EigenDecomposition

April 6, 2023
[2] :

```
import numpy as np
from numpy import linalg as la
```

[3]: \# Let's start with a symmetric matrix.
$S=[[1,2],[2,1]]$
\# Let's use NumPy to do the eigenvalue decomposition of S.
l, $\mathrm{U}=\mathrm{la}$.eig(S)
[4]: 1, U
[4]: (array([3., -1.]), array ([[0.70710678, -0.70710678],
[0.70710678, 0.70710678]]))
[6]:

```
# For Hermitian (symetric) matrices, Numpy has a more efficient version called
    \hookrightarrow'eigh'
# which also returns the eigenvalues in sorted order.
l, U = la.eigh(S)
l, U
```

[6]: (array([-1., 3.]),
array $([-0.70710678,0.70710678]$,
[0.70710678, 0.70710678]]))
[]:

```
# Show the vector of eigenvalues. We can see that S is not positive
    \hookrightarrowsemi-definite, as it has a negative eigenvalue.
l
```

[]: $\operatorname{array}([3 .,-1]$.
[]: \# Show the matrix of eigenvectors, one per column. U
[]: array ([[0.70710678, -0.70710678], [0.70710678, 0.70710678]])
[]:

```
# Compute S x u1, in order to show that S x u1 = lambda1 x u1.
S @ U[:,0]
```

[]: $\operatorname{array}([2.12132034,2.12132034])$
[]: \# Compute lambda1 x u1, it should be equal to $S x$ u1 above. l[0] * U[:,0]
[]: array([2.12132034, 2.12132034])
[]: \# Show that the norm of $u 1$ is equal to 1 .
U[:,0].T @ U[:,0]
[]: 0.9999999999999999
[]: \# Show that u1 is orthogonal to u2.
$U[:, 0] . T @ U[:, 1]$
[]: 0.0
[]: \# Compute $S x U$, to check that $S x U=$ Lambda $x U$.
S © U
[]: array([[2.12132034, 0.70710678],
[2.12132034, -0.70710678]])
[]: \# Compute $U x$ Lambda, it should be equal with $S x U$ above. U @ np.diag(l)
[]: array([[2.12132034, 0.70710678],
[2.12132034, -0.70710678]])
[]: \# Create the Lambda matrix containing the eigenvalues on the diagonal. np.diag(1)
[]: array ([[3., 0.],
[0., -1.]])
[]: \# This shows that the eigenvectors are orthonormal.
U.T @ U
[]: $\operatorname{array}([[1 ., 0],$.
[0., 1.]])
[]: \square

