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Unicode

a method for representing text  written using
• any character  (more than 150,000!)
• in any script  (168 to date!)
• of the languages  of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…
• dead ones like Sumerian cuneiform
• invented ones like Klingon
• plus emojis, currency symbols, etc.



ASCII: Some  history for English

1 byte per character 
◦ In principle 256 characters
◦ But high bit set to 0 
◦ So 7 bits = 128 
◦ However only 95 used 
The rest were for teletypes

1960s American Standard Code for Information Interchange
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2.3 Unicode

Another option we could consider for tokenization is the level of the individual char-
acter. How do we even represent characters across languages and writing system?
The Unicode standard is a method for representing text written using any characterUnicode
in any script of the languages of the world (including dead languages like Sumerian
cuneiform, and invented languages like Klingon).

Let’s start with a brief historical note about an English-specific subset of Unicode
(technically called ‘Basic Latin’ in Unicode, and commonly referred to as ASCII).
Starting in the 1960s, the Latin characters used to write English (like the ones used
in this sentence), were represented with a code called ASCII (American StandardASCII
Code for Information Interchange). ASCII represented each character with a single
byte. A byte can represent 256 different characters, but ASCII only used 127 of
them; the high-order bit of ASCII bytes is always set to 0. (Actually it only used 95
of them and the rest were control codes for an obsolete machine called a teletype).
Here’s a few ASCII characters with their representation in hex and decimal:

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
< 3C 60 @ 40 64 ... \ 5C 92 ` 60 96
= 3D 61 A 41 65 ... [ 5D 93 a 61 97
> 3E 62 B 42 66 ... ˆ 5E 94 b 62 98
? 3F 63 C 43 67 ... _ 5F 95 c 63 99
Figure 2.4 Some selected ASCII codes for some English letters, with the codes shown both
in hexadecimal and decimal.

But ASCII is of course insufficient since there are lots of other characters in the
world’s writing systems! Even for scripts that use Latin characters, there are many
more than the 95 in ASCII. For example, this Spanish phrase (meaning “Sir, replied
Sancho”) has two non-ASCII characters, ñ and ó:

(2.10) Señor- respondió Sancho-

And lots of languages aren’t based on Latin characters at all! The DevanagariDevanagari

script is used for 120 languages (including Hindi, Marathi, Nepali, Sindhi, and San-
skrit). Here’s a Devanagari example from the Hindi text of the Universal Declaration
of Human Rights:

Chinese has about 100,000 Chinese characters in Unicode (including overlap-
ping and non-overlapping variants used in Chinese, Japanese, Korean, and Viet-
namese, collectively referred to as CJKV).

All in all there are more than 150,000 characters and 168 different scripts sup-
ported in Unicode 16.0. Even though many scripts from around the world have
yet to be added to Unicode, there are so many there, from scripts used by mod-
ern languages (Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko, Turkish,
Spanish) to scripts of ancient languages (Cuneiform, Ugaritic, Egyptian Hieroglyph,
Pahlavi), as well as mathematical symbols, emojis, currency symbols, and more.

2.3.1 Code Points
How does it work? Unicode assigns a unique id, called a code point, for each onecode point

h  e  l  l  o

68 65 6C 6C 6F 



ASCII wasn't enough!

Spanish: Señor- respondió Sancho
 This sentence has non-ASCII ñ and ó
About 100,000 Chinese/CJKV characters 
(Chinese, Japanese, Korean, or Vietnamese)
Devanagari script for 120 languages like 
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc. 
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Code Points

Unicode assigns a unique ID, a code point,  
to each of its 150,000 characters
1.1 million possible code points
◦ 0 – 0x10FFFF

Written in hex, with prefix "U+"
◦ a is U+0061 which = 0x0061
First 127 code points = ASCII 
◦ For backwards compatibility



Some code points

8 CHAPTER 2 • WORDS AND TOKENS

of these 150,000 characters.
The code point is an abstract representation of the character, and each code point

is represented by a number, traditionally written in hexadecimal, from number 0
through 0x10FFFF (which is 1,114,111 decimal). Having over a million code points
means there is a lot of room for new characters. It is traditional to represent these
code points with the prefix “U+” (which just means “the following is a Unicode hex
representation of a code point”). So the code point for the character a is U+0061
which is the same as 0x0061. (Note that Unicode was designed to be backwards
compatible with ASCII, which means that the first 127 code points, including the
code for a, are identical with ASCII.) Here are some sample code points; some (but
not all) come with descriptions:

0061 a LATIN SMALL LETTER A
0062 b LATIN SMALL LETTER B
0063 c LATIN SMALL LETTER C
00F9 ù LATIN SMALL LETTER U WITH GRAVE
00FA ú LATIN SMALL LETTER U WITH ACUTE
00FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
00FC ü LATIN SMALL LETTER U WITH DIAERESIS
8FDB €
8FDC ‹
8FDD ›
8FDE fi

1F600

🀎

5/23/25, 5:26 PM x.html

file:///Users/jurafsky/x.html 1/1

GRINNING FACE

1F00E 🀎

5/23/25, 5:26 PM x.html

file:///Users/jurafsky/x.html 1/1

MAHJONG TILE EIGHT OF CHARACTERS

2.3.2 UTF-8 Encoding
While the code point (the unique id) is the abstract Unicode representation of the
character, we don’t just stick that id in a text file.

Instead, whenever we need to represent a character in a text string, we write an
encoding of the character. There are many different possible encoding methods, butencoding

the encoding method called UTF-8 is by far the most frequent (for example almost
the entire web is encoded in UTF-8).

Let’s talk about encodings. The Unicode representation of the word hello con-
sists of the following sequence of 5 code points:

U+0068 U+0065 U+006C U+006C U+UU6F

We can imagine a very simple encoding method: just write the code point id in
a file. Since there are more than 1 million characters, 16 bits (2 bytes) isn’t enough,
so we’ll need to use 4 bytes (32 bit) to capture the 21 bits we need to represent 1.1
million characters. (We could fit it in 3 bytes but it’s inconvenient to use multiples
of 3 for bytes.)

With this 4-byte representation the word hello would be encoded as the follow-
ing set of bytes:

00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But we don’t use this encoding (which is technically called UTF-32) because it
makes every file 4 times longer than it would have been in ASCII, making files really
big and full of zeros. Also those zeros cause another problem: it turns out that having
any byte that is completely zero messes things up for backwards compatibility for
ASCII-based systems that historically used a 0 byte as an end-of-string marker.

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts:  a or a or a or a
But one code point (U+0061, abstract "LATIN SMALL A") 
represents all those different a's!



Encodings and UTF-8

We don't stick code points directly in files
We store encodings of chars.
The most popular encoding is UTF-8
Most of the web is stored in UTF-8



Encodings

hello has these 5 code points:
U+0068  U+0065 U+006C U+006C U+006F

How to write in a file? 
There are more than 1 million code points
So would need 4 bytes (or 3 but 3 is inconvenient):
00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F 

But that would make files very long!
◦ Also zeros are bad (since mean "end of string" in ASCII)



Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCII
UTF-8 encoding of hello is : 
◦ 68 65 6C 6C 6F 
Code points ≥128 are encoded as a sequence 
of 2, 3, or 4 bytes 
◦ In range 128 - 255, so won’t be confused with ASCII
◦ First few bits say if its 2-byte, 3-byte, or 4-byte 



UTF-8 Encoding

̃n, code point U+00F1, =  00000000 11110001
◦ Gets encoded with pattern 110yyyyy 10xxxxxx
◦ So is mapped to a two-byte bit sequence 
◦ 11000011 10110001 = 0xC3B1. 
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00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But we don’t use this encoding (which is technically called UTF-32) because it
makes every file 4 times longer than it would have been in ASCII, making files really
big and full of zeros. Also those zeros cause another problem: it turns out that having
any byte that is completely zero messes things up for backwards compatibility for
ASCII-based systems that historically used a 0 byte as an end-of-string marker.

Instead, the most common encoding standard is UTF-8 (Unicode Transforma-UTF-8
tion Format 8), which represents characters efficiently (using fewer bytes on av-
erage) by writing some characters using fewer bytes and some using more bytes.
UTF-8 is thus a variable-length encoding.variable-length

encoding
For some characters (the first 127 code points, i.e. the set of ASCII characters),

UTF-8 encodes them as a single byte, so the UTF-8 encoding of hello is :

68 65 6C 6C 6F

This conveniently means that files encoded in ASCII are also valid UTF-8 en-
codings!

But UTF-8 is a variable length encoding, meaning that code points �128 are
encoded as a sequence of two, three, or four bytes. Each of these bytes are between
128 and 255, so they won’t be confused with ASCII, and each byte indicates in the
first few bits whether it’s a 2-byte, 3-byte, or 4-byte encoding.

Code Points UTF-8 Encoding
From - To Bit Value Byte 1 Byte 2 Byte 3 Byte 4
U+0000-U+007F 0xxxxxxx xxxxxxxx
U+0080-U+07FF 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
U+0800-U+FFFF zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
U+010000-U+10FFFF 000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
Figure 2.5 Mapping from Unicode code point to the variable length UTF-8 encoding. For a given code point
in the From-To range, the bit value in column 2 is packed into 1, 2, 3, or 4 bytes. Figure adapted from Unicode
16.0 Core Spec Chapter 3 Table 3-6.

Fig. 2.5 shows how this mapping occurs. For example these rules explain how
the character ñ, which has code point U+00F1, is mapped to the two-byte bit se-
quence 11000011 10110001 or 0xC3B1. As a result of these rules, the first 127
characters (ASCII) are mapped to one byte, most remaining characters in European,
Middle Eastern, and African scripts map to two bytes, most Chinese, Japanese, and
Korean characters map to three bytes, and rarer CJKV characters and emojis and
some symbols map to 4 bytes.

UTF-8 has a number of advantages. It’s relatively efficient, using fewer bytes for
commonly-encountered characters, it doesn’t use zero bytes (except when literally
representing the NULL character which is U+0000), it’s backwards compatible with
ASCII, and it’s self-synchronizing, meaning that if a file is corrupted, it’s always
possible to find the start of the next or prior character just by moving up to 3 bytes
left or right.

Unicode and Python: Starting with Python 3, all Python strings are stored in-
ternally as Unicode, each string a sequence of Unicode code points. Thus string
functions and regular expressions all apply natively to code points. For example,
functions like len() of a string return its length in characters, i.e., code points, not
its length in bytes.

When reading or writing from a file, however, the code points need to be encoded
and decoding using a method like UTF-8. That is, every file is encoded in some

yyy yyxxxxxx



UTF-8 encoding

The first 127 characters (ASCII) map to 1 byte
Most remaining characters in European, Middle 
Eastern, and African scripts map to 2 bytes 
Most Chinese, Japanese, and Korean characters 
map to 3 bytes 
Rarer CJKV characters, emojis/symbols map to 
4 bytes. 



UTF-8 encoding

Efficient: fewer bytes for common characters,
Doesn't use zero bytes (except for NULL 
character U+0000), 
Backwards compatible with ASCII,
Self-synchronizing, 
◦ If a file is corrupted, the nearest character boundary is  

always findable by moving only up to 3 bytes



UTF-8 and Python 3

Python 3 strings stored internally as Unicode
◦ each string a sequence of Unicode code points
◦ string functions, regex apply natively to code points. 
◦ len() returns string length in code points, not bytes 

Files need to be encoded/decoded when 
written or read
◦ Every file is stored in some encoding
◦ *No such thing as a text file without an encoding*
◦ If it's not UTF-8 it's something older like ASCII or iso_8859_1
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The NLP standard for tokenization
Instead of 
• white-space / orthographic words
• Lots of languages don't have them
• The number of words grows without bound

• Unicode characters
• Too small as tokens for many purposes

• morphemes
• Very hard to define

We use the data to tell us how to tokenize.



Why tokenize?

Using a deterministic series of tokens means 
systems can be compared equally
◦ Systems agree on the length of a string

Algorithms like perplexity assume all texts 
have a fixed tokenization
Eliminates the problem of unknown words

If some word occurs in test set but not training set, 
we still know how to segment it into known tokens.



Subword tokenization
Two most common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo, 

2018) (sometimes confusingly called 
"SentencePiece" after the library it's in)

All have 2 parts:
◦ A token learner that takes a raw training corpus and 

induces a vocabulary (a set of tokens). 
◦ A token encoder/segmenter that takes a raw test 

sentence and tokenizes it according to that vocabulary



Byte Pair Encoding (BPE) token learner

Repeat:
◦ Choose most frequent 

neighboring pair ('A', 'B') 
◦ Add a new merged symbol 

('AB') to the vocabulary
◦ Replace every 'A' 'B' in the 

corpus with 'AB'. 

Until k merges

Vocabulary
 [A, B, C, D, E]
 [A, B, C, D, E, AB]
        [A, B, C, D, E, AB, CAB]
Corpus
A  B  D  C  A  B  E  C  A  B 
AB  D  C  AB  E  C  AB 
AB  D  CAB  E  CAB

Iteratively merge frequent neighboring tokens to create longer tokens.



BPE token learner algorithm2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma



Byte Pair Encoding (BPE) Addendum

Generally run within space-separated words
Don't merge across word boundaries
◦ First separate corpus by whitespace or similar, 

using specialized regular expressions
◦ This gives a set of starting strings, with whitespace 

attached to start of each strong
◦ Counts come from the corpus, but can only merge 

within strings.



BPE token learner
Original (very fascinating🙄) corpus:

set␣new␣new␣renew␣reset␣renew 

Put space token at start of words

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 11

(usually roughly pre-separated into words, for example by whitespace) and induce
a vocabulary, a set of tokens. Then a token encoder take a raw test sentence and
encodes it into the tokens in the vocabulary that were learned in training.

2.4.1 BPE training
The BPE training algorithm iteratively merges frequent neighboring tokens to create
longer and longer tokens. The algorithm begins with a vocabulary that is just the
set of all individual characters. It then examines the training corpus, and finds the
two characters that are most frequently adjacent. Imagine our original corpus is 10
characters long, using a vocabulary of 5 characters, {A, B, C, D, E}:

A B D C A B E C A B

The most frequent neighboring pair of characters is “A B” so we merge those,
add a new merged token ‘AB’ to the vocabulary, and replace every adjacent ‘A’ ‘B’
in the corpus with the new ‘AB’:

AB D C AB E C AB

Now we have a vocabulary of 6 possible tokens {A, B, C, D, E, AB}, and the
corpus has length 7. And now the most frequent pair of tokens is “C AB”, so we
merge those, leading to a vocabulary with 7 tokens {A, B, C, D, E, AB, CAB}, and the
corpus has length 5.

AB D CAB F CAB

The algorithm continues to count and merge, creating new longer and longer
character strings, until k merges have been done creating k novel tokens; k is thus a
parameter of the algorithm. The resulting vocabulary consists of the original set of
characters plus k new symbols. That’s the core of the algorithm.

The only additional complication is that in practice, instead of running on the
raw sequence of characters, the algorithm is usually run only inside words. That is,
the algorithm does not merge across word boundaries. To do this, the input corpus
is often first separated at white space and punctuation (using the regular expressions
that we define later in the chapter). This gives a starting set of strings, each corre-
sponding to the characters of a word, (with the white space usually attached to the
start of the word), together with the counts of the words. Then while counts come
from a corpus, merges are only allowed within the strings.

Let’s see how the full algorithm thus works on this tiny synthetic corpus, where
we’ve explicitly marked the spaces between words:3

(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
The result looks like the following list of 4 words and a starting vocabulary of 7
characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.
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BPE token learner

Merge n e to ne (count 4 = 2 new + 2 renew)
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(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
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characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.
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The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:
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1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
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If we continue, the next merges are:
merge current vocabulary
( , new) , e, n, r, s, t, w, ne, new, r, re, new
( re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from
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BPE encoder algorithm
Tokenize a test sentence: run each merge learned 
from the training data:
◦ Greedily, in the order we learned them
◦ (test frequencies don't play a role)

First: segment each test word into characters
Then run rules: (1) merge every n e to ne, (2) merge 
ne w to new, (3) ␣r, (4) ␣re  etc.
Result: 
◦ Recreates training set words
◦ But also learns subwords like ␣re that might appear in 

new words like rearrange



BPE and Unicode

We run BPE on large Unicode corpora, with 
vocabulary sizes of 50,000 to 200,000
On individual bytes of UTF-8-encoded text
◦ Not on Unicode characters
◦ BPE rediscovers 2-byte and common 3-byte UTF-8 

sequences
◦ Only 256 possible values of a byte, so no unknown 

tokens 
◦ (BPE might learn a few illegal UTF-8 sequences 

across character boundaries, but these can be filtered)



Visualizing GPT4o tokens

Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 147065, 0 

Most words are tokens, w/initial space
Clitics like ’s
◦ Are segmented off Jane 
◦ But part of frequent words like she’s
Numbers segmented into chunks of 3 digits
Anyhow and ·anyhow are segmented differently
Some of this is from preprocessing
◦ regular expressions for chunking digits, stripping clitics
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the training data. It runs them greedily, in the order we learned them. (Thus the
frequencies in the test data don’t play a role, just the frequencies in the training
data). So first we segment each test sentence word into characters. Then we apply
the first rule: replace every instance of n e in the test corpus with ne, and then the
second rule: replace every instance of ne w in the test corpus with new, and so on.
By the end of course many of the merges simple recreated words in the training
set. But the merges also created knowledge of morphemes like the re- prefix (that
might appear in perhaps unseen combinations like revisit or rearrange), or the
morpheme new without an initial space (hence word-internal) that might appear at
the start of sentences or in words unseen in training like anew.

Of course in real settings BPE is run with tens of thousands of merges on a very
large input corpus, to produce vocabulary sizes of 50,000, 100,000, or even 200,000
tokens. The result is that most words can be represented as single tokens, and only
the rarer words (and unknown words) will have to be represented by multiple tokens.
At least for English. For multilingual systems, the tokens can be dominated by
English, leaving fewer tokens for other languages, as we’ll discuss below.

2.4.3 BPE in practice
The example above just showed simple BPE learning from sequences of ASCII
bytes. How does BPE work with Unicode input? We normally run BPE on the
individual bytes of UTF-8-encoded text. That is, we take a Unicode representations
of text as a series of code points, encode it in bytes using UTF-8, and we treat each of
these individual bytes as the input to BPE. Thus BPE likely begins by rediscovering
the 2-byte and common 3-byte sequences that UTF-8 uses to encode various code
points. Again, running BPE only inside presegmented words helps avoid problems.
Because there are only 256 possible values of a byte, there will be no unknown to-
kens, although it’s possible that BPE will learn some illegal UTF-8 sequences across
character boundaries. These will be very rare, and can be eliminated with a filter.

Let’s see some examples of the industrial application of the BPE tokenizer used
in large systems like OpenAI GPT4o. This tokenizer has 200K tokens, which is a
comparatively large number. We can use Tat Dat Duong’s Tiktokenizer visualizer
(https://tiktokenizer.vercel.app/) to see the number of tokens in a given
sentence. For example here’s the tokenization of a nonsense sentence we made up;
the visualizer uses a center dot to indicate a space:

The visualization shows colors to separate out words, but of course the true out-
put of the tokenizer is simply a sequence of unique token ids. (In case you’re in-
terested, they were the following 13 tokens: 11865, 8923, 11, 31211, 6177, 23919,
885, 220, 19427, 7633, 18887, 147065, 0)

Notice that most words are their own token, usually including the leading space.
Clitics like ’s are segmented off when they appear on proper nouns like Jane, but
are counted as part of a word for frequent words like she’s. Numbers tend to be
segmented into chunks of 3 digits. And some words (like anyhow) are segmented
differently if they appear capitalized sentence-initially (two tokens, Any and how),
then if they appear after a space, lower case (one token anyhow).

Some of these are related to preprocessing steps. As we mentioned briefly above,
language models usually create their tokens in a pretokenization stage that first seg-pretokenization

ments the input using regular expressions, for example breaking the input at spaces
and punctuation, stripping off clitics, and breaking numbers into sets of 3 digits.

Tat Dat Duong’s Tiktokenizer visualizer

https://tiktokenizer.vercel.app/


Tokenizing across languages

Even though BPE tokenizers are multilingual
LLM training data is still vastly dominated by 
English

Most BPE tokens used for English, leaving less for 
other languages
Words in other languages are often split up



Tokenization is better in English

A recipe sentence in two languages
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We’ll see how to use regular expressions in Section 2.7.
It’s possible to change this pretokenization to allow BPE tokens to span multiple

words. For example the SuperBPE algorithm first induces regular BPE subwordSuperBPE

tokens by enforcing pretokenization. It then runs a second stage of BPE allowing
merges across spaces and punctuation. The result is a large set of tokens that can be
more efficient. See Fig. 2.7.Preprint

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and the
gap grows with larger vocabulary size. Encoding efficiency (y-axis) is measured with
bytes-per-token, the number of bytes encoded per token on average over a large corpus of text.
In the above text with 40 bytes, SuperBPE uses 7 tokens and BPE uses 13, so the methods’
efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph,
the encoding efficiency of BPE plateaus early due to exhausting the valuable whitespace-
delimited words in the training data. In fact, it is bounded above by the gray dotted line,
which shows the maximum achievable encoding efficiency with BPE, if every whitespace-
delimited word were in the vocabulary. On the other hand, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens to the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always gives an immediate improvement. SuperBPE also has better encoding
efficiency than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. Including multi-word tokens promises to be beneficial
in several ways: it can lead to shorter token sequences, lowering the computational costs of
LM training and inference, and may also offer representational advantages by segmenting
text into more semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann
et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to refer to tokens that bridge more
than one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popu-
lar byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE), but
is disabled in a second stage, where the tokenizer transitions to learning superword tokens.
Notably, SuperBPE tokenizers scale much better with vocabulary size—while BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, SuperBPE can continue to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our main experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learning
the vocabulary—we find that models trained with SuperBPE tokenizers consistently and
significantly improve over counterparts trained with a BPE tokenizer, while also being 27–
33% more efficient at inference time. Our best SuperBPE model achieves an average +4.0%

2

Figure 2.7 The SuperBPE algorithm creating larger tokens by allow a second stage of
merging across spaces. Figure from Liu et al. (2025).

Many of the tokenizers used in practice for large language models are multilin-
gual, trained on many languages. But because the training data for large language
models is vastly dominated by English text, these multilingual BPE tokenizers tend
to use most of the tokens for English, leaving fewer of them for other languages. The
result is that they do a better job of tokenizing English, and the other languages tend
to get their words split up into shorter tokens. For example let’s look at a Spanish
sentence from a recipe for plantains, together with an English translation.

The English has 18 tokens; each of the 14 words is a token (none of the words
are split into multiple tokens):

By contrast, the original 16 words in Spanish have been encoded into 33 tokens,
a much larger number. Notice that many basic words have been broken into pieces.
For example hondo, ‘deep’, has been segmented into h and ondo. Similarly for
jugo, ‘juice’, nuez, ‘nut’ and jenjibre ‘ginger’):

Spanish is not a particularly low-resource language; this oversegmenting can be
even more serious in lower resource languages, often down to individual characters.
Oversegmenting into these tiny tokens can cause various problems for the down-
stream processing of the language. As will become more clear once we introduce
transformer models in Chapter 8, such fragmentation can lead to poor representa-
tions of meaning, the need for longer contexts, and higher costs to train models
(Rust et al., 2021; Ahia et al., 2023).

2.5 Rule-based tokenization

While data-based tokenization like BPE is the most common way of doing tokeniza-
tion, there are also situations where we want to constrain our tokens to be words and
not subwords. This might be useful if we are running parsing algorithms for English
where the parser might need grammatical words as input. Or it can be useful for
any linguistic application where we have some a prior definition of the token that we
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models is vastly dominated by English text, these multilingual BPE tokenizers tend
to use most of the tokens for English, leaving fewer of them for other languages. The
result is that they do a better job of tokenizing English, and the other languages tend
to get their words split up into shorter tokens. For example let’s look at a Spanish
sentence from a recipe for plantains, together with an English translation.

The English has 18 tokens; each of the 14 words is a token (none of the words
are split into multiple tokens):

By contrast, the original 16 words in Spanish have been encoded into 33 tokens,
a much larger number. Notice that many basic words have been broken into pieces.
For example hondo, ‘deep’, has been segmented into h and ondo. Similarly for
jugo, ‘juice’, nuez, ‘nut’ and jenjibre ‘ginger’):

Spanish is not a particularly low-resource language; this oversegmenting can be
even more serious in lower resource languages, often down to individual characters.
Oversegmenting into these tiny tokens can cause various problems for the down-
stream processing of the language. As will become more clear once we introduce
transformer models in Chapter 8, such fragmentation can lead to poor representa-
tions of meaning, the need for longer contexts, and higher costs to train models
(Rust et al., 2021; Ahia et al., 2023).

2.5 Rule-based tokenization

While data-based tokenization like BPE is the most common way of doing tokeniza-
tion, there are also situations where we want to constrain our tokens to be words and
not subwords. This might be useful if we are running parsing algorithms for English
where the parser might need grammatical words as input. Or it can be useful for
any linguistic application where we have some a prior definition of the token that we

Tat Dat Duong’s Tiktokenizer visualizer on GPT4o

English: 18 tokens; no words are split into multiple tokens): 

Spanish: 33 tokens; 6/16 words are split

https://tiktokenizer.vercel.app/
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Corpora

Words don't appear out of nowhere! 
A text is produced by 
• a specific writer(s), 
• at a specific time, 
• in a specific variety,
• of a specific language, 
• for a specific function.



Corpora vary along dimensions like
Language: 7097 languages in the world
It's important to test algorithms on multiple 
languages
What may work for one may not work for 
another



Corpora vary along dimensions like
Variety, like African American English 
varieties
◦ AAE Twitter posts might include forms like "iont" (I 

don't)

Genre: newswire, fiction, scientific articles, 
Wikipedia
Author Demographics: writer's age, gender, 
ethnicity, socio-economic status 



Code Switching
Speakers use multiple languages in the same 
utterance
This is very common around  the world
Especially in spoken language and related 
genres like texting and social media



Code Switching: Spanish/English

 Por primera vez veo a @username actually 
being hateful! It was beautiful:) 

[For the first time I get to see @username 
actually being hateful! it was beautiful:) ] 



Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya 
rakhe 

[“he was and will remain a friend ... don’t worry ... 
but have faith”] 



Corpus datasheets

Motivation: 
• Why was the corpus collected?
• By whom? 
• Who funded it? 

Situation: In what situation was the text written?
Collection process: How was it sampled? Was there 
consent? Pre-processing?
   +Annotation process, variety, demographics, etc.

Gebru et al (2020), Bender and Friedman (2018)
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