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Two Use Cases for Feedforward FCNs

1. Text Classification:

— With manually engineered features.
— With word embeddings.

2. Language Modeling:
— With word embeddings.

 State of the art systems use neural architectures more powerful than vanilla FCNis:

— RNNs: LSTMs or GRUs.
— Transformer: Masked LMs (BERT) or Causal LMs (GPT).




Sentiment Analysis

Logistic Regression Neural Network

U

W

Var Definition
X1 count(positive lexicon) € doc)

X2 count(negative lexicon) € doc)
{ 1 if “no” € doc

& 0 otherwise Adding a hidden layer to logistic regression allows the
x4 count(1Ist and 2nd pronouns & doc) network to learn and use non-linear interactions between
" 1 if “!” €doc o

2 0 otherwise : .
X6 log(word count of doc) * may (or may not) improve performance.




Multiclass Classification

* What if you have more than two output classes?
— Positive, Neutral, Negative sentiment.
— One output unit for each class + use a softmax layer:

g 5\’ b Softmax(z) o [5\,1 ) 5\72 ) 5\’3]
— ¥, probability of positive sentiment. U

— ¥, probability of neutral sentiment.
— V5 probability of negative sentiment.

X = [X1,X2,...Xg]
h = 6(Wx+b)
z = Uh

y = softmax(z)




Sentiment Analysis: FCN with Manually Engineered Features

dessert wordcount X4
=3
Was | positive lezucon X,
words = 1
great count of “no” X3
) =0 \
Input words X W h U Yy

[dx1]  [dyxd] [3xd,]  [3x1]

[dy,X1]

Input layer  Hidden layer Output layer
d=3 features softmax

10T X WI] Feedforward network sentiment analysis using traditional hand-built features
of the input text.




Sentiment Analysis: FCN with Word Embeddings

* The real power of deep learning comes from the
ability to learn features from the data.

 Instead of:
— human-engineered features.
P lges
— learned representations, like word embeddings!

How do we use these embeddings as input to an NN?
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Embedding matrix E

An embedding is a vector of dimension [1 x d] that represents the input token.

An embedding matrix E 1s a dictionary, one row per token of vocab V.
— E has shape [|V] % d]

Given tokenized input “dessert was great”:

Select the embedding vectors from E:
— Convert BPE tokens into vocabulary indices.
« w=][3,9824, 226]
— Use indexing to select the corresponding rows from E:
 row 3, row 4000, row 10532




Another way to think of indexing from E

* Treat each mput word as one-hot vector:
— Ifdessert is index 3:

(0010000 ... 000 0]
1 2 - 3WERSE6 7 ... S |V

¢ Multiply it by E to select out the embedding for dessert

d

\ 3

e

0000...0000 X E
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Another way to think of indexing from E

* Given window of N tokens, represented by N [1 x d] embeddings, need to return a
single class (e.g., positive or negative).

VI d
00[10000...0000

0000000...00[1]0 _
1/000000...0000 X E —

N [oo00difoo...0000] |V|




Text comes 1n different lengths

=

* Two approaches to get a fixed input size:

1. Concatenate all input embeddings into one long vector [1XdN], e.g., N is length of longest

review.
e If shorter than N tokens, then pad with zero embeddings.

. : A X = [e(wl)r e(Wl)l ey e(Wn):
« Truncate if you get longer reviews at test time

2. Pool the inputs into a single short [1 x d] vector.
A single "sentence embedding" (the same dimensionality as a word) to represent all the words.
« Less information, but very efficient and fast.

* Intuition: exact position not so important for sentiment.

x = mean(e(w;),e(wy),...,e(w,))
h = 6(xW+b)

z = hU

y = softmax(z)




p(+) p(-) p(neut) Output probabilities
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Y [ix3] Output layer softmax

[d,X3]  weights

U
) h [1xd;] Hidden layer
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Sentiment Analysis: FCN with Word Embeddings

Use word embeddings as input.

Problem: text has variable length, whereas NN’s
need fixed-size iput.

Solutions: U

1. Concatenate embeddings over N positions:
*  Truncate to last N tokens, if text length > N.

e  Pad with dummy tokens, if text length <N. / \%Y% \

2. Pool embeddings across all positions:

Max-pooling.

|

|

€ [|€ | |€3||€s | |€ |

*  Mean-pooling I 2 : 4 > |

movie was short but  sweet

Any 1ssues with these two FCN approaches? Can we do better? |




FCNs vs. RNNs vs. Transformer

e Limaitations:
— Concatenation => large number of parameters (linear in N)

— Pooling => information loss (removes ordering).

* Better approaches:
— Recurrent Neural Networks (RNNs).

— Transformer.

e Both RNNs and Transformer:

— The number of parameters is constant w.r.t. the length of the text.
« The same network is used at every position in the text.
— RNNs: sequential application.
— Transformer: parallel application.
— Theoretically, no information loss (order 1s important).
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Neural Language Modeling with FCNs

« Task: predict next word w, given prior
words w,_ 1, W, W3, ... W)
— Problem: sequences of arbitrary length.
— Solution: sliding window of fixed length.
* Truncated history.

e [Low-order Markov model.

P(wilwi,...owi—1) = P(W|Wi—N41, -, Wi—1)

p(w=aardvark|w, ;,w, ,,W, )

output layer y
softmax
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Inference 1n a Feedforward Language Model

p(wt=aardvark|wt3wt2wt D p(wt do].. )p(wt fish|...) p(w= zebra| J)

iz (@ @ @@
softmax \\ LSS ~_— /”v

e — [ EXt —3, EXt —92, Ext 1 ] a4
h W b hidden layer h @\@\ w / } Ixdy,
= O ( € ) \ Ndxdy
Z = U h embedding layer e )& o 1xNd
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across words w [Vixd
s ‘ \ 1)) 451 \V|
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for all the ? g
Wt-3 Wt2 > Wi-1 Wi

 Here, ¥, is the probability of the next word w, being V,, = f1sh




Supplementary Readings

e Chapter 6 in the textbook.
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