
LR-Numpy

March 15, 2023

1 Logistic Regression in NumPy
In this assignment, you will implement the logistic regression model using NumPy and evaluate it
on 3 artificial datasets: shapes, flower, and spiral.

1.1 Write Your Name Here:

2 Submission Instructions
1. Click the Save button at the top of the Jupyter Notebook.
2. Please make sure to have entered your name above.
3. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will

keep the content of ll cells).
4. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
5. Once you’ve rerun everything, select File -> Download as -> PDF via LaTeX and download

a PDF version showing the code and the output of all cells, and save it in the same folder
that contains the notebook file.

6. Look at the PDF file and make sure all your solutions are there, displayed correctly.
7. Submit both your PDF and notebook on Canvas.
8. Make sure your your Canvas submission contains the correct files by downloading it after

posting it on Canvas.

[6]: import numpy as np
from scipy.sparse import coo_matrix
from numpy.random import randn, randint
from numpy.linalg import norm
import matplotlib.pyplot as plt

import utils

np.random.seed(1)

2.1 1. The Logistic Regression model (60 points)
In this part, you will write code to:

1. Compute the cost and the gradient for the logistic regression model (40 points)

2. Compute the model predictions (20 points).

1

While not essential for this assignment, it is important to vectorize your code so that it runs quickly
on larger datasets.

Implement the softmax() function, which computes and return the cost and its gradient with respect
to the parameters W and b.

• Cost & Gradient: The cost and gradient should be computed according to the formulas
shown on the slides, modified however to represent explicitly the bias and its gradient. Thus,
if there are D features and K classes, the softmax model will be comprised of two types of
parameters: W will be a K x D matrix of the feature weights, whereas b will be a K x 1
vector of bias terms.

• Ground truth: The groundTruth is a matrix M such that M[c, n] = 1 if sample n has
label c, and 0 otherwise. This can be done quickly, without a loop, using the SciPy function
sparse.coo_matrix(). Specifically, coo_matrix((data, (i, j))) constructs a matrix A such that
A[i[k], j[k]] = data[k], where the shape is inferred from the index arrays. Sample code for
computing the ground truth matrix has been provided in the lecture slides.

• Overflow: Make sure that you prevent overflow when computing the softmax probabilities,
as shown on the slides.

[1]: def softmaxCost(W, b, numClasses, inputSize, decay, data, labels):
"""Computes and returns the (cost, gradient)
Args:

W, b - the weight matrix and bias vector parameters.
numClasses - the number of classes.
inputSize - the size D of each input vector.
decay - weight decay parameter.
data - the D x N input matrix, where each column data[:,n] corresponds␣

↪→to a single sample.
labels - an N x 1 matrix containing the labels corresponding for the␣

↪→input data.

Returns:
The cost, W's gradient, and b's gradient.

"""

N = data.shape[1]

groundTruth = coo_matrix((np.ones(N, dtype = np.uint8), (labels, np.
↪→arange(N)))).toarray()

cost = 0;
dW = np.zeros((numClasses, inputSize))
db = np.zeros((numClasses, 1))

---------- YOUR CODE HERE --------------------------------------
Instructions: Compute the cost and gradient for softmax regression.
You need to compute dW, dW, and cost.
The groundTruth matrix might come in handy.

2

return cost, dW, db

Implement the softmaxPredict() function, which computes the most likely label for each example
in the input data matrix.

[18]: def softmaxPredict(W, b, data):
"""Computes and returns the softmax predictions over the examples in data.
Args:

W, b - model parameters trained using softmaxTrain, a numClasses x D␣
↪→matrix and a numClasses x 1 column vector.

data - the D x N input matrix, where each column data[:,n] corresponds␣
↪→to a single sample.

Returns:
pred - a vector of N predicted labels.

"""

pred = np.zeros(data.shape[1])

Your code should produce the prediction matrix pred,
where pred(i) is argmax_c P(c | x(i)).

---------- YOUR CODE HERE --
Instructions: Compute pred using W and b, assuming that the labels
start from 0.

return pred

2.2 2. Gradient Checking of the LR Model (20 points)
In this part you will write code to compute the gradient numerically, and then compare the nu-
merical gradient with the analytical gradient. They should be very close.

3

Implement the computeNumericalGradient() function

[3]: def computeNumericalGradient(J, theta):
"""Compute numgrad = computeNumericalGradient(J, theta)
Args:

theta: A matrix of parameters (numClasses x D)
J: The cost function that outputs a real-number cost and the␣

↪→gradient with respect to its parameters.
Calling y = J(theta)[0] will return the cost function evaluated␣

↪→at theta.

Returns:
numgrad: The matrix of partial derivatives with respect to the␣

↪→parameters theta (numClasses x D)
"""

Initialize numgrad with zeros
numgrad = np.zeros(theta.shape)

---------- YOUR CODE HERE --------------------------------------
Instructions:
Implement numerical gradient checking, and return the result in numgrad.
You should write code so that numgrad[i][j] is (the numerical␣

↪→approximation to) the
partial derivative of J with respect to theta[i][j], evaluated at theta.
I.e., numgrad[i][j] should be the (approximately) partial derivative of J␣

↪→with
respect to theta[i][j].
#
Hint: You will probably want to compute the elements of numgrad one at a␣

↪→time.

return numgrad

Check that the numerically computed gradients are sufficiently close to the gradient computed
analytically.

4

[]: # Create a dataset with 100 examples, each with 8 random features.
inputSize, numClasses = 8, 2
instances, labels = randn(8, 100), randint(0, numClasses, 100, dtype = np.uint8)

Randomly initialize parameters
W = 0.01 * randn(numClasses, inputSize)
b = np.zeros((numClasses, 1))

decay = 0.001
cost, dW, db = softmaxCost(W, b, numClasses, inputSize, decay, instances,␣
↪→labels)

W_numGrad = computeNumericalGradient(lambda x: softmaxCost(x, b, numClasses,␣
↪→inputSize,

decay, instances,␣
↪→labels), W)

Use this to visually compare the gradients side by side.
print(np.stack((W_numGrad.ravel(), dW.ravel())).T)

Compare numerically computed gradients with those computed analytically.
diff = norm(W_numGrad - dW) / norm(W_numGrad + dW)
print(diff)

The difference should be small.
In our implementation, these values are usually less than 1e-7.

2.3 3. Experimental Evaluations (10 points)
In this part, you will train and evaluate the LR model on 3 artificial datasets: shapes, flower, and
spiral.

[16]: def softmaxExercise(instances, labels, numClasses):
"""Train an evaluate the LR model.
Args:

theta: A matrix of parameters (numClasses x D)
J: The cost function that outputs a real-number cost and the␣

↪→gradient with respect to its parameters.
Calling y = J(theta)[0] will return the cost function evaluated␣

↪→at theta.

Returns:
numgrad: The matrix of partial derivatives with respect to the␣

↪→parameters theta (numClasses x D)
"""

inputSize = instances.shape[0]

5

Randomly initialize parameters.
W = 0.01 * randn(numClasses, inputSize)
b = np.zeros((numClasses, 1))

Set hyper-parameters.
learning_rate = 1.0
decay = 0.001
num_epochs = 200

Gradient descent loop.
for epoch in range(num_epochs):

Call softmaxCost to compute cost and gradients.
cost, dW, db = softmaxCost(W, b, numClasses, inputSize, decay,␣

↪→instances, labels)
if epoch % 10 == 0:

print("Epoch %d: cost %f" % (epoch, cost))

Update parameters.
W += -learning_rate * dW
b += -learning_rate * db

Testing on training data.
#
You should now test your model against the training examples.
To do this, you will call softmaxPredict, which should return
predictions given a softmax model and the input data.

pred = softmaxPredict(W, b, instances)

acc = np.mean(labels == pred)
print('Accuracy: %0.3f%%.' % (acc * 100))

Accuracy is the proportion of correctly classified images
After 200 epochs, the results for our implementation were:
#
Spiral Accuracy: 53.3%
Flower Accuracy: 47.0%

return W, b

2.3.1 Evaluate the LR model on the flower dataset.

[17]: instances, labels, numClasses = utils.load_flower_dataset()
W, b = softmaxExercise(instances, labels, numClasses)

Plot the decision boundary.

6

utils.plot_decision_boundary(lambda x: softmaxPredict(W, b, x), instances,␣
↪→labels)

plt.title("Softmax Regression")
plt.savefig('flower-boundary.jpg')
plt.show()

Epoch 0: cost 0.000000
Epoch 10: cost 0.000000
Epoch 20: cost 0.000000
Epoch 30: cost 0.000000
Epoch 40: cost 0.000000
Epoch 50: cost 0.000000
Epoch 60: cost 0.000000
Epoch 70: cost 0.000000
Epoch 80: cost 0.000000
Epoch 90: cost 0.000000
Epoch 100: cost 0.000000
Epoch 110: cost 0.000000
Epoch 120: cost 0.000000
Epoch 130: cost 0.000000
Epoch 140: cost 0.000000
Epoch 150: cost 0.000000
Epoch 160: cost 0.000000
Epoch 170: cost 0.000000
Epoch 180: cost 0.000000
Epoch 190: cost 0.000000

7

(400,)
Accuracy: 50.000%.
(1038240,)

2.3.2 Evaluate the LR model on the spiral dataset.

[19]: instances, labels, numClasses = utils.load_spiral_dataset()
W, b = softmaxExercise(instances, labels, numClasses)

Plot the decision boundary.
utils.plot_decision_boundary(lambda x: softmaxPredict(W, b, x), instances,␣
↪→labels)

plt.title("Softmax Regression")
plt.savefig('spiral-boundary.jpg')
plt.show()

8

Epoch 0: cost 0.000000
Epoch 10: cost 0.000000
Epoch 20: cost 0.000000
Epoch 30: cost 0.000000
Epoch 40: cost 0.000000
Epoch 50: cost 0.000000
Epoch 60: cost 0.000000
Epoch 70: cost 0.000000
Epoch 80: cost 0.000000
Epoch 90: cost 0.000000
Epoch 100: cost 0.000000
Epoch 110: cost 0.000000
Epoch 120: cost 0.000000
Epoch 130: cost 0.000000
Epoch 140: cost 0.000000
Epoch 150: cost 0.000000
Epoch 160: cost 0.000000
Epoch 170: cost 0.000000
Epoch 180: cost 0.000000
Epoch 190: cost 0.000000
Accuracy: 33.333%.

9

2.3.3 Evaluate the LR model on the shapes dataset (10 points)

[]: instances, labels, numClasses = # YOUR CODE HERE

W, b = softmaxExercise(instances, labels, numClasses)

[]:

2.4 4. Bonus (20 + 20 points)
• Use the sklearn.linear_model.LogisticRegression class from sklearn to run the 3 experimental

evaluations above.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

• Modify the data generation functions to create examples that have only two labels and write
a second version of the assignment that implements logistic regression for binary classifica-
tion. Evaluate it on the binary classification dataset for flower and compare with softmax
regression.

• Anything extra goes here.

[]:

10

2.5 5. Analysis (10 points)
Include here a nicely formatted report of the results, comparisons. Include explanations and any
insights you can derive from the algorithm behavoir and the results. This section is important, so
make sure you address it appropriately.

[]:

11

	Logistic Regression in NumPy
	Write Your Name Here:

	 Submission Instructions
	1. The Logistic Regression model (60 points)
	2. Gradient Checking of the LR Model (20 points)
	3. Experimental Evaluations (10 points)
	Evaluate the LR model on the flower dataset.
	Evaluate the LR model on the spiral dataset.
	Evaluate the LR model on the shapes dataset (10 points)

	4. Bonus (20 + 20 points)
	5. Analysis (10 points)

