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• Tokenization

• Morphological Analysis

• Part of Speech Tagging

• Syntactic Parsing

• Word Meaning

• Semantic Parsing

• Anaphora/Coreference Resolution

• Named Entity Linking
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Fundamental NLP Tasks Identify Linguistic Structures



• Tokenization = segmenting text into words and sentences.
– A crucial first step in most text processing applications.
– Language Models use subword tokenization.

• Whitespace indicative of word boundaries?
– Yes: English, French, Spanish, …
– No: Chinese, Japanese, Thai, …

• Whitespace is not enough:
– ‘What’re you? Crazy?’ said Sadowsky. ‘I can’t afford to do that.’
Whitspace Þ  ‘what’re_you?_crazy?_said_Sadowsky._‘I_can’t_afford_to_do_that.  
Correct Þ ‘_what_’re_you_?_crazy_?_Sadowsky_._‘_I_can_’t_ afford_to_do_that_. 
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Tokenization



• In English, characters other than whitespace can be used to separate words:
– , ; . - : ( )”

• But punctuation often occurs inside words:
– m.p.h., Ph.D., AT&T, 01/02/06, google.com, 62.5
– Homework: design regular expressions to match constructions where punctuation does not split:

– acronyms, dates, web addresses, numbers, etc.
– https://docs.python.org/3/howto/regex.html

• Expansion of clitic constructions:
– he’s happy Þ he is happy
– Need ambiguity resolution between clitic construction, possessive markers, quotative markers:

• he’s happy vs. the book’s cover vs. ‘what are you? crazy?’
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Word Segmentation

https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html


Tokens, Types, Corpus, Vocabulary
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• Tokenization = segmenting text into tokens:
– token = a sequence of characters, in a particular document at a particular position.
– type = the class of all tokens that contain the same character sequence.

• “... to be or not to be ...”
• “... so be it, he said ...”

– A token is an instance, or occurrence, of a type.

• A corpus is a collection of text documents:
1. D1 = “Colorless green ideas sleep furiously .”
2. D2 = “Green makes me sleep , red makes me alert .”

• The corpus vocabulary maps token types to their frequency:
– {colorless: 1,  green: 2, ideas: 1,  sleep: 2, furiously: 1, makes: 2, …}



Tokenization: Tokens, Types, and Terms
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• Tokenization = segmenting text into tokens:
– token = a sequence of characters, in a particular document at a particular position.
– type = the class of all tokens that contain the same character sequence.

Types = |V| Tokens = N
Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google N-grams 13+ million 1 trillion

The bigger the corpus, the more word types!



Heap’s Law

• Given:
– |V| is the size of the vocabulary.
– N is the number of tokens in the collection.

• Then:
– |V| = kNβ

– k, β depend on the collection type:
• typical values: 30 ≤ k ≤ 100 and β ≈ 0.5 (square root).
• in a log-log plot of  |V| vs. N, Heaps’ law predicts a line with slope of about ½.
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Heap’s Law Fit to Reuters RCV1 and Guttenberg
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• For RCV1, the dashed line log10V = 0.49 log10N + 1.64 is the best least squares fit.
– Thus, V = 101.64N0.49 which means k = 101.64 ≈ 44 and b = 0.49.
– For first 1,000,020 tokens, Heapʼs Law predicts 38,323 terms vs. actual 38,365 terms.
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Figure 2. Growth of the number of distinct words computed on the Gutenberg corpus of texts [15].
The position of texts in the corpus is chosen at random. In this case g ' 0.44. Similar behaviours are
observed in many other systems.

2.3. Zipf’s vs. Heaps’ Laws

In this section we compare the two laws just observed, Zipf’s law for the frequencies of occurrence
of the elements in a system and Heaps’ law for their temporal appearance. It has often been claimed that
Heaps’ and Zipf’s law are trivially related and that one can derive Heaps’s law once the Zipf’s is known.
This is not true in general. It turns out to be true only under the specific hypothesis of random-sampling
as follows. Suppose the existence of a strict power-law behaviour of the frequency-rank distribution,
f (R) ⇠ R�a, and construct a sequence of elements by randomly sampling from this Zipf distribution
f (R). Through this procedure, one recovers a Heaps’ law with the functional form D(t) ⇠ tg [23,24]
with g = 1/a. In order to do that we need to consider the correct expression for f (R) that includes the
normalisation factor, whose expression can be derived through the following approximated integral:

Z Rmax

1
f (R̃)dR̃ = 1 . (3)

Let us now distinguish the two cases. For a 6= 1 one has

f (R) =
1 � a

R1�a
max � 1

R�a . (4)

while for a = 1 one obtains:
f (R) =

1
log Rmax

R�1 . (5)

When a > 1, one can neglect the term R1�a
max in Equation (4), and when a < 1, one can write

R1�a
max � 1 ' R1�a

max.

Zipf's, Heaps' and Taylor's laws are determined by the expansion into the adjacent possible
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https://arxiv.org/abs/1811.00612


• Function words: of, the, is, and, una, 是, …
• Content words: mango, braise, snowy, feliz, 北京, …
• Proper names: Yahoo, Google, Bing, …

• Problem: no matter how big our vocabulary, there will always be words we missed.
– We will always have unknown words.

• Solution:
– Morphological analysis => use morphemes as tokens instead of words.

• But morphemes cab be nontrivial to define and identify…
– Subword tokenization => the standard in modern NLP, e.g. LLMs.
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There are too many words!

2.2 • WORDS 11

duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)
Roughly 0.5



• Morphology = the field of linguistics that studies the internal structure of words.

• Morpheme is the smallest linguistic unit that has semantic meaning:
– Roots or stems: central morpheme of the word, supplying the main meaning

• “carry”, “depend”, “Google”, “lock”
– Affixes:  add additional meaning

• “pre”, “ed”, “ly”, “s”
• Inflectional: grammatical morphemes, often syntactic role like agreement

– –ed past tense on verbs, e.g., work-ed
– – s/ – es plural on nouns, e.g., glass-es

• Derivational: idiosyncratic in application and meaning, often change grammatical class.
– care (noun) 

 – full => careful (adjective) 
 – ly =>  carefully (adverb)
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Morphology



• Morpheme is the smallest linguistic unit that has semantic meaning:
– Clitics are morphemes that act syntactically like a word, but are:

• reduced in form.
• attached to another word. 

– Clitics in English: 've in I've  ('ve can't appear alone), or ’s in the teacher’s book
– Clitics in French: l’ in l’opera

• Using morphemes as tokens can mitigate the unknown word problem:
– Train: seen words like worked, play, …

• Tokenize into morphemes work, -ed, play, …
– Test: encounter unseen word played.

• Tokenize as play, -ed.
– But segmenting words into morphemes can be difficult.
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Morphology



• Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong:
– keoi5 waa6 cyun4 gwok3   zeoi3 daai6 gaan1     uk1     hai6 ni1 gaan1 
– he      say     entire country most big    building house is    this building 

• He said the biggest house in the country was this one” 

• Many. Koryak, spoken in Kamchatka peninsula in Russia:
– t-ə-nk’e-mejŋ-ə-jetemə-nni-k
– 1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV] 

• “I sewed a lot of yurt covers in the middle of a night.” 
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Morphological Typology: Morphemes per Word

Analytic Synthetic

Farsi Greenlandic

(Inuit)
Sanskr

it

Swahili
Yakut

Old English

English
Vietnamese

1.1 1.5 1.7 2.1 2.2 2.5 2.6 3.7

Morphemes per Word

Polysynthetic

Joseph Greenberg scale (1960) 



• Morphological analysis = segmenting words into morphemes:
– carried Þ carry + ed (past tense)
– independently Þ  in + (depend + ent) + ly 
– Googlers Þ  (Google + er) + s (plural)
– unlockable Þ  un + (lock + able) ? (un + lock) + able ?

• Difficulty of segmenting into morphemes varies across languages:
– Agglutinative languages like Turkish have very clean boundaries between morphemes.
– Fusion languages: a single affix may conflate multiple morphemes.

– Russian  -om in stolom (table-SG-INSTR- DECL1) 
» instrumental, singular, and first declension. 

– English –s in "She reads the article"
» Means both "third person" and "present tense"

– These are tendencies rather than absolutes.
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Morphological Analysis



• Rule based (word or morpheme tokenization):
– Develop rules based on linguistic knowledge for breaking strings into tokens corresponding to 

words and punctuation symbols.
• Usually implemented with a combination of lexicons, regular expressions, and code.
• Drawback: what to do with new or misspelled words?

– Examples: spaCy and NLTK tokenizers.

• Statistical (subword tokenization):
– Use statistics over a large corpus of text to learn to break text into ”common” subword tokens. 

• Advantage: can accommodate unseen words.
– Examples: BPE, WordPiece, SentencePiece.

14

Tokenization Approaches



Subword Tokenization

• NLP algorithms often learn some facts about language from a training corpus and 
then use these facts to make decisions about a separate test corpus.
– The vocabulary of tokens V is built from the training corpus.
– What to do if the test corpus contains a token that is not in V?

• Training corpus contains low, new, newer, but not lower.
• If the word lower appears in the test corpus, the NLP system will not know what to do with it.

– But we’ve seen new and newer! If we had segmented newer as new + er, the NLP system 
could have learned that any <adj> + er means a stronger version of <adj>.

– This is how we can make (some) sense of Jabberwocky.
» https://en.wikipedia.org/wiki/Jabberwocky 
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Word segmentation: Subwords

• Use the data to tell us how to tokenize:
– Instead of manually designed rules.
– Instead of training on manually tokenized examples.

• Called Subword tokenization:
– Because tokens are often parts of words.
– Tokens end up including common morphemes, like -est or -er. 

• A morpheme is the smallest meaning-bearing unit of a language;
– unlikeliest has morphemes un-, likely, and -est. 



Subword Tokenization

• Three common algorithms:
1. Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
2. Unigram language modeling tokenization (Kudo, 2018)
3. WordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
1. A token learner that takes a raw training corpus and induces a vocabulary, e.g. a set of tokens. 
2. A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary.



Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters 
 = {A, B, C, D, … , a, b, c, d, …}

• Repeat:
– Choose the two symbols that are most frequently adjacent in training corpus (say ‘A’, ‘B’), 
– Add a new merged symbol ‘AB’ to the vocabulary
– Replace every adjacent ’A’ ’B’ in corpus with ‘AB’. 

• Until k merges have been done.



BPE token learner algorithm
2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma



Byte Pair Encoding (BPE)

• Most subword algorithms are run inside white-space separated tokens. 
• First add a special end-of-word symbol '__’ after each word in the corpus:

– Alternatively, attach symbol '__’ at the beginning of each word

• Next, separate into characters, create an initial vocabulary from all characters.



BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer newer newer newer wider 

wider wider new new

Add end-of-word tokens and segment:



BPE token learner
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so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
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Merge Current Vocabulary
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Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

R1 = merge e r to er
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Byte Pair Encoding (BPE)

R2 = merge er  _ to er_
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(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :
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5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w
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corpus vocabulary
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If we continue, the next merges are:
Merge Current Vocabulary
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(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.



Byte Pair Encoding (BPE)

R3 = merge n  e  to ne
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is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:
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5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
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If we continue, the next merges are:
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(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
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Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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R6 =
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R8 =

So far:
R1 = merge e r to er

R2 = merge er  _ to er_
R3 = merge n  e  to ne



• On the test corpus, run each merge learned from the training data:
– Greedily, in the order they were added to vocabulary.

• test frequencies don't play a role.
– So, merge every e r to er, then merge er _ to er_, etc.

•  

– Test set "n e w e r _" would be tokenized as a full word. 
– Test set "l o w e r _" would be two tokens: "low" + "er_ ":

• “lower” was never seen in the training corpus.
• However, we’ve seen “low” and “er”.

– The meaning of “low” + er” can be derived from the meaning of its components.

Using BPE on a new text

V = {_, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_, low_}



OpenAI’s tokenizer

• tiktoken is a fast open source BPE tokenizer released by OpenAI’s and used with its 
models.

• More details in the jupyter-notebook …
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import tiktoken

# To get the tokenizer corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4")

tokens = [enc.decode_single_token_bytes(token) for token in 
     enc.encode(" soooo much rrrracing in Kannapolis this Summer!")]
# To translate to the standard representation (utf-8), you can use token.decode('utf-8').
utf8_tokens = [token.decode('utf-8') for token in tokens]
print(utf8_tokens)

['so', 'ooo', ' much', ' r', 'rr', 'r', 'acing', ' in', ' Kann', 'apolis', ' this', ' Summer', '!']

https://github.com/openai/tiktoken

https://github.com/openai/tiktoken


WordPiece Tokenizer

• Used by BERT, DistilBERT, and Electra.
• Greedy procedure like BPE.

– BPE chooses to merge the most frequent symbol pair.
– WordPiece merges the pair that maximizes the likelihood of the training data once added to the 

vocabulary.
• If A and B are a candidate pair, their score is given by:

• Choose to merge the pair with the highest score.
• This can be shown to maximize the likelihood of the data.
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𝑃(𝐴𝐵)
𝑃 𝐴 𝑃(𝐵)

https://huggingface.co/docs/transformers/tokenizer_summary#wordpiece
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer#applying_wordpiece

how is this related to pmi(A,B)?

https://huggingface.co/docs/transformers/tokenizer_summary
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer


Statistical Properties of Text

• Heap’s Law models the number of words in the vocabulary as a function of the 
corpus size:
– What is the number of unique words appearing in a corpus of size N words?
– This determines how the size of the inverted index in IR will scale with the size of the corpus.

• Zipf’s Law models the distribution of terms/types in a corpus:
– How many times does the kth most frequent word appears in a corpus of size N words?
– Important for determining index terms for IR (search engines) and properties of compression 

algorithms.
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Word Distribution

• A few words are very common:
– The 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word occurrences.

• Most words are very rare:
– Half the words in a corpus appear only once, called hapax legomena (Greek for “read only once”)

• A “heavy tailed” or “long tailed” distribution:
– Since more of the probability mass is in the “tail” compared to an exponential distribution.
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Word Distribution
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Frequency vs. rank for all words in Moby Dick.



Word Distribution (Log Scale)
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Moby Dick:
• 44% hapax legomena
• 17% dis legomena

“Honorificabilitudinitatibus”:
• Shakespeare’s hapax legomenon
• longest word with alternating 
vowels and consonants



Zipf’s Law

• Rank all the words in the vocabulary by their frequency, in decreasing order.
– Let r(w) be the  rank of word w.
– Let f(w) be the frequency of word w.

• Zipf (1949) postulated that frequency and rank are related by a power law:

– c is a normalization constant that depends on the corpus.

33

!"
!"

!"
#!$ =



Zipf’s Law

• If the most frequent term (the) occurs f1 times:
– Then the second most frequent term (of) occurs f1 / 2 times.
– The third most frequent term (and) occurs f1 / 3 times, … 

• Power Laws: y = cxk 
– Zipf’s Law is a power law with k = –1.
– Linear relationship between log(y) and log(x):

• log(y) = log c + k log(x)
• on a log scale, power laws give a straight line with slope k.

• Zipf is quite accurate, except for very high and low rank.
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Zipf’s Law Fit to Brown Corpus
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Mandelbrot’s Distribution

• The following more general form gives a bit better fit:

• When fit to Brown corpus:
• c = 105.4
• K = 1.15
• r = 100
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Mandelbrot’s Law Fit to Brown Corpus
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Explanations

• Zipf’s Law:
– Zipf’s explanation was his “principle of least effort”:

•  Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.
– Herbert Simon’s explanation is “rich get richer.”
– Li (1992) shows that just random typing of letters including a space will generate “words” with a 

Zipfian distribution.

• Heaps’ Law:
– Can be derived from Zipf’s law by assuming documents are generated by randomly sampling 

words from a Zipfian distribution.
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Supplementary Readings

• Section 2.1 to 2.6 in the textbook.
• HuggingFace summary of tokenization techniques.
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mailto:https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://huggingface.co/docs/transformers/tokenizer_summary

