Unicode

Words
and
Tokens

Unicode

a method for representing text written using
« any character (more than 150,000!)
* inany script (168 to date!)
- of the languages of the world
« Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N'Ko,..
« dead ones like Sumerian cuneiform

* invented ones like Klingon
« plus emojis, currency symbols, etc.

ASCIl: Some history for English

1960s American Standard Code for Information Interchange

1 byte per character
o |In principle 256 characters
- But high bit setto 0

> S0 7 bits = 128

- However only 95 used
The rest were for teletypes

ASCIl: Some history for English

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
< 3C 60 @ 40 o4 \ 5C 92 60 96
= 3D 61 A 41 65 [5D 93 a 61 97
> 3E 62 B 42 66 " 5E 94 b 62 98
? 3F 63 C 43 67 5F 95 c 63 99

h e 1 1 o
68 65 6C oC oF

ASCIl wasn't enough!

Spanish: Senor- respondio Sancho
This sentence has non-ASCIl nand o

About 100,000 Chinese/CJKV characters
(Chinese, Japanese, Korean, or Viethamese)

Devanagari script for 120 languages like
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc.

TS (TP): T 7T ST A Taf dT Aafer 3R fUeRT § F9H e 81 9 ddb 3R
fade I T/ B TUT 37 YTgcd Bl MTaHT F TRER & Uid B AT ATy |

Code Points

Unicode assigns a unique ID, a code point,
to each of its 150,000 characters

1.1 million possible code points
> 0 - OX10FFFF

Written in hex, with prefix "U+"
> al1s U+0061 which = 0x0061

First 127 code points = ASCI

> For backwards compatibility

Some code points

0061
0062
0063
00F9
00FA
00FB
00FC
8FDB
8FDC
8FDD
8FDE

1F600

1FOOE

@: ﬁ&g&rﬁ‘[ﬁﬂ oSSy nN oW

LATIN
LATIN
LATIN
LATIN
LATIN
LATIN
LATIN

SMALL
SMALL
SMALL
SMALL
SMALL
SMALL
SMALL

LETTER A

LETTER B

LETTER C

LETTER U WITH GRAVE
LETTER U WITH ACUTE
LETTER U WITH CIRCUMFLEX
LETTER U WITH DIAERESIS

GRINNING FACE
MAHJONG TILE EIGHT OF CHARACTERS

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: aoraoraora

But one code point (U+0061, abstract "LATIN SMALL A"
represents all those different a's!

Encodings and UTF-8

We don't stick code points directly in files
We store encodings of chars.

The most popular encoding is UTF-8
Most of the web is stored in UTF-8

Encodings

hello has these 5 code points:
U+0068 U+0065 U+006C U+006C U+006F

How to write in a file?
There are more than 1 million code points

So would need 4 bytes (or 3 but 3 is inconvenient):
00 00 00 68 00 00 00 65 OO 00 00 6C 00 00 00 6C 00 00 00 B6F

But that would make files very long!
> Also zeros are bad (since mean "end of string" in ASCII)

Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCI

UTF-8 encoding of hello is:
> 68 65 6C 6C 6F

Code points 2128 are encoded as a sequence
of 2, 3, or 4 bytes
> In range 128 - 255, so won't be confused with ASCI|
o First few bits say If its 2-byte, 3-byte, or 4-byte

UTF-8 Encoding

Code Points UTF-8 Encoding
From - To Bit Value Byte 1 Byte 2 Byte 3 Byte 4
U+0000-U+007F OXXXXXXX XXXXXXXX
U+0080-U+07FF 00000yyy yyxxXxxxx 110yyyyy 10xxxxxx
U+0800-U+FFFF Z777ZyyYy YYXXXXXX 1110zzzz 10yyyyyy 10xxxxxx

U+010000-U+10FFFF 000uuuuu zzzzyyyy YyXXXXXX 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

VVV YVYXXXXXX
n, code point U+00F1, = 00000000 11110001

> Gets encoded with pattern 110yyyyy 10XXXXXX
> S0 IS mapped to a two-byte bit sequence
© 11000011 10110001 - OXC3B1.

UTF-8 encoding

The first 127 characters (ASCIl) map to 1 byte

Most remaining characters in European, Middle
Eastern, and African scripts map to 2 bytes

Most Chinese, Japanese, and Korean characters
map to 3 bytes

Rarer CJKV characters, emojis/symbols map to
4 bytes.

UTF-8 encoding

Efficient. fewer bytes for common characters,

Doesn't use zero bytes (except for NULL
character U+0000),

Backwards compatible with ASCII,

Self-synchronizing,
o If a file is corrupted, the nearest character boundary is
always findable by moving only up to 3 bytes

UTF-8 and Python 3

Python 3 strings stored internally as Unicode

> each string a sequence of Unicode code points

o string functions, regex apply natively to code points.
> len() returns string length in code points, not bytes

Files need to be encoded/decoded when

written or read

> Every file is stored in some encoding

> *No such thing as a text file without an encoding”
o Ifit's not UTF-8 it's something older like ASCII or iso_8859_1

Unicode

Words
and
Tokens

Byte Pair Encoding

The NLP standard for tokenization

Instead of

* white-space / orthographic words
* Lots of languages don't have them
* The number of words grows without bound

» Unicode characters
* Too small as tokens for many purposes

* morphemes
* Very hard to define

We use the data to tell us how to tokenize.

Why tokenize?

Using a deterministic series of tokens means
systems can be compared equally
o Systems agree on the length of a string

Algorithms
have a fixeo

ke perplexity assume all texts
tokenization

Eliminates t

ne problem of unknown words

If some word occurs in test set but not training set,
we still know how to segment it into known tokens.

Subword tokenization

Two most common algorithms:
- Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

- Unigram language modeling tokenization (Kudo,
2018) (sometimes confusingly called
‘SentencePiece’ after the library it's in)

All have 2 parts:

> A token learner that takes a raw training corpus and
induces a vocabulary (a set of tokens).

- A token encoder/segmenter that takes a raw test
sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

lteratively merge frequent neighboring tokens to create longer tokens.

Repeat Vocabulary

> Choose most frequent A, B,C, D, El

neighboring pair (A’ 'B’) A B C D E AB]
- Add a new merged symbol T

('AB'") to the vocabulary A, B, C, D, E, AB, CABI
- Replace every ‘A 'B' in the

corpus with ‘AB. Corpus

| ABDCABECARB

Until Rk merges ABDC AB E C AR

AB D CAB E CAB

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times
1L, tr < Most frequent pair of adjacent tokens in C
Ivpw <t + IR # make new token by concatenating
VeVt tyew # update the vocabulary
Replace each occurrence of t7, tg in C with .y # and update the corpus

return V

Byte Pair Encoding (BPE) Addendum

Generally run within space-separated words

Don't merge across word boundaries

o First separate corpus by whitespace or similar,
using specialized regular expressions

> This gives a set of starting strings, with whitespace
attached to start of each strong

o Counts come from the corpus, but can only merge
within strings.

BPE token learner
Original (very fascinating®) corpus:

set_new_new_renew_reset_renew

Put space token at start of words

corpus vocabulary

2 - nhew ., €, n, r, s, t, w
2 . renew

| s et

1 . reset

BPE token learner

corpus vocabulary

2 - new ., €, n, r, s, t, w
2 .renew

1 s et

1 _.reset

Merge n e to ne (count 4 = 2 new + 2 renew)

corpus vocabulary

2 - he w ., €, n, r, s, t, w, ne
2 . T e new

1 s et

1 . reset

BPE token learner

corpus vocabulary

2 _ he w ., €, n, r, s, t, w, ne
2 . T e new

1 s et

1 . reset

Merge ne w to new (count 4)

corpus vocabulary

2 _ hew ., €, n, r, s, t, w, ne, new
2 . I e new

1 s et

1 . reset

BPE token learner

corpus vocabulary

2 _ hew ., €, n, r, s, t, w, ne, new
2 . I e new

1 s et

1 . reset

Merge . r to _r (count 3)and _r eto _ re (count 3)

corpus vocabulary

2 . new ., €, n, r, s, t, w, ne, new, .r, .re

2 .re new

1 set .

1 reset System has learned prefix re- !

BPE

The next merges are:

merge current vocabulary

(-, new) ., e, n, r, s, t, w, ne, new, .r, .re, .new

(.re, new) ., e, n, r, s, t, w, ne, new, .r, .re, ._new, .renew

(s, e) ., €, n, r, s, t, w, ne, new, .r, .re, .new, ._renew, Se

(se, t) ., €, n, r, s, t, w, ne, new, .r, .re, .new, .renew, se, set

BPE encoder algorithm

Tokenize a test sentence: run each merge learned
from the training data:

o Greedily, in the order we learned them
o (test frequencies don't play a role)

First: segment each test word into characters

Then run rules: (1) merge every n e to ne, (2) merge
newtonew, (3) .r, (4 _re etc

Result:
o Recreates training set words

- But also learns subwords like _ re that might appear in
new words like rearrange

BPE and Unicode

We run BPE on large Unicode corpora, with
vocabulary sizes of 50,000 to 200,000

On individual bytes of UTF-8-encoded text

> Not on Unicode characters

- BPE rediscovers 2-byte and common 3-byte UTF-8
sequences

> Only 256 possible values of a byte, so no unknown
tokens

- (BPE might learn a few illegal UTF-8 sequences
across character boundaries, but these can be filtered)

Visualizing GPT4o0 tokens

Tat Dat Duong’s Tiktokenizer visualizer

Anyhow, -she's-seen-Jane's-224123-flowers-anyhow!
Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 1470065, O
Most words are tokens, w/Initial space
Clitics like 's

> Are segmented off Jane
> But part of frequent words like she's

Numbers segmented into chunks of 3 digits
Anyhow and -anyhow are segmented differently

Some of this is from preprocessing
> regular expressions for chunking digits, stripping clitics

https://tiktokenizer.vercel.app/

Tokenizing across languages

Even though BPE tokenizers are multilingual

LLM training data is still vastly dominated by
English
Most BPE tokens used for English, leaving less for
other languages

Words in other languages are often split up

Tokenization is better in English

Tat Dat Duong's Tiktokenizer visualizer on GPT40

A recipe sentence in two languages

English: 18 tokens; no words are split into multiple tokens):

In-a-deep-bowl, -mix-the-orange-juice-with-the-sugar, g
inger, -and-nutmeg.

Spanish: 33 tokens; 6/16 words are split

En-un-recipiente-hondo, -mezclar-el-jugo-de-naranja-con
-el-azlcar, rjengibre, 'y-nuez-moscada.

https://tiktokenizer.vercel.app/

Byte Pair Encoding

Corpora

Corpora

Words don't appear out of nowhere!
A text Is produced by

* a specific writer(s),

e at a specific time,

* In a specific variety,

» of a specific language,

» for a specific function.

Corpora vary along dimensions like

Language: 7097 languages in the world

It's important to test algorithms on multiple
languages

What may work for one may not work for
another

Corpora vary along dimensions like

Variety, like African American English
varieties
o AAE Twitter posts might include forms like “iont” (1
don't)

Genre: newswire, fiction, scientific articles,
Wikipedia

Author Demographics: writer's age, gender,
ethnicity, socio-economic status

Code Switching

Speakers use multiple languages in the same
utterance

This is very common around the world

Especially in spoken language and related
genres like texting and social media

Code Switching: Spanish/English

Por primera vez veo a @username actually
being hateful! It was beautiful:)

[For the first time | get to see @username
actually being hateful! it was beautiful:) |

Code Switching: Hindi/English
dost tha or ra- hega ... dont wory ... but dherya

rakhe

["he was and will remain a friend ... dont worry ...
but have faith’]

Corpus datasheets
Gebru et al (2020), Bender and Friedman (2018)

Motivation:
* Why was the corpus collected?
* By whom?
* Who funded it?
Situation: In what situation was the text written?

Collection process: How was it sampled? Was there
consent? Pre-processing?

+Annotation process, variety, demographics, etc.

Corpora

