DigitRecognition

February 21, 2023

1 Digit Recognition with Kernel Perceptrons and SVMs

In this exercise, you are asked to run an experimental evaluation of SVMs and the perceptron
algorithm, with and without kernels, on the problem of classifying images representing digits.
This exercise is mandatory for ITCS 8156.

The UCI Machine Learning Repository maintains datasets for a wide variety of machine learn-
ing problems. For this assignment, you are supposed to work with the Optical Recognition of
Handwritten Digits Data Set. The actual dataset is located here.

1.1 Write Your Name Here:

2

Submission instructions

. Click the Save button at the top of the Jupyter Notebook.
2. Please make sure to have entered your name above.
. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will

keep the content of 1l cells).

. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
. Once you’ve rerun everything, select File -> Download as -> PDF via LaTeX and download

a PDF version showing the code and the output of all cells, and save it in the same folder
that contains the notebook file.

. Look at the PDF file and make sure all your solutions are there, displayed correctly.
. Submit both your PDF and the notebook file .ipynb on Canvas, as well as any module you

have written that are required to run the code, such as perceptron.py.

. Make sure your your Canvas submission contains the correct files by downloading it after

posting it on Canvas.

2.1 1. Pre-processing the Dataset (10 points)

Read the description of the dataset, and pre-process as follows:

1. Download the training set optdigits.tra and the test set optdigits.tes. Use the first 1000

examples in optdigits.tra for development and the rest of 2823 examples for training. Use
all 1797 examples in optdigits.tes for testing. - This was done for you, use the devel.txt,
train.txt, and test.txt files from ../data/optdigits/, created using the sparse SVM
format.

. Create train, devel, and test files for each of the 10 digits, setting the class to 1 for in-

stances of that digit, and to -1 for instances of other digits, i.e. one-vs-rest scenario. - For

[]:

[]1:

each a digit <d>, 3 files will be created in ../data/optdigitcs/: the training examples
in train-<d>.txt, the development examples in devel-<d>.txt, and the test examples in
test-<d>.txt. - The examples in each of these files should appear in the same order as in
the corresponding devel.txt, train.txt, and test.txt files.

YOUR CODE HERE

2.2 2. Min-max Scaling (10 points)

Write functions for scaling all the features between [0, 1], as discussed in class, using the min and
mazx computed over the training examples.

All experiments in this assignment will be run on scaled data.

import numpy as np

Compute the min and maxz for each feature (column)
across the training examples (rows) from the data matriz X.
def mean_std(X):

YOUR CODE HERE

min = 0

max = 0

return min, max

Scale the features of the examples in X by subiracting their min and
dividing by maxz - min, as provided in the parameters.
def scale(X, min, max):

YOUR CODE HERE

S =X

return S

2.3 3. Experiments with the Linear Perceptron (30 points)

Place all your perceptron and kernel perceptron functions in a module called perceptron.py, e,g,
the training and prediction functions, all kernel implementations, as well as files for reading data,
reading and writing model files.

Train first the linear perceptron, with the number of epochs set to T € {1,2,...,20}. After training
each linear perceptron, normalize the learned weight vector (by dividing it by its L2 norm). Select
for T" the value that obtains the best overall accuracy on the development data, and use this value
for the remaining perceptron experiments.

For each T value, you will have trained 10 models, one for each digit. In order to compute the
label for a test or development example, you will run the 10 trained models on that example and
output the label that obtains the highest score. Compute the accuracy on the development data

[]1:

[]1:

and identify the T' value that obtains the best accuracy. Use this tuned 7" to compute the overall
performance on the test data.

import perceptron

YOUR CODE HERE

2.4 4. Experiments with the Kernel Perceptron (60 points)

For the kernel perceptron, experiment with polynomial kernels k(x,y) = (1 + x”y)? with degrees
d € {2,3,4,5,6}, and with Gaussian kernels k(x,y) = exp(—||x — y||?/20?) with the width o €
{0.1,0.5,2,5,10}. For each hyper-parameter value, you will have trained 10 models, one for each
digit. In order to compute the label for a test or development example, you will run the 10
trained models and output the label that obtains the highest score. Compute the accuracy on the
development data and identify the hyper-parameter value that obtains the best accuracy. Use the
tuned hyper-parameter (d for poly-kernel, o for Gaussian) to compute the overall performance on
the test data.

For each of the three perceptrons (linear, poly kernel and Gaussian kernel) report the total training
time, the overall accuracy, and the number of support vectors. Show and compare the corresponding
4 confusion matrices. Which digit seems to be the hardest to classify? Which perceptron / kernel
combination achieves the best performance? Which algorithms are slower at training time, and
why?

YOUR CODE HERE

2.5 5. Experiments with Support Vector Machines (100 points)

Run the same experiments using SVMs instead of perceptrons, i.e. linear SVMs and SVMs with
polynomial and Gaussian kernels. Use the same tuning scenarios for the hyper-parameters of the
polynomial and Gaussian kernels. Use C' = 1 in all SVM experiments. Report the same types of
results and analysis as above, and compare with the perceptron results.

You are free to use packages with interaces in Python such as SVMLight, LIBSVM, or Scikit-Learn.
Their web sites contain plenty of documentation on how to use them. If you use Scikit-Learn, the
following functionality from the sklearn.svm will be useful:

e SVC(): This is the main class used for SVM classification models. Its implementation is based
on LIBSVM. Make sure that you properly map the SVM hyper-parameters to the parame-
ters in the constructor of this class. For example, the gamma parameter in the constructor
corresponds to our 1/202 coefficient in the Gaussian kernel. The formulas for the kernels
implemented by SVC are described in this UserGuide.

e decision_function(x): Once the classifier is trained, this will compute the distance between
a sample x and the decision hyperplance. This is the quantity that you can use to determine
the highest scoring class when training the 10 one-vs-rest classifiers: once a classifier is trained
for all 10 digits, given a sample x you compute this quantity for all 10 classifiers and select
the class that corresponds to the classifier with largest decision function value.

[1:

[]:

[]:

o fit(): This is the function used to train the classifier.
o predict(x): This is used to calculate the (binary) label for sample x.

LIBSVM, and therefore Scikit-Learn too, already implement the one-vs-rest classification scheme.
In this scheme, you can directly use the training dataset with the 10 original labels, and Scikit-
Learn will train the 10 binary classifiers for you. You can use this capability for this assignment,
however bonus points will be given if you train the 10 binary classifiers directly, as described for
the perceptron algorithm above, by creating a binary training dataset for each class.

YOUR CODE HERE

2.6 6. Anything extra goes here

2.7 7. Analysis of results (30 points)

Include here a nicely formatted report of the results, comparisons. Include explanations and any
insights you can derive from the algorithm behavoir and the results. This section is important, so
make sure you address it appropriately.

	Digit Recognition with Kernel Perceptrons and SVMs
	Write Your Name Here:

	 Submission instructions
	1. Pre-processing the Dataset (10 points)
	2. Min-max Scaling (10 points)
	3. Experiments with the Linear Perceptron (30 points)
	4. Experiments with the Kernel Perceptron (60 points)
	5. Experiments with Support Vector Machines (100 points)
	6. Anything extra goes here
	7. Analysis of results (30 points)

