1.2)) is an example ofsyntactic disambiguationand can
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be addressed byprobabilistic parsing. Ambiguities that don’t arise in this particu-
lar example (like whether a given sentence is a statement or aquestion) will also be
resolved, for example byspeech act interpretation.

1.3 MODELS AND ALGORITHMS

One of the key insights of the last 50 years of research in language processing is that
the various kinds of knowledge described in the last sections can be captured through
the use of a small number of formal models, or theories. Fortunately, these models and
theories are all drawn from the standard toolkits of computer science, mathematics, and
linguistics and should be generally familiar to those trained in those fields. Among the
most important models arestate machines, rule systems, logic, probabilistic models,
andvector-space models. These models, in turn, lend themselves to a small number
of algorithms, among the most important of which arestate space searchalgorithms
such asdynamic programming, and machine learning algorithms such asclassifiers
andEM and other learning algorithms.

In their simplest formulation, state machines are formal models that consist of
states, transitions among states, and an input representation. Some of the variations
of this basic model that we will consider aredeterministic and non-deterministic
finite-state automataandfinite-state transducers.

Closely related to these models are their declarative counterparts: formal rule sys-
tems. Among the more important ones we will consider areregular grammars and
regular relations, context-free grammars, feature-augmented grammars, as well
as probabilistic variants of them all. State machines and formal rule systems are the
main tools used when dealing with knowledge of phonology, morphology, and syntax.

The third model that plays a critical role in capturing knowledge of language is
logic. We will discussfirst order logic , also known as thepredicate calculus, as well
as such related formalisms as lambda-calculus, feature-structures, and semantic primi-
tives. These logical representations have traditionally been used for modeling seman-
tics and pragmatics, although more recent work has focused on more robust techniques
drawn from non-logical lexical semantics.

Probabilistic models are crucial for capturing every kind of linguistic knowledge.
Each of the other models (state machines, formal rule systems, and logic) can be aug-
mented with probabilities. For example the state machine can be augmented with
probabilities to become theweighted automatonor Markov model. We will spend
a significant amount of time onhidden Markov models or HMMs , which are used
everywhere in the field, in part-of-speech tagging, speech recognition, dialogue under-
standing, text-to-speech, and machine translation. The key advantage of probabilistic
models is their ability to to solve the many kinds of ambiguity problems that we dis-
cussed earlier; almost any speech and language processing problem can be recast as:
“given N choices for some ambiguous input, choose the most probable one”.

Finally, vector-space models, based on linear algebra, underlie information retrieval
and many treatments of word meanings.

Processing language using any of these models typically involves a search through
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a space of states representing hypotheses about an input. Inspeech recognition, we
search through a space of phone sequences for the correct word. In parsing, we search
through a space of trees for the syntactic parse of an input sentence. In machine trans-
lation, we search through a space of translation hypothesesfor the correct translation of
a sentence into another language. For non-probabilistic tasks, such as state machines,
we use well-known graph algorithms such asdepth-first search. For probabilistic
tasks, we use heuristic variants such asbest-first andA* search, and rely on dynamic
programming algorithms for computational tractability.

For many language tasks, we rely on machine learning tools like classifiersand
sequence models. Classifiers likedecision trees, support vector machines, Gaussian
Mixture Models andlogistic regressionare very commonly used. A hidden Markov
model is one kind of sequence model; other areMaximum Entropy Markov Models
or Conditional Random Fields.

Another tool that is related to machine learning is methodological; the use of dis-
tinct training and test sets, statistical techniques likecross-validation, and careful eval-
uation of our trained systems.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

To many, the ability of computers to process language as skillfully as we humans do
will signal the arrival of truly intelligent machines. The basis of this belief is the fact
that the effective use of language is intertwined with our general cognitive abilities.
Among the first to consider the computational implications of this intimate connection
was Alan Turing (1950). In this famous paper, Turing introduced what has come to be
known as theTuring Test. Turing began with the thesis that the question of what itTURING TEST

would mean for a machine to think was essentially unanswerable due to the inherent
imprecision in the termsmachineandthink. Instead, he suggested an empirical test, a
game, in which a computer’s use of language would form the basis for determining if
it could think. If the machine could win the game it would be judged intelligent.

In Turing’s game, there are three participants: two people and a computer. One of
the people is a contestant and plays the role of an interrogator. To win, the interrogator
must determine which of the other two participants is the machine by asking a series
of questions via a teletype. The task of the machine is to foolthe interrogator into
believing it is a person by responding as a person would to theinterrogator’s questions.
The task of the second human participant is to convince the interrogator that the other
participant is the machine, and that they are human.

The following interaction from Turing’s paper illustratesthe kind of interactions
he had in mind. Clearly a convincing simulation of humanity doesn’t require being an
expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentieth century a machine with 10
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gigabytes of memory would have around a 30% chance of foolinga human interrogator
after 5 minutes of questioning. Given the fact that you can fool some of the people all
the time, it is not clear how rigorous this particular standard is. Nevertheless, the
critical issue for Turing was that using language as humans do is sufficient, by itself,
as an operational test for intelligence.

Surprisingly, many of the issues raised by Turing became relevant as early as 1966
in the context of the ELIZA program (Weizenbaum, 1966). ELIZA was an early natu-
ral language processing system capable of carrying on a limited form of conversation
with a user. Consider the following session with a version ofELIZA that imitated the
responses of a Rogerian psychotherapist.

User1: You are like my father in some ways.
ELIZA1: WHAT RESEMBLANCE DO YOU SEE
User2: You are not very aggressive but I think you don’t want me to notice that.
ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
User3: You don’t argue with me.
ELIZA3: WHY DO YOU THINK I DON’T ARGUE WITH YOU
User4: You are afraid of me.
ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Ch. 2, ELIZA is a remarkably simple program
that makes use of pattern-matching to process the input and translate it into suitable
outputs. The success of this simple technique in this domainis due to the fact that
ELIZA doesn’t actually need toknowanything to mimic a Rogerian psychotherapist.
As Weizenbaum notes, this is one of the few dialogue genres where the listener can act
as if they know nothing of the world.

ELIZA’s deep relevance to Turing’s ideas is that many peoplewho interacted with
ELIZA came to believe that it reallyunderstoodthem and their problems. Indeed,
Weizenbaum (1976) notes that many of these people continuedto believe in ELIZA’s
abilities even after the program’s operation was explainedto them. In more recent
years, Weizenbaum’s informal reports have been repeated ina somewhat more con-
trolled setting. Since 1991, an event known as the Loebner Prize competition has
attempted to put various computer programs to the Turing test. Although these con-
tests seem to have little scientific interest, a consistent result over the years has been
that even the crudest programs can fool some of the judges some of the time (Shieber,
1994). Not surprisingly, these results have done nothing toquell the ongoing debate
over the suitability of the Turing test as a test for intelligence among philosophers and
AI researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevance ofthese results does not
hinge on whether or not computers will ever be intelligent, or understand natural lan-
guage. Far more important is recent related research in the social sciences that has
confirmed another of Turing’s predictions from the same paper.

Nevertheless I believe that at the end of the century the use of words and
educated opinion will have altered so much that we will be able to speak
of machines thinking without expecting to be contradicted.

It is now clear that regardless of what people believe or knowabout the inner workings
of computers, they talk about them and interact with them as social entities. People act
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toward computers as if they were people; they are polite to them, treat them as team
members, and expect among other things that computers should be able to understand
their needs, and be capable of interacting with them naturally. For example, Reeves
and Nass (1996) found that when a computer asked a human to evaluate how well the
computer had been doing, the human gives more positive responses than when a differ-
ent computer asks the same questions. People seemed to be afraid of being impolite. In
a different experiment, Reeves and Nass found that people also give computers higher
performance ratings if the computer has recently said something flattering to the hu-
man. Given these predispositions, speech and language-based systems may provide
many users with the most natural interface for many applications. This fact has led to
a long-term focus in the field on the design ofconversational agents, artificial entities
that communicate conversationally.

1.5 THE STATE OF THE ART

We can only see a short distance ahead, but we can see plenty there that needs to
be done.

Alan Turing.

This is an exciting time for the field of speech and language processing. The
startling increase in computing resources available to theaverage computer user, the
rise of the Web as a massive source of information and the increasing availability of
wireless mobile access have all placed speech and language processing applications
in the technology spotlight. The following are examples of some currently deployed
systems that reflect this trend:

• Travelers calling Amtrak, United Airlines and other travel-providers interact
with conversational agents that guide them through the process of making reser-
vations and getting arrival and departure information.

• Luxury car makers such as Mercedes-Benz models provide automatic speech
recognition and text-to-speech systems that allow driversto control their envi-
ronmental, entertainment and navigational systems by voice. A similar spoken
dialogue system has been deployed by astronauts on the International Space Sta-
tion .

• Blinkx, and other video search companies, provide search services for million of
hours of video on the Web by using speech recognition technology to capture the
words in the sound track.

• Google provides cross-language information retrieval andtranslation services
where a user can supply queries in their native language to search collections in
another language. Google translates the query, finds the most relevant pages and
then automatically translates them back to the user’s native language.

• Large educational publishers such as Pearson, as well as testing services like
ETS, use automated systems to analyze thousands of student essays, grading and
assessing them in a manner that is indistinguishable from human graders.
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• Interactive tutors, based on lifelike animated characters, serve as tutors for chil-
dren learning to read, and as therapists for people dealing with aphasia and
Parkinsons disease. (?, ?)

• Text analysis companies such as Nielsen Buzzmetrics, Umbria, and Collective
Intellect, provide marketing intelligence based on automated measurements of
user opinions, preferences, attitudes as expressed in weblogs, discussion forums
and and user groups.

1.6 SOME BRIEF HISTORY

Historically, speech and language processing has been treated very differently in com-
puter science, electrical engineering, linguistics, and psychology/cognitive science.
Because of this diversity, speech and language processing encompasses a number of
different but overlapping fields in these different departments:computational linguis-
tics in linguistics,natural language processingin computer science,speech recogni-
tion in electrical engineering,computational psycholinguisticsin psychology. This
section summarizes the different historical threads whichhave given rise to the field
of speech and language processing. This section will provide only a sketch; see the
individual chapters for more detail on each area and its terminology.

1.6.1 Foundational Insights: 1940s and 1950s

The earliest roots of the field date to the intellectually fertile period just after World
War II that gave rise to the computer itself. This period fromthe 1940s through the end
of the 1950s saw intense work on two foundational paradigms:the automaton and
probabilistic or information-theoretic models.

The automaton arose in the 1950s out of Turing’s (1936) modelof algorithmic
computation, considered by many to be the foundation of modern computer science.
Turing’s work led first to theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), a
simplified model of the neuron as a kind of computing element that could be described
in terms of propositional logic, and then to the work of Kleene (1951) and (1956) on
finite automata and regular expressions. Shannon (1948) applied probabilistic models
of discrete Markov processes to automata for language. Drawing the idea of a finite-
state Markov process from Shannon’s work, Chomsky (1956) first considered finite-
state machines as a way to characterize a grammar, and defineda finite-state language
as a language generated by a finite-state grammar. These early models led to the field of
formal language theory, which used algebra and set theory to define formal languages
as sequences of symbols. This includes the context-free grammar, first defined by
Chomsky (1956) for natural languages but independently discovered by Backus (1959)
and Naur et al. (1960) in their descriptions of the ALGOL programming language.

The second foundational insight of this period was the development of probabilistic
algorithms for speech and language processing, which datesto Shannon’s other con-
tribution: the metaphor of thenoisy channeland decoding for the transmission of
language through media like communication channels and speech acoustics. Shannon
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also borrowed the concept ofentropy from thermodynamics as a way of measuring
the information capacity of a channel, or the information content of a language, and
performed the first measure of the entropy of English using probabilistic techniques.

It was also during this early period that the sound spectrograph was developed
(Koenig et al., 1946), and foundational research was done ininstrumental phonetics
that laid the groundwork for later work in speech recognition. This led to the first
machine speech recognizers in the early 1950s. In 1952, researchers at Bell Labs built
a statistical system that could recognize any of the 10 digits from a single speaker
(Davis et al., 1952). The system had 10 speaker-dependent stored patterns roughly
representing the first two vowel formants in the digits. Theyachieved 97–99% accuracy
by choosing the pattern which had the highest relative correlation coefficient with the
input.

1.6.2 The Two Camps: 1957–1970

By the end of the 1950s and the early 1960s, speech and language processing had split
very cleanly into two paradigms: symbolic and stochastic.

The symbolic paradigm took off from two lines of research. The first was the work
of Chomsky and others on formal language theory and generative syntax throughout the
late 1950s and early to mid 1960s, and the work of many linguistics and computer sci-
entists on parsing algorithms, initially top-down and bottom-up and then via dynamic
programming. One of the earliest complete parsing systems was Zelig Harris’s Trans-
formations and Discourse Analysis Project (TDAP), which was implemented between
June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962).2 The sec-
ond line of research was the new field of artificial intelligence. In the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester brought
together a group of researchers for a two-month workshop on what they decided to call
artificial intelligence (AI). Although AI always included aminority of researchers fo-
cusing on stochastic and statistical algorithms (include probabilistic models and neural
nets), the major focus of the new field was the work on reasoning and logic typified by
Newell and Simon’s work on the Logic Theorist and the GeneralProblem Solver. At
this point early natural language understanding systems were built, These were simple
systems that worked in single domains mainly by a combination of pattern matching
and keyword search with simple heuristics for reasoning andquestion-answering. By
the late 1960s more formal logical systems were developed.

The stochastic paradigm took hold mainly in departments of statistics and of elec-
trical engineering. By the late 1950s the Bayesian method was beginning to be applied
to the problem of optical character recognition. Bledsoe and Browning (1959) built
a Bayesian system for text-recognition that used a large dictionary and computed the
likelihood of each observed letter sequence given each wordin the dictionary by mul-
tiplying the likelihoods for each letter. Mosteller and Wallace (1964) applied Bayesian
methods to the problem of authorship attribution onThe Federalistpapers.

The 1960s also saw the rise of the first serious testable psychological models of

2 This system was reimplemented recently and is described by Joshi and Hopely (1999) and Karttunen
(1999), who note that the parser was essentially implemented as a cascade of finite-state transducers.
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human language processing based on transformational grammar, as well as the first
on-line corpora: the Brown corpus of American English, a 1 million word collection of
samples from 500 written texts from different genres (newspaper, novels, non-fiction,
academic, etc.), which was assembled at Brown University in1963–64 (Kučera and
Francis, 1967; Francis, 1979; Francis and Kučera, 1982), and William S. Y. Wang’s
1967 DOC (Dictionary on Computer), an on-line Chinese dialect dictionary.

1.6.3 Four Paradigms: 1970–1983

The next period saw an explosion in research in speech and language processing and
the development of a number of research paradigms that stilldominate the field.

Thestochasticparadigm played a huge role in the development of speech recog-
nition algorithms in this period, particularly the use of the Hidden Markov Model and
the metaphors of the noisy channel and decoding, developed independently by Jelinek,
Bahl, Mercer, and colleagues at IBM’s Thomas J. Watson Research Center, and by
Baker at Carnegie Mellon University, who was influenced by the work of Baum and
colleagues at the Institute for Defense Analyses in Princeton. AT&T’s Bell Laborato-
ries was also a center for work on speech recognition and synthesis; see Rabiner and
Juang (1993) for descriptions of the wide range of this work.

The logic-basedparadigm was begun by the work of Colmerauer and his col-
leagues on Q-systems and metamorphosis grammars (Colmerauer, 1970, 1975), the
forerunners of Prolog, and Definite Clause Grammars (Pereira and Warren, 1980). In-
dependently, Kay’s (1979) work on functional grammar, and shortly later, Bresnan and
Kaplan’s (1982) work on LFG, established the importance of feature structure unifica-
tion.

Thenatural language understandingfield took off during this period, beginning
with Terry Winograd’s SHRDLU system, which simulated a robot embedded in a world
of toy blocks (Winograd, 1972). The program was able to accept natural language text
commands(Move the red block on top of the smaller green one)of a hitherto unseen
complexity and sophistication. His system was also the firstto attempt to build an
extensive (for the time) grammar of English, based on Halliday’s systemic grammar.
Winograd’s model made it clear that the problem of parsing was well-enough under-
stood to begin to focus on semantics and discourse models. Roger Schank and his
colleagues and students (in what was often referred to as theYale School) built a se-
ries of language understanding programs that focused on human conceptual knowledge
such as scripts, plans and goals, and human memory organization (Schank and Albel-
son, 1977; Schank and Riesbeck, 1981; Cullingford, 1981; Wilensky, 1983; Lehnert,
1977). This work often used network-based semantics (Quillian, 1968; Norman and
Rumelhart, 1975; Schank, 1972; Wilks, 1975b, 1975a; Kintsch, 1974) and began to
incorporate Fillmore’s notion of case roles (Fillmore, 1968) into their representations
(Simmons, 1973).

The logic-based and natural-language understanding paradigms were unified on
systems that used predicate logic as a semantic representation, such as the LUNAR
question-answering system (Woods, 1967, 1973).

Thediscourse modelingparadigm focused on four key areas in discourse. Grosz
and her colleagues introduced the study of substructure in discourse, and of discourse
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focus (Grosz, 1977; Sidner, 1983), a number of researchers began to work on automatic
reference resolution (Hobbs, 1978), and theBDI (Belief-Desire-Intention) framework
for logic-based work on speech acts was developed (Perraultand Allen, 1980; Cohen
and Perrault, 1979).

1.6.4 Empiricism and Finite State Models Redux: 1983–1993

This next decade saw the return of two classes of models whichhad lost popularity in
the late 1950s and early 1960s, partially due to theoreticalarguments against them such
as Chomsky’s influential review of Skinner’sVerbal Behavior(Chomsky, 1959). The
first class was finite-state models, which began to receive attention again after work
on finite-state phonology and morphology by Kaplan and Kay (1981) and finite-state
models of syntax by Church (1980). A large body of work on finite-state models will
be described throughout the book.

The second trend in this period was what has been called the “return of empiri-
cism”; most notably here was the rise of probabilistic models throughout speech and
language processing, influenced strongly by the work at the IBM Thomas J. Watson
Research Center on probabilistic models of speech recognition. These probabilistic
methods and other such data-driven approaches spread from speech into part-of-speech
tagging, parsing and attachment ambiguities, and semantics. This empirical direction
was also accompanied by a new focus on model evaluation, based on using held-out
data, developing quantitative metrics for evaluation, andemphasizing the comparison
of performance on these metrics with previous published research.

This period also saw considerable work on natural language generation.

1.6.5 The Field Comes Together: 1994–1999

By the last five years of the millennium it was clear that the field was vastly chang-
ing. First, probabilistic and data-driven models had become quite standard throughout
natural language processing. Algorithms for parsing, part-of-speech tagging, reference
resolution, and discourse processing all began to incorporate probabilities, and employ
evaluation methodologies borrowed from speech recognition and information retrieval.
Second, the increases in the speed and memory of computers had allowed commercial
exploitation of a number of subareas of speech and language processing, in particular
speech recognition and spelling and grammar checking. Speech and language process-
ing algorithms began to be applied to Augmentative and Alternative Communication
(AAC). Finally, the rise of the Web emphasized the need for language-based informa-
tion retrieval and information extraction.

’

1.6.6 The Rise of Machine Learning: 2000–2007

The empiricist trends begun in the latter part of the 1990s accelerated at an astound-
ing pace in the new century. This acceleration was largely driven by three synergistic
trends. First, large amounts of spoken and written materialbecame widely available
through the auspices of the Linguistic Data Consortium (LDC), and other similar or-
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ganizations. Importantly, included among these materialswere annotated collections
such as the Penn Treebank(Marcus et al., 1993), Prague Dependency Treebank(Hajič,
1998), PropBank(Palmer et al., 2005), Penn Discourse Treebank(Miltsakaki et al.,
2004), RSTBank(Carlson et al., 2001) and TimeBank(?), all of which layered standard
text sources with various forms of syntactic, semantic and pragmatic annotations. The
existence of these resources promoted the trend of casting more complex traditional
problems, such as parsing and semantic analysis, as problems in supervised machine
learning. These resources also promoted the establishmentof additional competitive
evaluations for parsing (Dejean and Tjong Kim Sang, 2001), information extraction(?,
?), word sense disambiguation(Palmer et al., 2001; Kilgarriff and Palmer, 2000) and
question answering(Voorhees and Tice, 1999).

Second, this increased focus on learning led to a more serious interplay with the
statistical machine learning community. Techniques such as support vector machines
(?; Vapnik, 1995), multinomial logistic regression (MaxEnt) (Berger et al., 1996), and
graphical Bayesian models (Pearl, 1988) became standard practice in computational
linguistics. Third, the widespread availability of high-performance computing systems
facilitated the training and deployment of systems that could not have been imagined a
decade earlier.

Finally, near the end of this period, largely unsupervised statistical approaches be-
gan to receive renewed attention. Progress on statistical approaches to machine trans-
lation(Brown et al., 1990; Och and Ney, 2003) and topic modeling (?) demonstrated
that effective applications could be constructed from systems trained on unannotated
data alone. In addition, the widespread cost and difficulty of producing reliably anno-
tated corpora became a limiting factor in the use of supervised approaches for many
problems. This trend towards the use unsupervised techniques will likely increase.

1.6.7 On Multiple Discoveries

Even in this brief historical overview, we have mentioned a number of cases of multiple
independent discoveries of the same idea. Just a few of the “multiples” to be discussed
in this book include the application of dynamic programmingto sequence comparison
by Viterbi, Vintsyuk, Needleman and Wunsch, Sakoe and Chiba, Sankoff, Reichert
et al., and Wagner and Fischer (Chapters 3, 5 and 6) the HMM/noisy channel model
of speech recognition by Baker and by Jelinek, Bahl, and Mercer (Chapters 6, 9, and
10); the development of context-free grammars by Chomsky and by Backus and Naur
(Chapter 12); the proof that Swiss-German has a non-context-free syntax by Huybregts
and by Shieber (Chapter 15); the application of unification to language processing by
Colmeraueret al. and by Kay in (Chapter 16).

Are these multiples to be considered astonishing coincidences? A well-known hy-
pothesis by sociologist of science Robert K. Merton (1961) argues, quite the contrary,
that

all scientific discoveries are in principle multiples, including those that on
the surface appear to be singletons.

Of course there are many well-known cases of multiple discovery or invention; just a
few examples from an extensive list in Ogburn and Thomas (1922) include the multiple
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invention of the calculus by Leibnitz and by Newton, the multiple development of the
theory of natural selection by Wallace and by Darwin, and themultiple invention of
the telephone by Gray and Bell.3 But Merton gives a further array of evidence for the
hypothesis that multiple discovery is the rule rather than the exception, including many
cases of putative singletons that turn out be a rediscovery of previously unpublished or
perhaps inaccessible work. An even stronger piece of evidence is his ethnomethodolog-
ical point that scientists themselves act under the assumption that multiple invention is
the norm. Thus many aspects of scientific life are designed tohelp scientists avoid be-
ing “scooped”; submission dates on journal articles; careful dates in research records;
circulation of preliminary or technical reports.

1.6.8 A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological research
on human processing. Of course, understanding human language processing is an im-
portant scientific goal in its own right and is part of the general field of cognitive sci-
ence. However, an understanding of human language processing can often be helpful
in building better machine models of language. This seems contrary to the popular
wisdom, which holds that direct mimicry of nature’s algorithms is rarely useful in en-
gineering applications. For example, the argument is oftenmade that if we copied
nature exactly, airplanes would flap their wings; yet airplanes with fixed wings are a
more successful engineering solution. But language is not aeronautics. Cribbing from
nature is sometimes useful for aeronautics (after all, airplanes do have wings), but it is
particularly useful when we are trying to solve human-centered tasks. Airplane flight
has different goals than bird flight; but the goal of speech recognition systems, for ex-
ample, is to perform exactly the task that human court reporters perform every day:
transcribe spoken dialog. Since people already do this well, we can learn from nature’s
previous solution. Since an important application of speech and language processing
systems is for human-computer interaction, it makes sense to copy a solution that be-
haves the way people are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and language processing. The following are
some of the highlights of this chapter.

• A good way to understand the concerns of speech and language processing re-
search is to consider what it would take to create an intelligent agent like HAL
from 2001: A Space Odyssey, or build a web-based question answerer, or a ma-
chine translation engine.

• Speech and language technology relies on formal models, or representations, of

3 Ogburn and Thomas are generally credited with noticing thatthe prevalence of multiple inventions sug-
gests that the cultural milieu and not individual genius is the deciding causal factor in scientific discovery. In
an amusing bit of recursion, however, Merton notes that eventhis idea has been multiply discovered, citing
sources from the 19th century and earlier!
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knowledge of language at the levels of phonology and phonetics, morphology,
syntax, semantics, pragmatics and discourse. A small number of formal models
including state machines, formal rule systems, logic, and probabilistic models
are used to capture this knowledge.

• The foundations of speech and language technology lie in computer science, lin-
guistics, mathematics, electrical engineering and psychology. A small number of
algorithms from standard frameworks are used throughout speech and language
processing,

• The critical connection between language and thought has placed speech and
language processing technology at the center of debate overintelligent machines.
Furthermore, research on how people interact with complex media indicates that
speech and language processing technology will be criticalin the development
of future technologies.

• Revolutionary applications of speech and language processing are currently in
use around the world. The creation of the web, as well as significant recent
improvements in speech recognition and synthesis, will lead to many more ap-
plications.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and language processing is spread across
a wide number of conference proceedings and journals. The conferences and journals
most centrally concerned with natural language processingand computational linguis-
tics are associated with the Association for ComputationalLinguistics (ACL), its Eu-
ropean counterpart (EACL), and the International Conference on Computational Lin-
guistics (COLING). The annual proceedings of ACL, NAACL, and EACL, and the
biennial COLING conference are the primary forums for work in this area. Related
conferences include various proceedings of ACL Special Interest Groups (SIGs) such
as the Conference on Natural Language Learning (CoNLL), as well as the conference
on Empirical Methods in Natural Language Processing (EMNLP).

Research on speech recognition, understanding, and synthesis is presented at the
annual INTERSPEECH conference, which is called the International Conference on
Spoken Language Processing (ICSLP) and the European Conference on Speech Com-
munication and Technology (EUROSPEECH) in alternating years, or the annual IEEE
International Conference on Acoustics, Speech, and SignalProcessing (IEEE ICASSP).
Spoken language dialogue research is presented at these or at workshops like SIGDial.

Journals includeComputational Linguistics, Natural Language Engineering, Speech
Communication, Computer Speech and Language, the IEEE Transactions on Audio,
Speech & Language Processingand theACM Transactions on Speech and Language
Processing.

Work on language processing from an Artificial Intelligenceperspective can be
found in the annual meetings of the American Association forArtificial Intelligence
(AAAI), as well as the biennial International Joint Conference on Artificial Intelli-
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gence (IJCAI) meetings. Artificial intelligence journals that periodically feature work
on speech and language processing includeMachine Learning, Journal of Machine
Learning Research, and theJournal of Artificial Intelligence Research.

There are a fair number of textbooks available covering various aspects of speech
and language processing. Manning and Schütze (1999) (Foundations of Statistical Lan-
guage Processing) focuses on statistical models of tagging, parsing, disambiguation,
collocations, and other areas. Charniak (1993) (Statistical Language Learning) is an
accessible, though older and less-extensive, introduction to similar material. Manning
et al. (2008) focuses on information retrieval, text classification, and clustering. NLTK,
the Natural Language Toolkit (Bird and Loper, 2004), is a suite of Python modules
and data for natural language processing, together with a Natural Language Process-
ing book based on the NLTK suite. Allen (1995) (Natural Language Understanding)
provides extensive coverage of language processing from the AI perspective. Gazdar
and Mellish (1989) (Natural Language Processing in Lisp/Prolog) covers especially
automata, parsing, features, and unification and is available free online. Pereira and
Shieber (1987) gives a Prolog-based introduction to parsing and interpretation. Russell
and Norvig (2002) is an introduction to artificial intelligence that includes chapters on
natural language processing. Partee et al. (1990) has a verybroad coverage of mathe-
matical linguistics. A historically significant collection of foundational papers can be
found in Grosz et al. (1986) (Readings in Natural Language Processing).

Of course, a wide-variety of speech and language processingresources are now
available on the Web. Pointers to these resources are maintained on the home-page for
this book at:

http://www.cs.colorado.edu/˜martin/slp.html .
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CHAPTER

17 Sequence Labeling for Parts of
Speech and Named Entities

To each word a warbling note
A Midsummer Night’s Dream, V.I

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “technē”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including the words syntax, diphthong, clitic, and
analogy. Also included are a description of eight parts of speech: noun, verb,parts of speech

pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for descriptions of European
languages for the next 2000 years. (All the way to the Schoolhouse Rock educational
television shows of our childhood, which had songs about 8 parts of speech, like the
late great Bob Dorough’s Conjunction Junction.) The durability of parts of speech
through two millennia speaks to their centrality in models of human language.

Proper names are another important and anciently studied linguistic category.
While parts of speech are generally assigned to individual words or morphemes, a
proper name is often an entire multiword phrase, like the name “Marie Curie”, the
location “New York City”, or the organization “Stanford University”. We’ll use the
term named entity for, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization, although as we’ll see the term is
commonly extended to include things that aren’t entities per se.

Parts of speech (also known as POS) and named entities are useful clues toPOS

sentence structure and meaning. Knowing whether a word is a noun or a verb tells us
about likely neighboring words (nouns in English are preceded by determiners and
adjectives, verbs by nouns) and syntactic structure (verbs have dependency links to
nouns), making part-of-speech tagging a key aspect of parsing. Knowing if a named
entity like Washington is a name of a person, a place, or a university is important to
many natural language processing tasks like question answering, stance detection,
or information extraction.

In this chapter we’ll introduce the task of part-of-speech tagging, taking a se-
quence of words and assigning each word a part of speech like NOUN or VERB, and
the task of named entity recognition (NER), assigning words or phrases tags like
PERSON, LOCATION, or ORGANIZATION.

Such tasks in which we assign, to each word xi in an input word sequence, a
label yi, so that the output sequence Y has the same length as the input sequence X
are called sequence labeling tasks. We’ll introduce classic sequence labeling algo-sequence

labeling
rithms, one generative— the Hidden Markov Model (HMM)—and one discriminative—
the Conditional Random Field (CRF). In following chapters we’ll introduce modern
sequence labelers based on RNNs and Transformers.
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17.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give more complete definitions. While word classes do have
semantic tendencies—adjectives, for example, often describe properties and nouns
people— parts of speech are defined instead based on their grammatical relationship
with neighboring words or the morphological properties about their affixes.

Tag Description Example

O
pe

n
C

la
ss

ADJ Adjective: noun modifiers describing properties red, young, awesome
ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
VERB words for actions and processes draw, provide, go
PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

C
lo

se
d

C
la

ss
W

or
ds

ADP Adposition (Preposition/Postposition): marks a noun’s
spacial, temporal, or other relation

in, on, by, under

AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
DET Determiner: marks noun phrase properties a, an, the, this
NUM Numeral one, two, 2026, 11:00, hundred
PART Particle: a function word that must be associated with an-

other word
’s, not, (infinitive) to

PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a

subordinate clause such as a sentential complement
whether, because

O
th

er PUNCT Punctuation ,̇ , ()
SYM Symbols like $ or emoji $, %
X Other asdf, qwfg

Figure 17.1 The 17 parts of speech in the Universal Dependencies tagset (de Marneffe et al., 2021). Features
can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

Parts of speech fall into two broad categories: closed class and open class.closed class
open class Closed classes are those with relatively fixed membership, such as prepositions—

new prepositions are rarely coined. By contrast, nouns and verbs are open classes—
new nouns and verbs like iPhone or to fax are continually being created or borrowed.
Closed class words are generally function words like of, it, and, or you, which tendfunction word

to be very short, occur frequently, and often have structuring uses in grammar.
Four major open classes occur in the languages of the world: nouns (including

proper nouns), verbs, adjectives, and adverbs, as well as the smaller open class of
interjections. English has all five, although not every language does.

Nouns are words for people, places, or things, but include others as well. Com-noun

mon nouns include concrete terms like cat and mango, abstractions like algorithmcommon noun

and beauty, and verb-like terms like pacing as in His pacing to and fro became quite
annoying. Nouns in English can occur with determiners (a goat, this bandwidth)
take possessives (IBM’s annual revenue), and may occur in the plural (goats, abaci).
Many languages, including English, divide common nouns into count nouns andcount noun

mass nouns. Count nouns can occur in the singular and plural (goat/goats, rela-mass noun

tionship/relationships) and can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So snow, salt, and
communism are not counted (i.e., *two snows or *two communisms). Proper nouns,proper noun

like Regina, Colorado, and IBM, are names of specific persons or entities.
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Verbs refer to actions and processes, including main verbs like draw, provide,verb

and go. English verbs have inflections (non-third-person-singular (eat), third-person-
singular (eats), progressive (eating), past participle (eaten)). While many scholars
believe that all human languages have the categories of noun and verb, others have
argued that some languages, such as Riau Indonesian and Tongan, don’t even make
this distinction (Broschart 1997; Evans 2000; Gil 2000) .

Adjectives often describe properties or qualities of nouns, like color (white,adjective

black), age (old, young), and value (good, bad), but there are languages without
adjectives. In Korean, for example, the words corresponding to English adjectives
act as a subclass of verbs, so what is in English an adjective “beautiful” acts in
Korean like a verb meaning “to be beautiful”.

Adverbs are a hodge-podge. All the italicized words in this example are adverbs:adverb

Actually, I ran home extremely quickly yesterday

Adverbs generally modify something (often verbs, hence the name “adverb”, but
also other adverbs and entire verb phrases). Directional adverbs or locative ad-locative

verbs (home, here, downhill) specify the direction or location of some action; degreedegree

adverbs (extremely, very, somewhat) specify the extent of some action, process, or
property; manner adverbs (slowly, slinkily, delicately) describe the manner of somemanner

action or process; and temporal adverbs describe the time that some action or eventtemporal

took place (yesterday, Monday).
Interjections (oh, hey, alas, uh, um) are a smaller open class that also includesinterjection

greetings (hello, goodbye) and question responses (yes, no, uh-huh).
English adpositions occur before nouns, hence are called prepositions. They canpreposition

indicate spatial or temporal relations, whether literal (on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself), and relations like marking the
agent in Hamlet was written by Shakespeare.

A particle resembles a preposition or an adverb and is used in combination withparticle

a verb. Particles often have extended meanings that aren’t quite the same as the
prepositions they resemble, as in the particle over in she turned the paper over. A
verb and a particle acting as a single unit is called a phrasal verb. The meaningphrasal verb

of phrasal verbs is often non-compositional—not predictable from the individual
meanings of the verb and the particle. Thus, turn down means ‘reject’, rule out
‘eliminate’, and go on ‘continue’.

Determiners like this and that (this chapter, that page) can mark the start of andeterminer

English noun phrase. Articles like a, an, and the, are a type of determiner that markarticle

discourse properties of the noun and are quite frequent; the is the most common
word in written English, with a and an right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunction

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
the subordinating conjunction that in “I thought that you might like some milk” links
the main clause I thought with the subordinate clause you might like some milk. This
clause is called subordinate because this entire clause is the “content” of the main
verb thought. Subordinating conjunctions like that which link a verb to its argument
in this way are also called complementizers.complementizer

Pronouns act as a shorthand for referring to an entity or event. Personal pro-pronoun

nouns refer to persons or entities (you, she, I, it, me, etc.). Possessive pronouns are
forms of personal pronouns that indicate either actual possession or more often just
an abstract relation between the person and some object (my, your, his, her, its, one’s,
our, their). Wh-pronouns (what, who, whom, whoever) are used in certain questionwh
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forms, or act as complementizers (Frida, who married Diego. . . ).
Auxiliary verbs mark semantic features of a main verb such as its tense, whetherauxiliary

it is completed (aspect), whether it is negated (polarity), and whether an action is
necessary, possible, suggested, or desired (mood). English auxiliaries include the
copula verb be, the two verbs do and have, forms, as well as modal verbs used tocopula

modal mark the mood associated with the event depicted by the main verb: can indicates
ability or possibility, may permission or possibility, must necessity.

An English-specific tagset, the Penn Treebank tagset (Marcus et al., 1993), shown
in Fig. 17.2, has been used to label many syntactically annotated corpora like the
Penn Treebank corpora, so it is worth knowing about.

Tag Description Example Tag Description Example Tag Description Example
CC coord. conj. and, but, or NNP proper noun, sing. IBM TO infinitive to to
CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops
DT determiner a, the NNS noun, plural llamas VB verb base eat
EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate
FW foreign word mea culpa POS possessive ending ’s VBG verb gerund eating
IN preposition/

subordin-conj
of, in, by PRP personal pronoun I, you, he VBN verb past partici-

ple
eaten

JJ adjective yellow PRP$ possess. pronoun your VBP verb non-3sg-pr eat
JJR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats
JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that
LS list item marker 1, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who
MD modal can, should RP particle up, off WP$ wh-possess. whose
NN sing or mass noun llama SYM symbol +, %, & WRB wh-adverb how, where
Figure 17.2 Penn Treebank core 36 part-of-speech tags.

Below we show some examples with each word tagged according to both the UD
(in blue) and Penn (in red) tagsets. Notice that the Penn tagset distinguishes tense
and participles on verbs, and has a special tag for the existential there construction in
English. Note that since London Journal of Medicine is a proper noun, both tagsets
mark its component nouns as PROPN/NNP, including journal and medicine, which
might otherwise be labeled as common nouns (NOUN/NN).

(17.1) There/PRON/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RB ./PUNC/.

(17.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD
reported/VERB/VBN in/ADP/IN today/NOUN/NN ’s/PART/POS
London/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

17.2 Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech to each word inpart-of-speech
tagging

a text. The input is a sequence x1,x2, ...,xn of (tokenized) words and a tagset, and
the output is a sequence y1,y2, ...,yn of tags, each output yi corresponding exactly to
one input xi, as shown in the intuition in Fig. 17.3.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I
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will

NOUN AUX VERB DET NOUN

Janet back the bill

Part of Speech Tagger

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 17.3 The task of part-of-speech tagging: mapping from input words x1,x2, ...,xn to
output POS tags y1,y2, ...,yn .

thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity
resolution

ambiguities, choosing the proper tag for the context.
The accuracy of part-of-speech tagging algorithms (the percentage of test setaccuracy

tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 17.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 17.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).
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The most-frequent-tag baseline has an accuracy of about 92%1. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

17.3 Named Entities and Named Entity Tagging

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,
and Colorado is a location.

Here we re-introduce the concept of a named entity, which was also introducednamed entity

in Section ?? for readers who haven’t yet read Chapter 10.
A named entity is, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type ofnamed entity

recognition
NER the entity. Four entity tags are most common: PER (person), LOC (location), ORG

(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 17.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 17.5 A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language processing
tasks. In sentiment analysis we might want to know a consumer’s sentiment toward a
particular entity. Entities are a useful first stage in question answering, or for linking
text to information in structured knowledge sources like Wikipedia. And named
entity tagging is also central to tasks involving building semantic representations,
like extracting events and the relationship between participants.

1 In English, on the WSJ corpus, tested on sections 22-24.
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Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label
spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 17.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 17.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 17.7 shows the same excerpt represented with BIO tagging, as well asBIO

variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 17.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.
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1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Mouton de Gruyter.

Karttunen, L. 1999. Comments on Joshi. In A. Kornai, ed.,
Extended Finite State Models of Language, 16–18. Cam-
bridge University Press.

Klein, S. and R. F. Simmons. 1963. A computational ap-
proach to grammatical coding of English words. Journal
of the ACM, 10(3):334–347.

Kupiec, J. 1992. Robust part-of-speech tagging using a hid-
den Markov model. Computer Speech and Language,
6:225–242.

Lafferty, J. D., A. McCallum, and F. C. N. Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. ICML.

Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami,
and C. Dyer. 2016. Neural architectures for named entity
recognition. NAACL HLT.

Lee, H., M. Surdeanu, and D. Jurafsky. 2017. A scaffolding
approach to coreference resolution integrating statistical
and rule-based models. Natural Language Engineering,
23(5):733–762.

Ma, X. and E. H. Hovy. 2016. End-to-end sequence labeling
via bi-directional LSTM-CNNs-CRF. ACL.

Manning, C. D. 2011. Part-of-speech tagging from 97% to
100%: Is it time for some linguistics? CICLing 2011.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
treebank. Computational Linguistics, 19(2):313–330.

de Marneffe, M.-C., C. D. Manning, J. Nivre, and D. Zeman.
2021. Universal Dependencies. Computational Linguis-
tics, 47(2):255–308.

Marshall, I. 1983. Choice of grammatical word-class with-
out global syntactic analysis: Tagging words in the LOB
corpus. Computers and the Humanities, 17:139–150.

https://www.aclweb.org/anthology/W99-0606
https://www.aclweb.org/anthology/W99-0606
https://www.aclweb.org/anthology/2020.lrec-1.6
https://www.aclweb.org/anthology/2020.lrec-1.6
https://doi.org/10.3115/974557.974586
https://doi.org/10.3115/974557.974586
https://doi.org/10.3115/974147.974178
https://www.aclweb.org/anthology/P11-4019
https://www.aclweb.org/anthology/P11-4019
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D10-1056
https://www.aclweb.org/anthology/D10-1056
https://doi.org/10.3115/974235.974260
https://doi.org/10.3115/974235.974260
https://www.aclweb.org/anthology/W03-0407
https://www.aclweb.org/anthology/W03-0407
http://jmlr.org/papers/v12/collobert11a.html
http://jmlr.org/papers/v12/collobert11a.html
https://www.aclweb.org/anthology/J88-1003
https://www.aclweb.org/anthology/J88-1003
https://www.aclweb.org/anthology/A00-2013
https://www.aclweb.org/anthology/N06-2015
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.1162/coli_a_00402


Exercises 27

Marshall, I. 1987. Tag selection using probabilistic meth-
ods. In R. Garside, G. Leech, and G. Sampson, eds, The
Computational Analysis of English, 42–56. Longman.

McCallum, A., D. Freitag, and F. C. N. Pereira. 2000. Max-
imum entropy Markov models for information extraction
and segmentation. ICML.

McCallum, A. and W. Li. 2003. Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. CoNLL.

Merialdo, B. 1994. Tagging English text with a probabilistic
model. Computational Linguistics, 20(2):155–172.

Mikheev, A., M. Moens, and C. Grover. 1999. Named entity
recognition without gazetteers. EACL.

Oravecz, C. and P. Dienes. 2002. Efficient stochastic part-
of-speech tagging for Hungarian. LREC.

Ramshaw, L. A. and M. P. Marcus. 1995. Text chunking
using transformation-based learning. Proceedings of the
3rd Annual Workshop on Very Large Corpora.

Ratnaparkhi, A. 1996. A maximum entropy part-of-speech
tagger. EMNLP.

Sampson, G. 1987. Alternative grammatical coding systems.
In R. Garside, G. Leech, and G. Sampson, eds, The Com-
putational Analysis of English, 165–183. Longman.

Schütze, H. and Y. Singer. 1994. Part-of-speech tagging us-
ing a variable memory Markov model. ACL.

Søgaard, A. 2010. Simple semi-supervised training of part-
of-speech taggers. ACL.

Stolz, W. S., P. H. Tannenbaum, and F. V. Carstensen. 1965.
A stochastic approach to the grammatical coding of En-
glish. CACM, 8(6):399–405.

Thede, S. M. and M. P. Harper. 1999. A second-order hidden
Markov model for part-of-speech tagging. ACL.

Toutanova, K., D. Klein, C. D. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a cyclic
dependency network. HLT-NAACL.

Voutilainen, A. 1999. Handcrafted rules. In H. van Halteren,
ed., Syntactic Wordclass Tagging, 217–246. Kluwer.

Weischedel, R., M. Meteer, R. Schwartz, L. A. Ramshaw,
and J. Palmucci. 1993. Coping with ambiguity and un-
known words through probabilistic models. Computa-
tional Linguistics, 19(2):359–382.

Wu, S. and M. Dredze. 2019. Beto, Bentz, Becas: The sur-
prising cross-lingual effectiveness of BERT. EMNLP.

Zhou, G., J. Su, J. Zhang, and M. Zhang. 2005. Exploring
various knowledge in relation extraction. ACL.

https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/J94-2001
https://www.aclweb.org/anthology/J94-2001
https://www.aclweb.org/anthology/E99-1001
https://www.aclweb.org/anthology/E99-1001
http://www.lrec-conf.org/proceedings/lrec2002/pdf/201.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/201.pdf
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W96-0213
https://www.aclweb.org/anthology/W96-0213
https://doi.org/10.3115/981732.981757
https://doi.org/10.3115/981732.981757
https://www.aclweb.org/anthology/P10-2038
https://www.aclweb.org/anthology/P10-2038
https://doi.org/10.3115/1034678.1034712
https://doi.org/10.3115/1034678.1034712
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/J93-2006
https://www.aclweb.org/anthology/J93-2006
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.3115/1219840.1219893


Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

18 Context-Free Grammars and
Constituency Parsing

Because the Night by Bruce Springsteen and Patti Smith
The Fire Next Time by James Baldwin
If on a winter’s night a traveler by Italo Calvino
Love Actually by Richard Curtis
Suddenly Last Summer by Tennessee Williams
A Scanner Darkly by Philip K. Dick

Six titles that are not constituents, from Geoffrey K. Pullum on
Language Log (who was pointing out their incredible rarity).

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

The study of grammar has an ancient pedigree. The grammar of Sanskrit was
described by the Indian grammarian Pān. ini sometime between the 7th and 4th cen-
turies BCE, in his famous treatise the As.t.ādhyāyı̄ (‘8 books’). And our word syntaxsyntax

comes from the Greek sýntaxis, meaning “setting out together or arrangement”, and
refers to the way words are arranged together. We have seen syntactic notions in pre-
vious chapters like the use of part-of-speech categories (Chapter 17). In this chapter
and the next one we introduce formal models for capturing more sophisticated no-
tions of grammatical structure and algorithms for parsing these structures.

Our focus in this chapter is context-free grammars and the CKY algorithm
for parsing them. Context-free grammars are the backbone of many formal mod-
els of the syntax of natural language (and, for that matter, of computer languages).
Syntactic parsing is the task of assigning a syntactic structure to a sentence. Parse
trees (whether for context-free grammars or for the dependency or CCG formalisms
we introduce in following chapters) can be used in applications such as grammar
checking: sentence that cannot be parsed may have grammatical errors (or at least
be hard to read). Parse trees can be an intermediate stage of representation for for-
mal semantic analysis. And parsers and the grammatical structure they assign a
sentence are a useful text analysis tool for text data science applications that require
modeling the relationship of elements in sentences.

In this chapter we introduce context-free grammars, give a small sample gram-
mar of English, introduce more formal definitions of context-free grammars and
grammar normal form, and talk about treebanks: corpora that have been anno-
tated with syntactic structure. We then discuss parse ambiguity and the problems
it presents, and turn to parsing itself, giving the famous Cocke-Kasami-Younger
(CKY) algorithm (Kasami 1965, Younger 1967), the standard dynamic program-
ming approach to syntactic parsing. The CKY algorithm returns an efficient repre-
sentation of the set of parse trees for a sentence, but doesn’t tell us which parse tree
is the right one. For that, we need to augment CKY with scores for each possible
constituent. We’ll see how to do this with neural span-based parsers. Finally, we’ll
introduce the standard set of metrics for evaluating parser accuracy.
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18.1 Constituency

Syntactic constituency is the idea that groups of words can behave as single units,
or constituents. Part of developing a grammar involves building an inventory of the
constituents in the language. How do words group together in English? Consider
the noun phrase, a sequence of words surrounding at least one noun. Here are somenoun phrase

examples of noun phrases (thanks to Damon Runyon):

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

What evidence do we have that these words group together (or “form constituents”)?
One piece of evidence is that they can all appear in similar syntactic environments,
for example, before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each
of the individual words that make up a noun phrase. The following are not grammat-
ical sentences of English (recall that we use an asterisk (*) to mark fragments that
are not grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot sat. . .

Thus, to correctly describe facts about the ordering of these words in English, we
must be able to say things like “Noun Phrases can occur before verbs”. Let’s now
see how to do this in a more formal way!

18.2 Context-Free Grammars

A widely used formal system for modeling constituent structure in natural lan-
guage is the context-free grammar, or CFG. Context-free grammars are also calledCFG

phrase-structure grammars, and the formalism is equivalent to Backus-Naur form,
or BNF. The idea of basing a grammar on constituent structure dates back to the psy-
chologist Wilhelm Wundt (1900) but was not formalized until Chomsky (1956) and,
independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of whichrules

expresses the ways that symbols of the language can be grouped and ordered to-
gether, and a lexicon of words and symbols. For example, the following productionslexicon

express that an NP (or noun phrase) can be composed of either a ProperNoun orNP

a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or
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more Nouns.1

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the previous
rules with others, like the following, that express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols
that correspond to words in the language (“the”, “nightclub”) are called terminalterminal

symbols; the lexicon is the set of rules that introduce these terminal symbols. The
symbols that express abstractions over these terminals are called non-terminals. Innon-terminal

each context-free rule, the item to the right of the arrow (→) is an ordered list of one
or more terminals and non-terminals; to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. The non-terminal associated with
each word in the lexicon is its lexical category, or part of speech.

A CFG can be thought of in two ways: as a device for generating sentences
and as a device for assigning a structure to a given sentence. Viewing a CFG as a
generator, we can read the→ arrow as “rewrite the symbol on the left with the string
of symbols on the right”.

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Noun
and finally rewrite these parts-of-speech as: a flight

We say the string a flight can be derived from the non-terminal NP. Thus, a CFG
can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parsederivation

tree (commonly shown inverted with the root at the top). Figure 18.1 shows the treeparse tree

representation of this derivation.

NP

Nom

Noun

flight

Det

a

Figure 18.1 A parse tree for “a flight”.

In the parse tree shown in Fig. 18.1, we can say that the node NP dominatesdominates

all the nodes in the tree (Det, Nom, Noun, a, flight). We can say further that it
immediately dominates the nodes Det and Nom.

The formal language defined by a CFG is the set of strings that are derivable
from the designated start symbol. Each grammar must have one designated startstart symbol

1 When talking about these rules we can pronounce the rightarrow → as “goes to”, and so we might
read the first rule above as “NP goes to Det Nominal”.
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symbol, which is often called S. Since context-free grammars are often used to define
sentences, S is usually interpreted as the “sentence” node, and the set of strings that
are derivable from S is the set of sentences in some simplified version of English.

Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:verb phrase

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb may be followed by a noun phrase and a prepositional phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb phrase may have a verb followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 18.2 gives a sample lexicon, and Fig. 18.3 summarizes the grammar rules
we’ve seen so far, which we’ll call L0. Note that we can use the or-symbol | to
indicate that a non-terminal has alternate possible expansions.

Noun→ flights | flight | breeze | trip | morning
Verb→ is | prefer | like | need | want | fly | do

Adjective→ cheapest | non-stop | first | latest
| other | direct

Pronoun→ me | I | you | it
Proper-Noun→ Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner→ the | a | an | this | these | that
Preposition→ from | to | on | near | in

Conjunction→ and | or | but
Figure 18.2 The lexicon for L0.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with S, expand it to NP VP, then choose a random expansion of NP (let’s say, to
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Grammar Rules Examples
S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles
Figure 18.3 The grammar for L0, with example phrases for each rule.

S

VP

NP

Nom

Noun

flight

Nom

Noun

morning

Det

a

Verb

prefer

NP

Pro

I

Figure 18.4 The parse tree for “I prefer a morning flight” according to grammar L0.

I), and a random expansion of VP (let’s say, to Verb NP), and so on until we generate
the string I prefer a morning flight. Figure 18.4 shows a parse tree that represents a
complete derivation of I prefer a morning flight.

We can also represent a parse tree in a more compact format called bracketed
notation; here is the bracketed representation of the parse tree of Fig. 18.4:bracketed

notation

(18.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. Sentences (strings of words)
that can be derived by a grammar are in the formal language defined by that gram-
mar, and are called grammatical sentences. Sentences that cannot be derived bygrammatical

a given formal grammar are not in the language defined by that grammar and are
referred to as ungrammatical. This hard line between “in” and “out” characterizesungrammatical

all formal languages but is only a very simplified model of how natural languages
really work. This is because determining whether a given sentence is part of a given
natural language (say, English) often depends on the context. In linguistics, the use
of formal languages to model natural languages is called generative grammar sincegenerative

grammar
the language is defined by the set of possible sentences “generated” by the grammar.
(Note that this is a different sense of the word ‘generate’ than when we talk about
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Francis, W. N. and H. Kučera. 1982. Frequency Analysis of
English Usage. Houghton Mifflin, Boston.

Garside, R. 1987. The CLAWS word-tagging system. In
R. Garside, G. Leech, and G. Sampson, eds, The Compu-
tational Analysis of English, 30–41. Longman.

Garside, R., G. Leech, and A. McEnery. 1997. Corpus An-
notation. Longman.

Gil, D. 2000. Syntactic categories, cross-linguistic variation
and universal grammar. In P. M. Vogel and B. Comrie,
eds, Approaches to the Typology of Word Classes, 173–
216. Mouton.

Greene, B. B. and G. M. Rubin. 1971. Automatic grammati-
cal tagging of English. Department of Linguistics, Brown
University, Providence, Rhode Island.
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CHAPTER

19 Dependency Parsing

Tout mot qui fait partie d’une phrase... Entre lui et ses voisins, l’esprit aperçoit
des connexions, dont l’ensemble forme la charpente de la phrase.

[Between each word in a sentence and its neighbors, the mind perceives con-
nections. These connections together form the scaffolding of the sentence.]

Lucien Tesnière. 1959. Éléments de syntaxe structurale, A.1.§4

The focus of the last chapter was on context-free grammars and constituent-
based representations. Here we present another important family of grammar for-
malisms called dependency grammars. In dependency formalisms, phrasal con-dependency

grammars
stituents and phrase-structure rules do not play a direct role. Instead, the syntactic
structure of a sentence is described solely in terms of directed binary grammatical
relations between the words, as in the following dependency parse:

I prefer the morning flight through Denver

nsubj

obj

det

compound

nmod

case

root

(19.1)

Relations among the words are illustrated above the sentence with directed, labeled
arcs from heads to dependents. We call this a typed dependency structure becausetyped

dependency
the labels are drawn from a fixed inventory of grammatical relations. A root node
explicitly marks the root of the tree, the head of the entire structure.

Figure 19.1 on the next page shows the dependency analysis from Eq. 19.1 but
visualized as a tree, alongside its corresponding phrase-structure analysis of the kind
given in the prior chapter. Note the absence of nodes corresponding to phrasal con-
stituents or lexical categories in the dependency parse; the internal structure of the
dependency parse consists solely of directed relations between words. These head-
dependent relationships directly encode important information that is often buried in
the more complex phrase-structure parses. For example, the arguments to the verb
prefer are directly linked to it in the dependency structure, while their connection
to the main verb is more distant in the phrase-structure tree. Similarly, morning
and Denver, modifiers of flight, are linked to it directly in the dependency structure.
This fact that the head-dependent relations are a good proxy for the semantic rela-
tionship between predicates and their arguments is an important reason why depen-
dency grammars are currently more common than constituency grammars in natural
language processing.

Another major advantage of dependency grammars is their ability to deal with
languages that have a relatively free word order. For example, word order in Czechfree word order

can be much more flexible than in English; a grammatical object might occur before
or after a location adverbial. A phrase-structure grammar would need a separate rule
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Figure 19.1 Dependency and constituent analyses for I prefer the morning flight through Denver.

for each possible place in the parse tree where such an adverbial phrase could occur.
A dependency-based approach can have just one link type representing this particu-
lar adverbial relation; dependency grammar approaches can thus abstract away a bit
more from word order information.

In the following sections, we’ll give an inventory of relations used in dependency
parsing, discuss two families of parsing algorithms (transition-based, and graph-
based), and discuss evaluation.

19.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. The head plays the role of the centralhead

dependent organizing word, and the dependent as a kind of modifier. The head-dependent rela-
tionship is made explicit by directly linking heads to the words that are immediately
dependent on them.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to classify the kinds of grammatical relations, or grammatical function that thegrammatical

function
dependent plays with respect to its head. These include familiar notions such as
subject, direct object and indirect object. In English these notions strongly corre-
late with, but by no means determine, both position in a sentence and constituent
type and are therefore somewhat redundant with the kind of information found in
phrase-structure trees. However, in languages with more flexible word order, the
information encoded directly in these grammatical relations is critical since phrase-
based constituent syntax provides little help.

Linguists have developed taxonomies of relations that go well beyond the famil-
iar notions of subject and object. While there is considerable variation from theory
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Clausal Argument Relations Description
NSUBJ Nominal subject
OBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 19.2 Some of the Universal Dependency relations (de Marneffe et al., 2021).

to theory, there is enough commonality that cross-linguistic standards have been
developed. The Universal Dependencies (UD) project (de Marneffe et al., 2021),Universal

Dependencies
an open community effort to annotate dependencies and other aspects of grammar
across more than 100 languages, provides an inventory of 37 dependency relations.
Fig. 19.2 shows a subset of the UD relations and Fig. 19.3 provides some examples.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
can modify their heads.

Consider, for example, the following sentence:

United canceled the morning flights to Houston

nsubj

obj

det

compound

nmod

case

root

(19.2)

Here the clausal relations NSUBJ and OBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.

19.1.1 Dependency Formalisms
A dependency structure can be represented as a directed graph G= (V,A), consisting
of a set of vertices V , and a set of ordered pairs of vertices A, which we’ll call arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Different grammatical theories or formalisms may place further constraints on
these dependency structures. Among the more frequent restrictions are that the struc-
tures must be connected, have a designated root node, and be acyclic or planar. Of
most relevance to the parsing approaches discussed in this chapter is the common,
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Relation Examples with head and dependent
NSUBJ United canceled the flight.
OBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
COMPOUND We took the morning flight.
NMOD flight to Houston.
AMOD Book the cheapest flight.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 19.3 Examples of some Universal Dependency relations.

computationally-motivated, restriction to rooted trees. That is, a dependency treedependency
tree

is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

19.1.2 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input. An arc from a head to a dependent is said to be
projective if there is a path from the head to every word that lies between the headprojective

and the dependent in the sentence. A dependency tree is then said to be projective if
all the arcs that make it up are projective. All the dependency trees we’ve seen thus
far have been projective. There are, however, many valid constructions which lead
to non-projective trees, particularly in languages with relatively flexible word order.

Consider the following example.

JetBlue canceled our flight this morning which was already late

nsubj

obj

obl

det

acl:relcl

det nsubj

cop

adv

root

(19.3)

In this example, the arc from flight to its modifier late is non-projective since there
is no path from flight to the intervening words this and morning. As we can see from
this diagram, projectivity (and non-projectivity) can be detected in the way we’ve
been drawing our trees. A dependency tree is projective if it can be drawn with
no crossing edges. Here there is no way to link flight to its dependent late without
crossing the arc that links morning to its head.
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Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules. The trees generated in such
a fashion will always be projective, and hence will be incorrect when non-projective
examples like this one are encountered.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 19.2 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 19.3.

19.1.3 Dependency Treebanks

Treebanks play a critical role in the development and evaluation of dependency
parsers. They are used for training parsers, they act as the gold labels for evaluating
parsers, and they also provide useful information for corpus linguistics studies.

Dependency treebanks are created by having human annotators directly generate
dependency structures for a given corpus, or by hand-correcting the output of an
automatic parser. A few early treebanks were also based on using a deterministic
process to translate existing constituent-based treebanks into dependency trees.

The largest open community project for building dependency trees is the Univer-
sal Dependencies project at https://universaldependencies.org/ introduced
above, which currently has almost 200 dependency treebanks in more than 100 lan-
guages (de Marneffe et al., 2021). Here are a few UD examples showing dependency
trees for sentences in Spanish, Basque, and Mandarin Chinese:

VERB ADP DET NOUN ADP DET NUM PUNCT
Subiremos a el tren a las cinco .

we-will-board on the train at the five .

obl

det

case

det

obl:tmod

case

punct

[Spanish] Subiremos al tren a las cinco. “We will be boarding the train at five.”(19.4)

NOUN NOUN VERB AUX PUNCT
Ekaitzak itsasontzia hondoratu du .

storm (Erg.) ship (Abs.) sunk has .

nsubj

obj aux

punct

[Basque] Ekaitzak itsasontzia hondoratu du. “The storm has sunk the ship.”(19.5)

https://universaldependencies.org/
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Martı́, L. Màrquez, A. Meyers, J. Nivre, S. Padó,
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