
HW Assignment 6, Theory
Problems marked with a (∗) are mandatory for ITCS 8156 students. Bonus problems are
optional, solving them will result in extra points.

1 Activations Functions (10 points)

Compute the derivative of the logistic sigmoid σ(x), hyperbolic tangent tanh(x), and ReLU’s
ramp(x) activation functions. For logistic sigmoid and hyperbolic tangent, express the
derivative in terms of the original function.

2 Universal Approximation (∗) (30 + 15 points)

Let NN be a neural network with 2 input units, 1 hidden layer with h units using sigmoid
as activation function, and 1 binary logistic regression unit using logistic sigmoid as output
function. Furthermore, consider a training set that contains the following 4 examples i.e.,
the truth table of the logical XOR function:

x1 x2 t

0 0 0
0 1 1
1 0 1
1 1 0

1. Is there a neural network NN with 1 hidden layer that perfectly classifies this training
set? Prove your answer. If the answer is yes, what is the minimum h for which there
is a network with h hidden neurons that fits the training data? Prove it.

2. Consider the same neural network NN, but without activation functions in the hidden
layer. Answer the same questions as at item (a) above.

3. Bonus: Consider the same neural network NN, but this time using ReLU neurons in
the hidden layer. Answer the same questions as at item (a) above.

3 Gradients & Computation Graphs (30 points)

Consider a 3D vector x = [x1, x2, x3]
T and let x◦x = [x2

1, x
2
2, x

2
3]

T be the element-wise square
of x. Let h(x) be a function computed as follows:

h(x) = σ(v1a1(x) + v2a2(x))

a1(x) = z21(x)

z1(x) = wTx

a2(x) = tanh(z2(x))

z2(x) = uT (x ◦ x)

where w = [w1, w2, w3]
T , u = [u1, u2, u3]

T .

1. Show the computation graph of h(x), similar to how was done in class.

2. Use the chain rule to compute the gradient of h with respect to x2. Show all your
derivation steps and the final formula for the gradient as a product of various factors
resulting from the application of the chain rule.

4 Backpropagation (20 + 10 points)

Consider the vectorized backpropagation algorithm for regression, shown on slides 41 and
42.

1. Specify the shape for each matrix and vector appearing in the algorithm, using the
notation introduced in class and assuming the gradient is computed for the loss on just
one training example, i.e. J(W, b,x, y).

2. Specify the shape for each matrix and vector appearing in the algorithm, this time
assuming the gradient is computed for the total loss over all training examples, i.e.
J(W, b,X,y).

3. Bonus: Compute the time complexity of running vectorized backpropagation for the
total loss J(W, b,X,y). Compare this with the time complexity of computing the same
gradient numerically. For simplicity, you can assume that there is only one unit in the
output layer, and all the other layers have the same size, i.e. s1 = s2 = ... = snl−1 = S.

5 Vizualization of Hidden Units (∗) (15 points)

Prove that the input vector x (||x||2 ≤ 1) that maximally activates the hidden layer unit

a
(2)
i has the form shown below:

xj =
W

(1)
ij√∑s1

j=1(W
(1)
ij)2

(1)

6 Submission

Submit your responses on Canvas as one file named theory.pdf. It is recommended to
use an editor such as Latex or Word or Jupyter-Notebook that allows editing and proper
formatting of equations. Alternatively, if you choose to write your solutions on paper, submit
an electronic scan / photo of it on Canvas. Make sure that your writing is legible and the
scan has good quality.

	Activations Functions (10 points)
	 Universal Approximation (*) (30 + 15 points)
	Gradients & Computation Graphs (30 points)
	Backpropagation (20 + 10 points)
	Vizualization of Hidden Units (*) (15 points)
	Submission

