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Fundamental NLP Tasks Identify Linguistic Structures

Tokenization

Morphological Analysis

Part of Speech Tagging

Syntactic Parsing

Word Meaning

Semantic Parsing
Anaphora/Coreference Resolution

Named Entity Linking




Tokenization

=

* Tokenization = segmenting text into words and sentences.
— A crucial first step in most text processing applications.

— Language Models use subword tokenization.

* Whitespace indicative of word boundaries?
— Yes: English, French, Spanish, ...

— No: Chinese, Japanese, Thai, ...

« Whitespace 1s not enough:
— ‘What’re you? Crazy?’ said Sadowsky. ‘I can’t afford to do that.’
Whitspace = ‘what’re you? crazy? said Sadowsky. ‘I can’t afford to do that.
Correct = * what re you ? crazy ? Sadowsky . ‘I can 't afford to do that .




Word Segmentation

* In English, characters other than whitespace can be used to separate words:
=, o i )

* But punctuation often occurs inside words:
— m.p.h., Ph.D., AT&T, 01/02/06, google.com, 62.5
— Homework: design regular expressions to match constructions where punctuation does not split:

— acronyms, dates, web addresses, numbers, etc.
— https://docs.python.org/3/howto/regex.html

« Expansion of clitic constructions:
— he’s happy = he is happy
— Need ambiguity resolution between clitic construction, possessive markers, quotative markers:

* he’s happy vs. the book’s cover vs. ‘what are you? crazy?’



https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html

Tokens, Types, Corpus, Vocabulary

* Tokenization = segmenting text into tokens:
— token = a sequence of characters, in a particular document at a particular position.
— type = the class of all tokens that contain the same character sequence.
e “...to be or not to be ...”
o “..so beit, he said ...”

— A token 1s an 1nstance, or occurrence, of a fype.

* A corpus is a collection of text documents:
1. D, ="*“Colorless green ideas sleep furiously .”

2. D, =“Green makes me sleep , red makes me alert.”

e The corpus vocabulary maps token #ypes to their frequency:

—  {colorless: 1, green: 2, ideas: 1, sleep: 2, furiously: 1, makes: 2, ...}




Tokenization: Tokens, Types, and Terms

* Tokenization = segmenting text into tokens:

— token = a sequence of characters, in a particular document at a particular position.

— type = the class of all tokens that contain the same character sequence.

Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google N-grams 13+ million 1 trillion

The bigger the corpus, the more word types!




Heap’s Law

 @Given;
— |V] 1s the size of the vocabulary.
— N 1s the number of tokens in the collection.

of Shen:
— |V| = kN
— k, f depend on the collection type:

* typical values: 30 </, <100 and f = 0.5 (square root).
 1n a log-log plot of |V| vs. N, Heaps’ law predicts a line with slope of about 2.




Heap’s Law Fit to Reuters RCV1 and Guttenberg

 For RCV1, the dashed line log;, /"= 0.49 log,,NV + 1.64 1s the best least squares fit.
— Thus, V'=10"%N%4 which means k = 1094~ 44 and b = 0.49.
— For first 1,000,020 tokens, Heap’s Law predicts 38,323 terms vs. actual 38,365 terms.
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https://arxiv.org/abs/1811.00612

There are too many words!

‘V| £ kNﬁ<— Roughly 0.5

Function words: of, the, is, and, una, 2, ...
Content words: mango, braise, snowy, feliz, /LR, ...

Proper names: Yahoo, Google, Bing, ...

Problem: no matter how big our vocabulary, there will always be words we missed.

— We will always have unknown words.

Solution:

— Morphological analysis => use morphemes as tokens instead of words.
e But morphemes cab be nontrivial to define and identify...
— Subword tokenization => the standard in modern NLP, e.g. LLMs.




Morphology

* Morphology = the field of linguistics that studies the internal structure of words.

 Morpheme 1s the smallest linguistic unit that has semantic meaning;:
— Roots or stems: central morpheme of the word, supplying the main meaning
o “carry”, “depend”, “Google”, “lock”
— Affixes: add additional meaning
TR  cd syt
 Inflectional: grammatical morphemes, often syntactic role like agreement
— —ed past tense on verbs, e.g., work-ed
— — s/ —es plural on nouns, e.g., glass-es
* Derivational: idiosyncratic in application and meaning, often change grammatical class.
— care (noun)
— full => careful (adjective)

— ly => carefully (adverb)
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Morphology

=

 Morpheme 1s the smallest linguistic unit that has semantic meaning;:
— Clitics are morphemes that act syntactically like a word, but are:
 reduced in form.

e attached to another word.
— Clitics in English: 've in I 've ('wve can't appear alone), or ’ s in the teacher’s book

— Clitics in French: 1/ in 1’ opera

* Using morphemes as tokens can mitigate the unknown word problem:
— Train: seen words like worked, play, ...
» Tokenize into morphemes work, -ed, play, ...
— Test: encounter unseen word played.
» Tokenize as play, -ed.
— But segmenting words into morphemes can be difficult.
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Morphological Typology: Morphemes per Word

» Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong:
—  keoi5 waab cyund gwok3 zeoi3 daai6 gaanl ukl  hai6 nil gaanl
— he say entire country most big building house is this building

» He said the biggest house in the country was this one”

* Many. Koryak, spoken in Kamchatka peninsula in Russia:
— t-a-nk’e-mejn-a-jetema-nni-k
— 1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV]
» “Isewed a lot of yurt covers in the middle of a night.”
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Morphological Analysis

=

* Morphological analysis = segmenting words into morphemes:
— carried = carry + ed (past tense)
— independently = in + (depend + ent) + ly
— Googlers = (Google + er) + s (plural)
— unlockable = un + (lock + able) ? (un + lock) + able ?

 Difficulty of segmenting into morphemes varies across languages:
— Agglutinative languages like Turkish have very clean boundaries between morphemes.

— Fusion languages: a single affix may conflate multiple morphemes.
— Russian —-om in stolom (table-SG-INSTR- DECLI)

» instrumental, singular, and first declension.
— English -s in"She reads the article"

» Means both "third person" and "present tense"

— These are tendencies rather than absolutes.




Tokenization Approaches

Rule based (word or morpheme tokenization):

— Develop rules based on linguistic knowledge for breaking strings into tokens corresponding to
words and punctuation symbols.

 Usually implemented with a combination of lexicons, regular expressions, and code.
« Drawback: what to do with new or misspelled words?
— Examples: spaCy and NLTK tokenizers.

Statistical (subword tokenization):
— Use statistics over a large corpus of text to learn to break text into “common’ subword tokens.

e Advantage: can accommodate unseen words.
— Examples: BPE, WordPiece, SentencePiece.




Subword Tokenization

NLP algorithms often learn some facts about language from a training corpus and
then use these facts to make decisions about a separate test corpus.
— The vocabulary of tokens V is built from the training corpus.
— What to do if the test corpus contains a token that 1s not in V?
 Training corpus contains low, new, newer, but not lower.
« If the word lower appears in the test corpus, the NLP system will not know what to do with it.

— But we’ve seen new and newer! If we had segmented newer as new + er, the NLP system
could have learned that any <adj> + er means a stronger version of <adj>.

— This 1s how we can make (some) sense of Jabberwocky.

» https://en.wikipedia.org/wiki/Jabberwocky



https://en.wikipedia.org/wiki/Jabberwocky
https://en.wikipedia.org/wiki/Jabberwocky

Word segmentation: Subwords

* Use the data to tell us how to tokenize:
— Instead of manually designed rules.

— Instead of training on manually tokenized examples.

» (alled Subword tokenization:
— Because tokens are often parts of words.
— Tokens end up including common morphemes, like -est or -er.
* A morpheme is the smallest meaning-bearing unit of a language;

— unlikeliest has morphemes un-, likely, and -est.




Subword Tokenization

* Three common algorithms:
1. Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

2. Unigram language modeling tokenization (Kudo, 2018)
3. WordPiece (Schuster and Nakajima, 2012)

* All have 2 parts:

1. A token learner that takes a raw training corpus and induces a vocabulary, e.g. a set of tokens.
2. A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary.




Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters
T {Aa B, Ca W, ..., d, b, C, d, }

* Repeat:
— Choose the two symbols that are most frequently adjacent in training corpus (say ‘A’, ‘B’),
— Add a new merged symbol ‘AB’ to the vocabulary
— Replace every adjacent A’ B’ in corpus with ‘AB’.

« Until £ merges have been done.




BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V <—all unique characters in C # initial set of tokens 1s characters
fori=1tok do # merge tokens til k times
11, tg < Most frequent pair of adjacent tokens in C
Ivpw <t + IR # make new token by concatenating
Ve V+tyew # update the vocabulary
Replace each occurrence of 17, tg in C with 7y # and update the corpus

return V




Byte Pair Encoding (BPE) |

* Most subword algorithms are run inside white-space separated tokens.

« First add a special end-of-word symbol ' ’ after each word 1n the corpus: |
!

— Alternatively, attach symbol ' ’ at the beginning of each word

« Next, separate into characters, create an initial vocabulary from all characters.




BPE token learner

Original (very fascinating®) corpus:

low low low low low lowest lowest newer newer newer newer newer newer wider

wider wider new new

Add end-of-word tokens and segment:

corpus vocabulary

5 1l ow _ eed, e 9, Tanssio, LS &€, W
2 [B°0 w e s e

6 newer _

3 Whl Tdse T

2 new_




corpus

5 0 W

2 1 oW e s ©F_
6 newer _
3 wider _
2 new_

R, =merge er to er

corpus

5 10 Vi

v .0 Wewest,
6 newer _
3 wider _
% new_

BPE token learner

vocabulary
R S T T D07 o e

vocabulary
weavd’, & i, s N N0 T, SESC W, . o1




Byte Pair Encoding (BPE)

corpus vocabulary

5 l ow _ S dase . ] SIMEO,, (B 855 L Coawnrrer
2 lowest _

6 newer _

3 wider _

Vb new_

R, =mergeer toer

corpus vocabulary

5 1 o _,d,e,i,1,n, 0, 1,s, t,w, er, er_
2 B0 W @Sty

6 newer_

3 wider_

2 new_




Byte Pair Encoding (BPE)

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_
A lowest_

6 newer_

3 wider_

2 new_

R; =mergen ¢ tone

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne
2 lowest _

6 ne w er_

3 wider_

2 ne w _




Byte Pair Encoding (BPE)

So far: |

R, =mergeertoer
R, =mergeer toer

R; =mergen e tone

The next merges are:

Merge Current Vocabulary
R,= (ne, w) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new
Rs= (1, o) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo
R¢= (1o, w) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low
R,= (new, er_) _,d,e,i,1,n,0, 1,5, t,w, er, er_, ne, new, lo, low, newer__

Rs= (Qow, _) _,d,e,1,1,n,0,1,s, t,w, er, er_, ne, new, 1o, low, newer__, low__




Using BPE on a new text

* On the test corpus, run each merge learned from the training data:
— Greedily, in the order they were added to vocabulary. |
* test frequencies don't play a role.

—SSORMcrge cYCHAERE 1o cr, then mierge cr. fouer « etc.

e V={,d,eil,nors,t w,erer,ne, new,lo, low, newer , low }

— Testset"newer " would be tokenized as a full word. |
— Testset"lower " would be two tokens: "low" + "er ": |
* “lower” was never seen in the training corpus.
 However, we’ve seen “low” and “er”. J

— The meaning of “low” + er”’ can be derived from the meaning of its components.




OpenAl’s tokenizer

https://github.com/openai/tiktoken

« tiktoken is a fast open source BPE tokenizer released by OpenAl’s and used with its
models.

import tiktoken

# To get the tokenizer corresponding to a specific model in the OpenAl API:
enc = tiktoken.encoding for model("gpt-4")

tokens = [enc.decode_single token bytes(token) for token in
enc.encode(" soooo much rrrracing in Kannapolis this Summer!")]
# To translate to the standard representation (utf-8), you can use token.decode('utf-8').
utf8 tokens = [token.decode('utf-8') for token in tokens]
print(utf8 tokens)

['so’, '000", "much’, ' ', 'r', 't', 'acing’, ' in', ' Kann', 'apolis', ' this', ' Summer', '!']

* More details in the jupyter-notebook ...



https://github.com/openai/tiktoken

WordPiece Tokenizer

 Used by BERT, DistilBERT, and Electra.
e Greedy procedure like BPE. |

— BPE chooses to merge the most frequent symbol pair. |
— WordPiece merges the pair that maximizes the likelihood of the training data once added to the |

vocabulary.
» If A and B are a candidate pair, their score is given by:
gt how is this related t (4,B)?
P(A)P(B) ow is this related to pmi(A,B)"

* Choose to merge the pair with the highest score.

e This can be shown to maximize the likelihood of the data.

https://huggingface.co/docs/transformers/tokenizer summary#wordpiece
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/euide/subwords tokenizer#applying wordpiece |



https://huggingface.co/docs/transformers/tokenizer_summary
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer

Statistical Properties of Text

* Heap’s Law models the number of words 1n the vocabulary as a function of the
COrpus Size:
— What is the number of unique words appearing in a corpus of size N words?

— This determines how the size of the inverted index in IR will scale with the size of the corpus.

« Zipf’s Law models the distribution of terms/types in a corpus:

— How many times does the k" most frequent word appears in a corpus of size N words?

— Important for determining index terms for IR (search engines) and properties of compression
algorithms.




Word Distribution

* A few words are very common:

— The 2 most frequent words (e.g. “the”, “of””) can account for about 10% of word occurrences.

 Most words are very rare:

— Half the words in a corpus appear only once, called hapax legomena (Greek for “read only once™)

* A “heavy tailed” or “long tailed” distribution:

— Since more of the probability mass is in the “tail” compared to an exponential distribution.




Word Distribution

Frequency vs. rank for all words in Moby Dick.
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Word Distribution (Log Scale) |

Frequency (log scale)
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Zipt’s Law

« Rank all the words 1n the vocabulary by their frequency, in decreasing order.
— Let n(w) be the rank of word w.
— Let Aw) be the frequency of word w.

« Zipf (1949) postulated that frequency and rank are related by a power law:

— ¢ 1s a normalization constant that depends on the corpus.




Zipt’s Law

 If the most frequent term (the) occurs f; times:
— Then the second most frequent term (of) occurs f, / 2 times.

— The third most frequent term (and) occurs £,/ 3 times, ...

* Power Laws: y = G

— Zipf’s Law 1s a power law with k= —1.
— Linear relationship between log(y) and log(x):

* log(y)=log c + k log(x)
* on a log scale, power laws give a straight line with slope £.

« Zipf1s quite accurate, except for very high and low rank.




f(w)=

Z1pt’s Law Fit to Brown Corpus
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Mandelbrot’s Distribution

» The following more general form gives a bit better fit:

f=cl(r+p)"

e When fit to Brown corpus:
s=¢c = 10528
o K =185
e p=100




Mandelbrot’s Law Fit to Brown Corpus
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Explanations

o Zipf’s Law:

— Zipf’s explanation was his “principle of least effort™:
« Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.
— Herbert Simon’s explanation 1s “rich get richer.”

— L1(1992) shows that just random typing of letters including a space will generate “words” with a
Zipfian distribution.

 Heaps’ Law:
— Can be derived from Zipf’s law by assuming documents are generated by randomly sampling
words from a Zipfian distribution.




Supplementary Readings

e Section 2.1 to 2.6 1n the textbook.

» HuggingFace summary of tokenization techniques.



mailto:https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://huggingface.co/docs/transformers/tokenizer_summary

