
HW Assignment 3, Implementation

Problems marked with a (∗) are mandatory only for ITCS 8156 students. Bonus problems
are optional, solving them will result in extra points.

In this assignment, you are asked to implement the gradient descent algorithm and use it
to train linear regression models for the Athens houses dataset and an artificial dataset with
and without L2 regularization. The input data is available at https://webpages.uncc.

edu/rbunescu/courses/itcs6156/hw03.zip. Make sure that you organize your code in
folders as shown in the table below. Write code only in the Python files indicated in bold.

itcs6156/
hw03/
report.pdf
code/

simple.py
multiple.py
polyfit.py
train test line.png

data/

simple/

train.txt, test.txt
multiple/

train.txt, test.txt
polyfit/

train.txt, test.txt, devel.txt

All the required results and plots should be included in an appropriately edited homework
report, using proper indentation, section titles, and formatting. If you include formulas,
make sure that you use appropriate formatting. The PDF of the report report.pdf should
be submitted on Canvas, together with the code in the folder above. Feel free to create a
Jupiter-Notebook for your code for each exercise, which you can saved as a PDF using Latex,
and submit. The assignment will be graded based on both the code and the report.

Pointers to relevant content on the lecture slides:

1. The formulas for standard scaling are shown on slide 32. Do not scale the bias feature!

2. The pseudocode for the gradient descent algorithm is shown on slide 6.

3. The gradient descent update rule for linear regression is shown on slide 27, with the
corresponding NumPy code for the gradient computation on slide 36.

4. For ridge regression (linear regression with L2 regularization), the gradient descent
update rule is shown on slide 37, whereas the corresponding NumPy code for the
gradient computation is shown on slide 38.

Note: For the Athens houses exercises, in order to avoid numerical issues, divide all the
house prices by 100.

https://webpages.uncc.edu/rbunescu/courses/itcs6156/hw03.zip
https://webpages.uncc.edu/rbunescu/courses/itcs6156/hw03.zip

1 Feature Scaling (10 points)

To improve the convergence of gradient descent, it is important that the features are scaled
so that they have similar ranges. Implement the scaling to standard normal distribution,
using the skeleton code in scaling.py.

2 Simple Regression (20 points)

Train a simple linear regression model to predict house prices as a function of their floor
size, by running gradient descent for 500 epochs with a learning rate of 0.1. Use the dataset
from the folder hw03/data/simple. Plot J(w) vs. the number of epochs in increments of
10 (i.e. after 0 epochs, 10 epochs, 20 epochs, ...). After training print the parameters and
RMSEs and compare with the solution from normal equations. Plot the training using the
default blue circles and test examples using lime green triangles. On the same graph also
plot the linear approximation.

3 Multiple Regression (20 points)

Train a multiple linear regression model to predict house prices as a function of their floor
size, number of bedrooms, and age. Run gradient descent for 200 epochs with a learning rate
of 0.1. Use the the dataset from the folder hw03/data/multiple. Plot J(w) vs. the number
of epochs in increments of 10 (i.e. after 0 epochs, 10 epochs, 20 epochs, ...). After training
print the parameters and RMSEs and compare with solution from normal equations.

4 Polynomial Curve Fitting (∗) (35 points)

In this exercise, you are asked to use gradient descent to train a linear regression model, with
and without regularization, on the artificial dataset from the folder hw03/data/polyfit.

(a) Select 30 values for x ∈ [0, 1] uniformly spaced, and generate corresponding t values
according to t(x) = sin(2πx) + x(x + 1)/4 + ϵ, where ϵ = N(0, 0.005) is a zero mean
Gaussian with variance 0.005. Save and plot all the values.
Generation and saving was done for you in dataset.txt.

(b) Split the 30 samples (xn, tn) in three sets: 10 samples for training, 10 samples for
validation, and 10 samples for testing. Save and plot the 3 datasets separately.
Generation and saving was done for you in train.txt, test.txt, devel.txt.

(c) Consider a linear regression model with polynomial basis functions, trained with the
objective shown below:

J(w) =
1

2N

N∑
n=1

(h(xn,w)− tn)
2 +

λ

2
||w||2

Show the gradient update used for minimizing J(w).

(d) Train and evaluate the linear regression model in the following scenarios:

1. Without regularization: Using M = 5, run gradient descent with a learning rate
that is tuned on the training data using the following consecutive powers of 10:
{0.0001, 0.001, 0.01, 0.1, 1, 10}. Plot J(w) vs. epochs and select the largest
learning rate that leads to a smooth, decreasing behavior of J(w). If conver-
gence appears to be too slow, you may consider consecutive powers of 2 in the
same range for the learning rate. Once the learning rate is selected, run gradient
descent until the cost value appears to have converged (flatten) or performance
does not improve on validation data. Depending on the learning rate, you may
have to run it for tens or even hundreds of thousands of epochs to converge. You
can tune the number of epochs by monitoring the performance on the validation
data. Compare the trained parameters and RMSE performance with the solution
obtained in the first homework for the same degree M .
Hint: With a learning rate of 0.4 and 5,000,000 epochs, my gradient descent solu-
tion matches the RMSE of the solution using the normal equations. If standardiza-
tion is done before expansion to the design matrix, my gradient descent converges
to the same solution with a learning rate of 0.08 after only 5,000 epochs.

2. With regularization: Fixing M = 9 and ln(λ) = −10, repeat the experiments
above, this time with regularization. Compare the trained parameters and RMSE
performance with the solution obtained in the first homework for the same degree
M and λ.
Hint: With a learning rate of 0.2 and 10,000 epochs, my gradient descent solution
matches the RMSE of the solution using the normal equations.

4.1 Stochastic Gradient Descent (20+ bonus points)

Implement SGD and run it for the polynomial curve fitting problems above, using the same
hyperparameters (M , and λ). Compare the SGD solution to the batch GD solution. Does
SGD need fewer or more epochs to arrive at the same parameters as batch GD? If fewer,
how many epochs are sufficient? You may also consider experimenting with minibatch SGD.

5 Submission

Electronically submit on Canvas a hw03.zip file that contains the hw03 folder in which your
code is in the required files, as well as the report.pdf.

On a Linux system, creating the archive can be done using the command:
> zip -r hw03.zip hw03.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.
We will not debug your code.

4. For your report, it is recommended to use an editor such as Latex or Word or Jupyter-
Notebook that allows editing and proper formatting of equations, plots, and tables
with results.

5. Make sure your your Canvas submission contains the correct files by downloading and
unzipping it after posting on Canvas.

	Feature Scaling (10 points)
	Simple Regression (20 points)
	Multiple Regression (20 points)
	Polynomial Curve Fitting (*) (35 points)
	Stochastic Gradient Descent (20+ bonus points)

	Submission

