
ITCS 6101/8101: Natural Language Processing

Text Classification and Language Modeling
with Neural Networks

Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@charlotte.edu

mailto:razvan.bunescu@charlotte.edu

1. Text Classification:
– With manually engineered features.
– With word embeddings.

2. Language Modeling:
– With word embeddings.

• State of the art systems use neural architectures more powerful than vanilla FCNs:
– RNNs: LSTMs or GRUs.
– Transformer: Masked LMs (BERT) or Causal LMs (GPT).

2

Two Use Cases for Feedforward FCNs

Sentiment Analysis

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

U

W

xnx1

σ
W

xnx1

σ

Logistic Regression Neural Network

Adding a hidden layer to logistic regression allows the
network to learn and use non-linear interactions between
features:
• may (or may not) improve performance.

Multiclass Classification

• What if you have more than two output classes?
– Positive, Neutral, Negative sentiment.
– One output unit for each class + use a softmax layer:

• ŷ = softmax(z) = [ŷ1 , ŷ2 , ŷ3]
– ŷ1 probability of positive sentiment.
– ŷ2 probability of neutral sentiment.
– ŷ3 probability of negative sentiment.

4

U

W

xnx1

ŷ1 ŷ2 ŷ3

Sentiment Analysis: FCN with Manually Engineered Features

• The real power of deep learning comes from the
ability to learn features from the data.

• Instead of:
– human-engineered features.

• Use:
– learned representations, like word embeddings!

Sentiment Analysis: FCN with Word Embeddings

How do we use these embeddings as input to an NN?

U

W

e1

ŷ1 ŷ2 ŷ3

e2 e3 e4 e5
movie was short but sweet

• An embedding is a vector of dimension [1 x d] that represents the input token.
• An embedding matrix E is a dictionary, one row per token of vocab V.

– E has shape [|V| × d]

• Given tokenized input “dessert was great”:
• Select the embedding vectors from E:

– Convert BPE tokens into vocabulary indices.
• w = [3, 9824, 226]

– Use indexing to select the corresponding rows from E:
• row 3, row 4000, row 10532

Embedding matrix E

E

|V|

d

1
|V| d

=✕
33

0 0 1 0 0 0 0 … 0 0 0 0 1

• Treat each input word as one-hot vector:
– If dessert is index 3:

• Multiply it by E to select out the embedding for dessert

Another way to think of indexing from E

14 CHAPTER 6 • NEURAL NETWORKS

in which we have already learned embeddings for all the input tokens. An embed-
ding is a vector of dimension d that represents the input token. The dictionary of
static embeddings in which we store these embeddings is the embedding matrixembedding

matrix
E. Each row of the embedding matrix represents each token of the vocabulary V

as a (row) vector of dimensionality d. Since E has a row for each of the |V | to-
kens in the vocabulary, E has shape [|V |⇥d]. This embedding matrix E plays a role
whenever we are using embeddings as input to neural NLP systems, including in the
transformer-based large language models we will introduce over the next chapters.

Given an input token string like dessert was greatwe first convert the tokens
into vocabulary indices (these were created when we first tokenized the input using
BPE or SentencePiece). So the representation of dessert was great might be
w = [3,9824,226]. Next we use indexing to select the corresponding rows from E

(row 3, row 4000, row 10532).
Another way to think about selecting token embeddings from the embedding

matrix is to represent input tokens as one-hot vectors of shape [1⇥ |V |], i.e., with
one dimension for each word in the vocabulary. Recall that in a one-hot vector allone-hot vector
the elements are 0 except one, the element whose dimension is the word’s index
in the vocabulary, which has value 1. So if the word “dessert” has index 3 in the
vocabulary, x3 = 1, and xi = 0 8i 6= 3, as shown here:

[0 0 1 0 0 0 0 ... 0 0 0 0]
1 2 3 4 5 6 7 |V|

Multiplying by a one-hot vector that has only one non-zero element xi = 1 simply
selects out the relevant row vector for word i, resulting in the embedding for word i,
as depicted in Fig. 6.11.

E

|V|

d

1
|V| d

=✕
33

0 0 1 0 0 0 0 … 0 0 0 0 1

Figure 6.11 Selecting the embedding vector for word V3 by multiplying the embedding
matrix E with a one-hot vector with a 1 in index 3.

We can extend this idea to represent the entire input token sequence as a matrix
of one-hot vectors, one for each of the N input positions as shown in Fig. 6.12.

E

|V|

d
d

N
=✕

|V|

N

0 0 0 0 0 0 0 … 0 0 1 0
0 0 1 0 0 0 0 … 0 0 0 0

1 0 0 0 0 0 0 … 0 0 0 0

0 0 0 0 1 0 0 … 0 0 0 0

…

Figure 6.12 Selecting the embedding matrix for the input sequence of token ids W by mul-
tiplying a one-hot matrix corresponding to W by the embedding matrix E.

We now need to classify this input of N [1⇥d] embeddings, representing a win-
dow of N tokens, into a single class (like positive or negative).

There are two common ways to to pass embeddings to a classifier: concate-
nation and pooling. First, we can take this input of shape [N ⇥ d] and reshape it

• Given window of N tokens, represented by N [1 × d] embeddings, need to return a
single class (e.g., positive or negative).

Another way to think of indexing from E

E

|V|

d
d

N
=✕

|V|

N

0 0 0 0 0 0 0 … 0 0 1 0
0 0 1 0 0 0 0 … 0 0 0 0

1 0 0 0 0 0 0 … 0 0 0 0

0 0 0 0 1 0 0 … 0 0 0 0

…

Text comes in different lengths

6.5 • EMBEDDINGS AS THE INPUT TO NEURAL NET CLASSIFIERS 15

by concatenating all the input vectors into one very long vector of shape [1⇥dN].
Then we pass this input to our classifier and let it make its decision. This gives
us lots of information, at the cost of using a pretty large network. Second, we can
pool the N embeddings into a single embedding and then pass that single pooledpool

embedding to the classifier. Pooling gives us less information than would have been
present in all the original embeddings, but has the advantage of being small and ef-
ficient and is especially useful in tasks for which we don’t care as much about the
original word order. Let’s give an example of each: pooling for the sentiment task,
and concatenation for the language modeling task.

Pooling input embeddings for sentiment So let’s begin with seeing how pooling
can work for the sentiment classification task. The intuition of pooling is that for
sentiment, the exact position of the input (is some word like great the first word?
the second word?) is less important than the identity of the word itself.

A pooling function is a way to turn a set of embeddings into a single embedding.
For example, for a text with N input words/tokens w1, ...,wN , we want to turn

the N row embeddings e(w1), ...,e(wN) (each of dimensionality d) into a single
embedding also of dimensionality d.

There are various ways to pool. The simplest is mean-pooling: taking the meanmean-pooling

by summing the embeddings and then dividing by N:

xmean =
1
N

NX

i=1

e(wi) (6.21)

Here are the equations for this classifier assuming mean pooling:

x = mean(e(w1),e(w2), . . . ,e(wn))

h = s(xW+b)

z = hU

ŷ = softmax(z) (6.22)

The architecture is sketched in Fig. 6.13, where we also give the shapes for all the
relevant matrices.

There are many other options for pooling, like max-pooling, in which case formax-pooling

each dimension we take the element-wise max over all the inputs. The element-wise
max of a set of N vectors is a new vector whose kth element is the max of the kth
elements of all the N vectors.

Concatenating input embeddings for language modeling For sentiment analy-
sis we saw how to generate an output vector with probabilities over three classes:
positive, negative, or neutral, given as input a window of N input tokens, by first
pooling those token embeddings into a single embedding vector.

Now let’s consider language modeling: predicting upcoming words from prior
words. In this task we are given the same window of N input tokens, but our task
now is to predict the next token that should follow the window. We’ll sketch a
simple feedforward neural language model, drawing on an algorithm first introduced
by Bengio et al. (2003). The feedforward language model introduces many of the
important concepts of large language modeling that we will return to in Chapter 7
and Chapter 8.

Neural language models have many advantages over the n-gram language mod-
els of Chapter 3. Neural language models can handle much longer histories, can

• Two approaches to get a fixed input size:
1. Concatenate all input embeddings into one long vector [1×dN], e.g., N is length of longest

review.
• If shorter than N tokens, then pad with zero embeddings.
• Truncate if you get longer reviews at test time

2. Pool the inputs into a single short [1 × d] vector.
• A single "sentence embedding" (the same dimensionality as a word) to represent all the words.
• Less information, but very efficient and fast.
• Intuition: exact position not so important for sentiment.

E

|V|

d
d

N
=✕

|V|

N

0 0 0 0 0 0 0 … 0 0 1 0
0 0 1 0 0 0 0 … 0 0 0 0

1 0 0 0 0 0 0 … 0 0 0 0

0 0 0 0 1 0 0 … 0 0 0 0

…

𝐱 = [𝒆(𝑤!), 𝒆(𝑤!), … , 𝒆(𝑤"),

11

• Use word embeddings as input.

• Problem: text has variable length, whereas NN’s
need fixed-size input.

• Solutions:
1. Concatenate embeddings over N positions:

• Truncate to last N tokens, if text length > N.
• Pad with dummy tokens, if text length < N.

2. Pool embeddings across all positions:
• Max-pooling.
• Mean-pooling

Sentiment Analysis: FCN with Word Embeddings

U

W

e1

ŷ1 ŷ2 ŷ3

e2 e3 e4 e5
movie was short but sweet

Any issues with these two FCN approaches? Can we do better?

• Limitations:
– Concatenation => large number of parameters (linear in N)
– Pooling => information loss (removes ordering).

• Better approaches:
– Recurrent Neural Networks (RNNs).
– Transformer.

• Both RNNs and Transformer:
– The number of parameters is constant w.r.t. the length of the text.

• The same network is used at every position in the text.
– RNNs: sequential application.
– Transformer: parallel application.

– Theoretically, no information loss (order is important).
13

FCNs vs. RNNs vs. Transformer

Neural Language Modeling with FCNs

• Task: predict next word wt given prior

words wt-1, wt-2, wt-3, … w1

– Problem: sequences of arbitrary length.

– Solution: sliding window of fixed length.

• Truncated history.

• Low-order Markov model.
14

16 CHAPTER 6 • NEURAL NETWORKS

“dessert” = V3 “was” = V524 “great” = V902

embedding for “dessert”
embedding for “was”

embedding for “great”

U

W
[1⨉d]

Hidden layer

Output layer

[d⨉dh]

[1⨉dh]

[dh⨉3]

Input words

p(+)

h1 h2 h3 hdh
…

y1
^ y2

^ y3
^

x

h

y

Input layer

[1⨉3]

pooling+

p(-) p(neut)

embeddings

one-hot vectors

dessert was great

N⨉d

0 0 1 00

1 |V|3

0 0 1 00

1 |V|902
0 0 1 00

1 |V|524

0
0

E

N⨉|V|

|V|⨉dE E E matrix
shared across words

Output probabilities

weights

weights

softmax

pooled embedding

Figure 6.13 Feedforward network sentiment analysis using a pooled embedding of the input words. At each
timestep the network computes a d-dimensional embedding for each context word (by multiplying a one-hot
vector by the embedding matrix E), and pools the resulting N embeddings to get a single embedding that
represents the context window as the layer e.

generalize better over contexts of similar words, and are far more accurate at word-
prediction. On the other hand, neural net language models are slower, more com-
plex, need vast amounts of energy to train, and are less interpretable than n-gram
models, so for some smaller tasks an n-gram language model is still the right tool.

A feedforward neural language model is a feedforward network that takes as
input at time t a representation of some number of previous words (wt�1,wt�2, etc.)
and outputs a probability distribution over possible next words. Thus—like the n-
gram LM—the feedforward neural LM approximates the probability of a word given
the entire prior context P(wt |w1:t�1) by approximating based on the N �1 previous
words:

P(wt |w1, . . . ,wt�1)⇡ P(wt |wt�N+1, . . . ,wt�1) (6.23)

In the following examples we’ll use a 4-gram example, so we’ll show a neural net to
estimate the probability P(wt = i|wt�3,wt�2,wt�1).

Neural language models represent words in this prior context by their embed-
dings, rather than just by their word identity as used in n-gram language models.
Using embeddings allows neural language models to generalize better to unseen
data. For example, suppose we’ve seen this sentence in training:

I have to make sure that the cat gets fed.

h1 h2

y1

h3 hdh…

…

U

W

y34 y|V|

embedding layer e 1⨉Nd

hidden layer h

output layer y
softmax

…

...

wt-1wt-2 wtwt-3

Nd⨉dh

1⨉dh

dh⨉|V|

1⨉|V|

Input layer
one-hot
vectors “for” = V35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|451

0 0 1 00

1 |V|992

0 0

“all” = V992 “the” = V451

E
N⨉|V|

E is shared
across words |V|⨉d

…

p(wt=do|…)p(wt=aardvark|wt-3,wt-2,wt-1) p(wt=zebra|…)p(wt=fish|…)

… y42 y35102
^^^ ^ ^

E E

for all the ?thanksand… …

15

Inference in a Feedforward Language Model
18 CHAPTER 6 • NEURAL NETWORKS

size of 3, given one-hot input vectors for each input context word, are:

e = [Ext�3;Ext�2;Ext�1]

h = s(We+b)

z = Uh

ŷ = softmax(z) (6.24)

Note that we we use semicolons to mean concatenation of vectors, so we form the
embedding layer e by concatenating the 3 embeddings for the three context vectors.

We’ll return to this idea of using neural networks to do language modeling in
Chapter 7 and Chapter 8 when we introduce transformer language models.

6.6 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 6.13, is ŷ, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters W

[i] and b
[i] for each layer i that make ŷ for each training

observation as close as possible to the true y.
In general, we do all this by drawing on the methods we introduced in Chapter 4

for logistic regression, so the reader should be comfortable with that chapter before
proceeding. We’ll explore the algorithm on simple generic networks rather than
networks designed for sentiment or language modeling.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss function used for logistic
regression, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 4.

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each
of the parameters. In logistic regression, for each observation we could directly
compute the derivative of the loss function with respect to an individual w or b. But
for neural networks, with millions of parameters in many layers, it’s much harder to
see how to compute the partial derivative of some weight in layer 1 when the loss
is attached to some much later layer. How do we partial out the loss over all those
intermediate layers? The answer is the algorithm called error backpropagation or
backward differentiation.

6.6.1 Loss function
The cross-entropy loss that is used in neural networks is the same one we saw forcross-entropy

loss
logistic regression. If the neural network is being used as a binary classifier, with
the sigmoid at the final layer, the loss function is the same logistic regression loss
we saw in Eq. ??:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (6.25)

If we are using the network to classify into 3 or more classes, the loss function is
exactly the same as the loss for multinomial regression that we saw in Chapter 4 on

• Here, ŷ42 is the probability of the next word wt being V42 = fish

h1 h2

y1

h3 hdh…

…

U

W

y34 y|V|

embedding layer e 1⨉Nd

hidden layer h

output layer y
softmax

…

...

wt-1wt-2 wtwt-3

Nd⨉dh

1⨉dh

dh⨉|V|

1⨉|V|

Input layer
one-hot
vectors “for” = V35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|451

0 0 1 00

1 |V|992

0 0

“all” = V992 “the” = V451

E
N⨉|V|

E is shared
across words |V|⨉d

…

p(wt=do|…)p(wt=aardvark|wt-3,wt-2,wt-1) p(wt=zebra|…)p(wt=fish|…)

… y42 y35102
^^^ ^ ^

E E

for all the ?thanksand… …

Supplementary Readings

• Chapter 6 in the textbook.

16

mailto:https://web.stanford.edu/~jurafsky/slp3/2.pdf

