ITCS 6101/8101: Natural Language Processing

Tokenization: Words, Morphemes, Subwords

Razvan C. Bunescu
Department of Computer Science @ CCI

razvan.bunescu(@charlotte.edu

mailto:razvan.bunescu@charlotte.edu

Fundamental NLP Tasks Identify Linguistic Structures

Tokenization

Morphological Analysis

Part of Speech Tagging

Syntactic Parsing

Word Meaning

Semantic Parsing
Anaphora/Coreference Resolution

Named Entity Linking

Tokenization

=

* Tokenization = segmenting text into words and sentences.
— A crucial first step in most text processing applications.

— Language Models use subword tokenization.

* Whitespace indicative of word boundaries?
— Yes: English, French, Spanish, ...

— No: Chinese, Japanese, Thai, ...

« Whitespace 1s not enough:
— ‘What’re you? Crazy?’ said Sadowsky. ‘I can’t afford to do that.’
Whitspace = ‘what’re you? crazy? said Sadowsky. ‘I can’t afford to do that.
Correct = * what re you ? crazy ? Sadowsky . ‘I can 't afford to do that .

Word Segmentation

* In English, characters other than whitespace can be used to separate words:
=, o i)

* But punctuation often occurs inside words:
— m.p.h., Ph.D., AT&T, 01/02/06, google.com, 62.5
— Homework: design regular expressions to match constructions where punctuation does not split:

— acronyms, dates, web addresses, numbers, etc.
— https://docs.python.org/3/howto/regex.html

« Expansion of clitic constructions:
— he’s happy = he is happy
— Need ambiguity resolution between clitic construction, possessive markers, quotative markers:

* he’s happy vs. the book’s cover vs. ‘what are you? crazy?’

https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html

Tokens, Types, Corpus, Vocabulary

* Tokenization = segmenting text into tokens:
— token = a sequence of characters, in a particular document at a particular position.
— type = the class of all tokens that contain the same character sequence.
e “...to be or not to be ...”
o “..so beit, he said ...”

— A token 1s an 1nstance, or occurrence, of a fype.

* A corpus is a collection of text documents:
1. D, ="*“Colorless green ideas sleep furiously .”

2. D, =“Green makes me sleep , red makes me alert.”

e The corpus vocabulary maps token #ypes to their frequency:

— {colorless: 1, green: 2, ideas: 1, sleep: 2, furiously: 1, makes: 2, ...}

Tokenization: Tokens, Types, and Terms

* Tokenization = segmenting text into tokens:

— token = a sequence of characters, in a particular document at a particular position.

— type = the class of all tokens that contain the same character sequence.

Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google N-grams 13+ million 1 trillion

The bigger the corpus, the more word types!

Heap’s Law

 @Given;
— |V] 1s the size of the vocabulary.
— N 1s the number of tokens in the collection.

of Shen:
— |V| = kN
— k, f depend on the collection type:

* typical values: 30 </, <100 and f = 0.5 (square root).
 1n a log-log plot of |V| vs. N, Heaps’ law predicts a line with slope of about 2.

Heap’s Law Fit to Reuters RCV1 and Guttenberg

 For RCV1, the dashed line log;, /"= 0.49 log,,NV + 1.64 1s the best least squares fit.
— Thus, V'=10"%N%4 which means k = 1094~ 44 and b = 0.49.
— For first 1,000,020 tokens, Heap’s Law predicts 38,323 terms vs. actual 38,365 terms.

0 - ‘,” 1()65""1'"'I'"'I""I""I""I'"'I""I""

-
o
(&)}

RN
(@)
IS

dictionary (D)
S

— B =1
— B =0.44

° 100 PPN RN RRRY R RV S RS S S
: ; . : : 10° 10" 10% 10° 10* 10° 10° 10" 10® 10°
log N total number of words (w)

Z1ipf's, Heaps' and Tavylor's laws are determined by the expansion into the adjacent possible 8
R .

https://arxiv.org/abs/1811.00612

There are too many words!

‘V| £ kNﬁ<— Roughly 0.5

Function words: of, the, is, and, una, 2, ...
Content words: mango, braise, snowy, feliz, /LR, ...

Proper names: Yahoo, Google, Bing, ...

Problem: no matter how big our vocabulary, there will always be words we missed.

— We will always have unknown words.

Solution:

— Morphological analysis => use morphemes as tokens instead of words.
e But morphemes cab be nontrivial to define and identify...
— Subword tokenization => the standard in modern NLP, e.g. LLMs.

Morphology

* Morphology = the field of linguistics that studies the internal structure of words.

 Morpheme 1s the smallest linguistic unit that has semantic meaning;:
— Roots or stems: central morpheme of the word, supplying the main meaning
o “carry”, “depend”, “Google”, “lock”
— Affixes: add additional meaning
TR cd syt
 Inflectional: grammatical morphemes, often syntactic role like agreement
— —ed past tense on verbs, e.g., work-ed
— — s/ —es plural on nouns, e.g., glass-es
* Derivational: idiosyncratic in application and meaning, often change grammatical class.
— care (noun)
— full => careful (adjective)

— ly => carefully (adverb)

10
e

Morphology

=

 Morpheme 1s the smallest linguistic unit that has semantic meaning;:
— Clitics are morphemes that act syntactically like a word, but are:
 reduced in form.

e attached to another word.
— Clitics in English: 've in I 've ('wve can't appear alone), or ’ s in the teacher’s book

— Clitics in French: 1/ in 1’ opera

* Using morphemes as tokens can mitigate the unknown word problem:
— Train: seen words like worked, play, ...
» Tokenize into morphemes work, -ed, play, ...
— Test: encounter unseen word played.
» Tokenize as play, -ed.
— But segmenting words into morphemes can be difficult.

11
R

Morphological Typology: Morphemes per Word

» Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong:
— keoi5 waab cyund gwok3 zeoi3 daai6 gaanl ukl hai6 nil gaanl
— he say entire country most big building house is this building

» He said the biggest house in the country was this one”

* Many. Koryak, spoken in Kamchatka peninsula in Russia:
— t-a-nk’e-mejn-a-jetema-nni-k
— 1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV]
» “Isewed a lot of yurt covers in the middle of a night.”

& ‘\‘5(\ 6\0
\(\e . (\@ N \’0(\
& N NS SR N & R
& O O s
S S N
1.1 15 17 2122 2526 3.7 Joseph Greenberg scale (1960)
< o—s o—s. o—s —b
Analytic Synthetic Polysynthetic
Morphemes per Word

12
e

Morphological Analysis

=

* Morphological analysis = segmenting words into morphemes:
— carried = carry + ed (past tense)
— independently = in + (depend + ent) + ly
— Googlers = (Google + er) + s (plural)
— unlockable = un + (lock + able) ? (un + lock) + able ?

 Difficulty of segmenting into morphemes varies across languages:
— Agglutinative languages like Turkish have very clean boundaries between morphemes.

— Fusion languages: a single affix may conflate multiple morphemes.
— Russian —-om in stolom (table-SG-INSTR- DECLI)

» instrumental, singular, and first declension.
— English -s in"She reads the article"

» Means both "third person" and "present tense"

— These are tendencies rather than absolutes.

Tokenization Approaches

Rule based (word or morpheme tokenization):

— Develop rules based on linguistic knowledge for breaking strings into tokens corresponding to
words and punctuation symbols.

 Usually implemented with a combination of lexicons, regular expressions, and code.
« Drawback: what to do with new or misspelled words?
— Examples: spaCy and NLTK tokenizers.

Statistical (subword tokenization):
— Use statistics over a large corpus of text to learn to break text into “common’ subword tokens.

e Advantage: can accommodate unseen words.
— Examples: BPE, WordPiece, SentencePiece.

Subword Tokenization

NLP algorithms often learn some facts about language from a training corpus and
then use these facts to make decisions about a separate test corpus.
— The vocabulary of tokens V is built from the training corpus.
— What to do if the test corpus contains a token that 1s not in V?
 Training corpus contains low, new, newer, but not lower.
« If the word lower appears in the test corpus, the NLP system will not know what to do with it.

— But we’ve seen new and newer! If we had segmented newer as new + er, the NLP system
could have learned that any <adj> + er means a stronger version of <adj>.

— This 1s how we can make (some) sense of Jabberwocky.

» https://en.wikipedia.org/wiki/Jabberwocky

https://en.wikipedia.org/wiki/Jabberwocky
https://en.wikipedia.org/wiki/Jabberwocky

Word segmentation: Subwords

* Use the data to tell us how to tokenize:
— Instead of manually designed rules.

— Instead of training on manually tokenized examples.

» (alled Subword tokenization:
— Because tokens are often parts of words.
— Tokens end up including common morphemes, like -est or -er.
* A morpheme is the smallest meaning-bearing unit of a language;

— unlikeliest has morphemes un-, likely, and -est.

Subword Tokenization

* Three common algorithms:
1. Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

2. Unigram language modeling tokenization (Kudo, 2018)
3. WordPiece (Schuster and Nakajima, 2012)

* All have 2 parts:

1. A token learner that takes a raw training corpus and induces a vocabulary, e.g. a set of tokens.
2. A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary.

Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters
T {Aa B, Ca W, ..., d, b, C, d, }

* Repeat:
— Choose the two symbols that are most frequently adjacent in training corpus (say ‘A’, ‘B’),
— Add a new merged symbol ‘AB’ to the vocabulary
— Replace every adjacent A’ B’ in corpus with ‘AB’.

« Until £ merges have been done.

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V <—all unique characters in C # initial set of tokens 1s characters
fori=1tok do # merge tokens til k times
11, tg < Most frequent pair of adjacent tokens in C
Ivpw <t + IR # make new token by concatenating
Ve V+tyew # update the vocabulary
Replace each occurrence of 17, tg in C with 7y # and update the corpus

return V

Byte Pair Encoding (BPE) |

* Most subword algorithms are run inside white-space separated tokens.

« First add a special end-of-word symbol ' ’ after each word 1n the corpus: |
!

— Alternatively, attach symbol ' ’ at the beginning of each word

« Next, separate into characters, create an initial vocabulary from all characters.

BPE token learner

Original (very fascinating®) corpus:

low low low low low lowest lowest newer newer newer newer newer newer wider

wider wider new new

Add end-of-word tokens and segment:

corpus vocabulary

5 1l ow _ eed, e 9, Tanssio, LS &€, W
2 [B°0 w e s e

6 newer _

3 Whl Tdse T

2 new_

corpus

5 0 W

2 1 oW e s ©F_
6 newer _
3 wider _
2 new_

R, =merge er to er

corpus

5 10 Vi

v .0 Wewest,
6 newer _
3 wider _
% new_

BPE token learner

vocabulary
R S T T D07 o e

vocabulary
weavd’, & i, s N N0 T, SESC W, . o1

Byte Pair Encoding (BPE)

corpus vocabulary

5 l ow _ S dase .] SIMEO,, (B 855 L Coawnrrer
2 lowest _

6 newer _

3 wider _

Vb new_

R, =mergeer toer

corpus vocabulary

5 1 o _,d,e,i,1,n, 0, 1,s, t,w, er, er_
2 B0 W @Sty

6 newer_

3 wider_

2 new_

Byte Pair Encoding (BPE)

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_
A lowest_

6 newer_

3 wider_

2 new_

R; =mergen ¢ tone

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne
2 lowest _

6 ne w er_

3 wider_

2 ne w _

Byte Pair Encoding (BPE)

So far: |

R, =mergeertoer
R, =mergeer toer

R; =mergen e tone

The next merges are:

Merge Current Vocabulary
R,= (ne, w) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new
Rs= (1, o) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo
R¢= (1o, w) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low
R,= (new, er_) _,d,e,i,1,n,0, 1,5, t,w, er, er_, ne, new, lo, low, newer__

Rs= (Qow, _) _,d,e,1,1,n,0,1,s, t,w, er, er_, ne, new, 1o, low, newer__, low__

Using BPE on a new text

* On the test corpus, run each merge learned from the training data:
— Greedily, in the order they were added to vocabulary. |
* test frequencies don't play a role.

—SSORMcrge cYCHAERE 1o cr, then mierge cr. fouer « etc.

e V={,d,eil,nors,t w,erer,ne, new,lo, low, newer , low }

— Testset"newer " would be tokenized as a full word. |
— Testset"lower " would be two tokens: "low" + "er ": |
* “lower” was never seen in the training corpus.
 However, we’ve seen “low” and “er”. J

— The meaning of “low” + er”’ can be derived from the meaning of its components.

OpenAl’s tokenizer

https://github.com/openai/tiktoken

« tiktoken is a fast open source BPE tokenizer released by OpenAl’s and used with its
models.

import tiktoken

To get the tokenizer corresponding to a specific model in the OpenAl API:
enc = tiktoken.encoding for model("gpt-4")

tokens = [enc.decode_single token bytes(token) for token in
enc.encode(" soooo much rrrracing in Kannapolis this Summer!")]
To translate to the standard representation (utf-8), you can use token.decode('utf-8').
utf8 tokens = [token.decode('utf-8') for token in tokens]
print(utf8 tokens)

['so’, '000", "much’, ' ', 'r', 't', 'acing’, ' in', ' Kann', 'apolis', ' this', ' Summer', '!']

* More details in the jupyter-notebook ...

https://github.com/openai/tiktoken

WordPiece Tokenizer

 Used by BERT, DistilBERT, and Electra.
e Greedy procedure like BPE. |

— BPE chooses to merge the most frequent symbol pair. |
— WordPiece merges the pair that maximizes the likelihood of the training data once added to the |

vocabulary.
» If A and B are a candidate pair, their score is given by:
gt how is this related t (4,B)?
P(A)P(B) ow is this related to pmi(A,B)"

* Choose to merge the pair with the highest score.

e This can be shown to maximize the likelihood of the data.

https://huggingface.co/docs/transformers/tokenizer summary#wordpiece
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/euide/subwords tokenizer#applying wordpiece |

https://huggingface.co/docs/transformers/tokenizer_summary
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer

Statistical Properties of Text

* Heap’s Law models the number of words 1n the vocabulary as a function of the
COrpus Size:
— What is the number of unique words appearing in a corpus of size N words?

— This determines how the size of the inverted index in IR will scale with the size of the corpus.

« Zipf’s Law models the distribution of terms/types in a corpus:

— How many times does the k" most frequent word appears in a corpus of size N words?

— Important for determining index terms for IR (search engines) and properties of compression
algorithms.

Word Distribution

* A few words are very common:

— The 2 most frequent words (e.g. “the”, “of””) can account for about 10% of word occurrences.

 Most words are very rare:

— Half the words in a corpus appear only once, called hapax legomena (Greek for “read only once™)

* A “heavy tailed” or “long tailed” distribution:

— Since more of the probability mass is in the “tail” compared to an exponential distribution.

Word Distribution

Frequency vs. rank for all words in Moby Dick.

16000
14000
12000
10000
8000 -
6000
4000
2000 64— = ez f — 5
0 | x
F"Ommgg%a_:;—:'crm;' . oL gc'z—h:jmgg

e
© 3

J
=IE
Aaul

H3%h”

e
b

2J9U]
MO
a'?\e

Word Distribution (Log Scale) |

Frequency (log scale)

10000

1000

100

10

ofQ Qand
to

\
Moby Dick: |
* 44% hapax legomena |
* 17% dis legomena |

“Honorificabilitudinitatibus”:

» Shakespeare’s hapax legomenon
* longest word with alternating
vowels and consonants

10 100 1000 10000 |

Rank (log scale)

32°4

Zipt’s Law

« Rank all the words 1n the vocabulary by their frequency, in decreasing order.
— Let n(w) be the rank of word w.
— Let Aw) be the frequency of word w.

« Zipf (1949) postulated that frequency and rank are related by a power law:

— ¢ 1s a normalization constant that depends on the corpus.

Zipt’s Law

 If the most frequent term (the) occurs f; times:
— Then the second most frequent term (of) occurs f, / 2 times.

— The third most frequent term (and) occurs £,/ 3 times, ...

* Power Laws: y = G

— Zipf’s Law 1s a power law with k= —1.
— Linear relationship between log(y) and log(x):

* log(y)=log c + k log(x)
* on a log scale, power laws give a straight line with slope £.

« Zipf1s quite accurate, except for very high and low rank.

f(w)=

Z1pt’s Law Fit to Brown Corpus

10000¢

10000

1000

100000
r(w)

Iraguency

100

Mandelbrot’s Distribution

» The following more general form gives a bit better fit:

f=cl(r+p)"

e When fit to Brown corpus:
s=¢c = 10528
o K =185
e p=100

Mandelbrot’s Law Fit to Brown Corpus

10000

1000

traguency

100

0

1 w0 100 1000 15000 100000
rank

Mandelbrot’s function on Brown corpus

Explanations

o Zipf’s Law:

— Zipf’s explanation was his “principle of least effort™:
« Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.
— Herbert Simon’s explanation 1s “rich get richer.”

— L1(1992) shows that just random typing of letters including a space will generate “words” with a
Zipfian distribution.

 Heaps’ Law:
— Can be derived from Zipf’s law by assuming documents are generated by randomly sampling
words from a Zipfian distribution.

Supplementary Readings

e Section 2.1 to 2.6 1n the textbook.

» HuggingFace summary of tokenization techniques.

mailto:https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://huggingface.co/docs/transformers/tokenizer_summary

