
Perceptron

January 24, 2023

1 The Perceptron algorithm (Part 1)
In this part 1 of the assignment on Perceptrons, you will:

• Implement the Perceptron training procedure, the Perceptron prediction function, and a
function to compute prediction accuracy.

• Train the Perceptron on the simple logical AND and Shapes datasets and show that it con-
verges.

– Use the sklearn implementation of Perceptron on the same datasets above, compare
trained parameters between your implementation and sklearn.

• Show empirically that the Perceptron does not converge on the XOR dataset.

• Add an engineered feature to the XOR dataset that makes it linearly separable, and train the
Perceptron on the new dataset until convergence.

1.1 Write Your Name Here:

2 Submission instructions
1. Click the Save button at the top of the Jupyter Notebook.
2. Please make sure to have entered your name above.
3. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will

keep the content of ll cells).
4. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
5. Once you’ve rerun everything, select File -> Download as -> PDF via LaTeX and download

a PDF version showing the code and the output of all cells, and save it in the same folder
that contains the notebook file.

6. Look at the PDF file and make sure all your solutions are there, displayed correctly.
7. Submit both your PDF and the notebook file .ipynb on Canvas.
8. Make sure your your Canvas submission contains the correct files by downloading it after

posting it on Canvas.

[]: # Import all required packages.
import numpy as np
import utils
import matplotlib.pyplot as plt
import pandas as pd

1

2.1 The Perceptron training algorithm
Implement the training procedure for the Perceptron algorithm. Run for the specified number of
epochs or until convergence, whichever happens first. The algorithm converged when it makes no
mistake on the training examples. If the algorithm converged, display a message “Converged in
<e> epochs!’.

[]: def train(X, y, E):
"""Perceptron training function.
Args:

X (np.ndarray): A 2D array training instances, one per row.
y (np.ndarray): A vector of labels.
E (int): the maximum number of epochs.

Returns:
np.ndarray: The learned vector of weights / parameters.

"""
Add bias feature to X.
X = # YOUR CODE HERE

Initialize w wtih zero's.
w = # YOUR CODE HERE

for e in range(E):
YOUR CODE HERE

return w

2.2 The prediction procedure
Given a dataset of examples X (one example x per row of X), use the trained perceptron parameters
in w to predict a label: +1 if wTx > 0, −1 otherwise.

Return the vector of predicted labels, one label for each example x ∈ X.

[]: def predict(X, w):
Add the bias feature.
Xones = # YOUR CODE HERE

2

Compute the score vector, where for each example x in Xones, the output␣
↪→score should be wTx.

scores = # YOUR CODE HERE

Compute prediction vector, +1 for positive scores, -1 for negative␣
↪→scores, as integers.

pred = # YOUR CODE HERE

return pred

2.3 Computing the prediction accuracy
Given a vector pred of predicted labels and a vector true of correct labels, compute and return
the percentage of predicted labels that are correct. Do it in one line of code.

[]: def accuracy(pred, true):
return #YOUR CODE HERE

2.4 Linear Classification using Perceptrons
2.4.1 A simple binary dataset: Logical AND

First, let’s train the perceptron algorithm on a simple binary dataset that is linearly separable.
Each example x = [x1, x2] has two binary features, and the label y(x) = x1 ∧ x2 is the logical AND
between the two features.

Create and store the 4 examples in the data matrix X and the label vector y.

[6]: # First example.
x1 = [0, 0]
y1 = -1

Second example.
x2 = [0, 1]
y2 = -1

Third example.
x3 = [1, 0]
y3 = -1

Fourth example.
x4 = [1, 1]
y4 = 1

Let's put them in the data matrix X and label vector y.
X = np.array([x1, x2, x3, x4])
y = np.array([y1, y2, y3, y4])
X, y

3

[6]: (array([[0, 0],
[0, 1],
[1, 0],
[1, 1]]),

array([-1, -1, -1, 1]))

[7]: # Let's plot the dataset.
plt.scatter(X[:,0], X[:,1], c = y, s = 75)
plt.xlabel('x1')
plt.ylabel('x2')
plt.grid()

[]: # Define a function that creates a dataframe from the dataset X, y
with columns 'label', 'x1', 'x2'.
def dataframe(X, y):

data = [[l] + x.tolist() for (x, l) in zip(X, y)]
columns = ['label'] + ['x' + str(i + 1) for i in range(X.shape[1])]
df = pd.DataFrame(data, columns = columns)

return df

Create the logical AND dataframe.
df = dataframe(X, y)
print(df)

4

Save AND dataframe into a '.csv' file.
df.to_csv('../data/and_2d.csv', index = False)

2.4.2 Train the Perceptron on the AND dataset

[]: w = # YOUR CODE HERE
w

Let’s plot the decision boundary, which is given by w0 + w1 × x1 + w2 × x2 = 0. This means that
x2 = −(w0 + w1 × x1)/w2.

[]: # Plot the dataset.
plt.scatter(X[:,0], X[:,1], c = y, s = 75)

Plot the decision boundary.
x1vals = np.array([0.6, 1.2])
x2vals = -(w[0] + w[1] * x1vals) / w[2]
plt.plot(x1vals, x2vals, '-g')

plt.xlabel('x1')
plt.ylabel('x2')
plt.grid()

2.4.3 Compute and print the accuracy of Perceptron on the same AND dataset

[]: # YOUR CODE HERE

2.5 Train Perceptrons using the sklearn.linear_model.Perceptron class
The Sklearn library provides classes for many ML algorithms, usign a uniform interface API for
training and evaluating them. Here use the Peceptron class and to train the 3 parameters (bias w0,
and w1, w2), and compare with the values obtained using your implementation.

The full documentation is at https://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.Perceptron.html. See in particular fit(), score(), intercept_, coef_.

[]: from sklearn.linear_model import Perceptron

Create a Perceptron instance using the sklearn library. Set it to not shuffle␣
↪→the training data.

clf = Perceptron(max_iter = 21, shuffle = False)

Train a Perceptron model using the 'fit' function. Instruct it to initialize␣
↪→all parameters with zero.

YOUR CODE HERE

Compute and print accuracy on training examples.

5

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

acc = # YOUR CODE HERE
print('Accuracy on AND:', acc)

Store the trained parameters in an array u, first w0, then w1 and w2.
u = # YOUR CODE HERE

Are the sklearn parameters u the same as the parameters
w obtained with our implementation?
print('w =', w)
print('u =', u)

2.5.1 Another binary dataset: Shapes

Let’s also try the perceptron algorithm on the Shapes dataset. Each example has 4 binary features,
hence the feature space is 4D. Is this dataset linearly separable?

[]: # Load the dataset from a `.csv` file using `pandas` .
shapes_df = pd.read_csv('../data/shapes_colors.csv')
shapes_df

[]: type(shapes_df.values)

[]: # Store the data matrix in X.
X = shapes_df.values[:,1:]
X

[]: # Store the labels in y.
y = shapes_df.values[:,0]
y

[]: # Train the Perceptron on the 4 examples for a maximum of 10 epochs.
Will training converge? Is the dataset linearly separable?

YOUR CODE HERE

[]: # Predict and print the labels of all training examples.
YOUR CODE HERE

Compute and print accuracy on training data.
YOUR CODE HERE

6

2.6 Nonlinear Classification with Perceptron and Feature Engineering
2.6.1 A slightly more complex binary dataset: Logical XOR

[8]: def xor_dataset(N, seed = 1):
"""Generate XOR dataset.
Args:

N: number of points per example cluster.

Returns:
X: A 2D array with examples, one per line.
y: A vector of labels.

"""
np.random.seed(seed)
X00 = (0, 0) + (np.random.sample((N, 2)) - 0.5) / 4
y00 = np.full((N,), -1)
X01 = (0, 1) + (np.random.sample((N, 2)) - 0.5) / 4
y01 = np.full((N,), +1)
X10 = (1, 0) + (np.random.sample((N, 2)) - 0.5) / 4
y10 = np.full((N,), +1)
X11 = (1, 1) + (np.random.sample((N, 2)) - 0.5) / 4
y11 = np.full((N,), -1)

X = np.row_stack((X00, X01, X10, X11))
y = np.concatenate((y00, y01, y10, y11))

return X, y

[9]: X, y = xor_dataset(5)

plt.scatter(X[:,0], X[:,1], c = y)
plt.grid()

7

[]: # Create dataframe for XOR dataset.
df = dataframe(X, y)

Save XOR dataframe into a '.csv' file.
df.to_csv('../data/xor_2d.csv', index = False)

2.6.2 Train and evaluate the Perceptron on the XOR dataset

[]: # First, train the Perceptron algorithm for 10 epochs using the original raw␣
↪→features.

Will training converge? Is the dataset linearly separable?
w = # YOUR CODE HERE
print('Weights:', w)

Predict the labels of all training examples, compare with true labels in y.
predictions = #YOUR CODE HERE
print(predictions)
print(y)

Compute prediction accuracy on training examples (fitting performance).
acc = # YOUR CODE HERE
print('Accuracy on XOR:', acc)

[]: # Plot the dataset.
plt.scatter(X[:,0], X[:,1], c = y)

8

Plot the decision boundary.
x1vals = np.array([-0.6, 1.2])
x2vals = -(w[0] + w[1] * x1vals) / w[2]
plt.plot(x1vals, x2vals, '-g')

plt.xlabel('x1')
plt.ylabel('x2')
plt.grid()

2.6.3 Questions

1. What is the best possible accuracy a linear classifier can get on this dataset using just the
two features?

2. [Bonus] If the Perceptron got less that the best possible accuracy, can you change the
Perceptron algorithm to achieve this optimal accuracy?

2. Is there a feature x3 = f(x1, x2) such that the dataset becomes linearly separable in the
feature space ϕ(x) = [x1, x2, x3]?

2.6.4 Your Answers

1.
2.

2.6.5 Feature engineering for the XOR dataset

[]: # Create a new data matrix Xnew from X by adding to each example in X a new␣
↪→feature x3

computed from x1 and x2 that makes the dataset linearly separable.
Xnew = # YOUR CODE HERE

This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import

Plot the dataset in the new feature space [x1, x2, x3].
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(Xnew[:,0], Xnew[:,1], Xnew[:,2], c = y)

[]: # Create dataframe for XOR 3D dataset.
df = dataframe(Xnew, y)

Save XOR dataframe into a '.csv' file.
df.to_csv('../data/xor_3d.csv', index = False)

9

2.6.6 Train and evaluate the Perceptron on the new XOR dataset

[]: # Train Perceptron on the augmented dataset for 10 epochs.
w = # YOUR CODE HERE
print('Weights:', w)

Predict the labels of all training examples, compare with true labels in y.
predictions = # YOUR CODE HERE

Compute prediction accuracy on training examples (fitting performance).
acc = # YOUR CODE HERE
print('Accuracy on XOR:', acc)

Plot the dataset and the decision boundary in the 3D [x1, x2, x3] feature space
[]: # Plot the dataset in the 3D [x1, x2, x3] feature space.

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(Xnew[:,0], Xnew[:,1], Xnew[:,2], c = y)

Plot the decision boundary (hyperplane).
xx, yy = np.meshgrid((np.arange(15) - 2) / 8, (np.arange(15) - 2) / 8)
zz = (-w[0] -w[1] * xx - w[2] * yy) / w[3]
ax.plot_surface(xx, yy, zz, alpha = 0.2)

Plot the dataset and the decision boundary in the original 2D [x1, x2] feature space
[]: # Use prediction labels sign(w*x)to plot discrete decision boundary.

def predict_on_raw(Xraw):
Add the engineered feature(s)
Xnew = np.column_stack((Xraw, Xraw[:,0] * Xraw[:,1]))

return predict(Xnew, w)

import utils
utils.plot_decision_boundary(predict_on_raw, X.T, y)

[]: # Use prediction scores (margin) w*x to plot level curves.
def scores(Xraw):

Add the engineered feature(s)
Xnew = np.column_stack((Xraw, Xraw[:,0] * Xraw[:,1]))

Add the bias feature.
Xones = np.column_stack((np.ones(Xnew.shape[0]), Xnew))

Compute score vector, where for each example x in Xones, the output␣
↪→should be wTx.

scores = Xones @ w

10

return scores

import utils
utils.plot_decision_boundary(scores, X.T, y)

2.7 Bonus
• Show empirically that the perceptron does not converge on the 2D XOR dataset, no matter

for how many epochs it would be run:
– Run the perceptron algorithm for 20 epochs. Store the weight vector after each epoch

(you will have to modify the training procedure to do this).
– After training, display all the weight vectors (one for each epoch).
– Do you see any pattern in how the weights change vs. epochs? Can you use this pattern

to prove that the perceptron will not converge, no matter how many epochs it is run?

[]:

2.8 Open Bonus
Anything extra goes here. For example, create a visualization of Perceptron training that displays
the dataset and the decision boundary as it changes after each epoch, as an animated gif (matplotlib
should be able to do this).

[]:

2.9 Analysis of results
Include an analysis of the results that you obtained in the experiments above. Take advantage of
the Jupyter Notebook markdown language, which can also process Latex and HTML, to format
your report so that it looks professional.

[]:

11

	The Perceptron algorithm (Part 1)
	Write Your Name Here:

	 Submission instructions
	The Perceptron training algorithm
	The prediction procedure
	Computing the prediction accuracy
	Linear Classification using Perceptrons
	A simple binary dataset: Logical AND
	Train the Perceptron on the AND dataset
	Compute and print the accuracy of Perceptron on the same AND dataset

	Train Perceptrons using the sklearn.linear_model.Perceptron class
	Another binary dataset: Shapes

	Nonlinear Classification with Perceptron and Feature Engineering
	A slightly more complex binary dataset: Logical XOR
	Train and evaluate the Perceptron on the XOR dataset
	Questions
	Your Answers
	Feature engineering for the XOR dataset
	Train and evaluate the Perceptron on the new XOR dataset

	Bonus
	Open Bonus
	Analysis of results

