
HW Assignment 7, Implementation

Problems marked with a (∗) are mandatory only for ITCS 8156 students. Bonus problems
are optional, solving them will result in extra points.

In this assignment, you are asked to implement two versions of the sparse autoencoder
in Python, using (1) NumPy and (2) PyTorch in the corresponding folders, and evaluate
them on natural images (-t natural) and MNIST digits (-t digits). Implement also the
PCA, PCA whitening, and ZCA whitening, following the steps explained in this section.
Write code only in the files indicated in bold. The skeleton code and data are available

itcs6156/
hw07/
report.pdf
numpy/

sampleNaturalImages.py
sampleDigitImages.py
sparseAutoencoder.py
computeNumericalGradient.py
output-natural.txt

output-digits.txt

weights natural.jpg

weights digits.jpg

sparseAutoencoderExercise.py
checkNumericalGradient.py
display network.py

pytorch/

sampleNaturalImages.py
sampleDigitImages.py
sparseAutoencoder.py
output-natural.txt

output-digits.txt

weights natural.jpg

weights digits.jpg

sparseAutoencoderExercise.py
display network.py

pca/

pca image.py
pca 2d.py
figure xx.jpg

displayNetwork.py
pcaData.txt

data/

Table 1: Folder structure.

at https://webpages.uncc.edu/rbunescu/courses/itcs6156/hw07.zip. Organize your

https://webpages.uncc.edu/rbunescu/courses/itcs6156/hw07.zip


code in folders as shown in Table 1 below. For the sparse AE exercise, the visualization of
the hidden units should be saved in the jpg files listed in the table. For the PCA exercise,
save each figure displayed by the code into a jpg file figure xx.jpg. The first part of the
exercise should generate 6 figures figure 01.jpg to figure 06.jpg, whereas the second
part of the exercise should generate 5 figures figure 07.jpg to figure 11.jpg.

All the required results and plots should be included in an appropriately edited home-
work report, using proper indentation, section titles, and formatting. If you include formulas,
make sure that you use appropriate formatting. The PDF of the report report.pdf should
be submitted on Canvas, together with the code in the folder above. Feel free to create a
Jupiter-Notebook for your code for each exercise, which you can saved as a PDF using Latex,
and submit. The assignment will be graded based on both the code and the report.

1 Sparse AE: NumPy Implementation (∗) (100 points)

Coding effort: my implementation has 28 lines of code in sparseAutoencoder.py + 7 lines of
code in sampleNaturalImages.py + 7 lines of code in sampleDigitImages.py.

1. Sampling images: The training data for the autoencoder will be created from random
natural or digit images. For digit images, write code in the function sampleDigitImages()
that returns 20,000 random 28x28 images from the entire MNIST dataset (training
and testing). The images should be distinct. For natural images, write code in
sampleNaturalImages() that returns 10,000 random 8x8 patches from the set of 10
512x512 natural images stored in images.mat. These images have been whitened, so
the pixel values are not necessarily in [0, 1]. Consequently, the pixel values are further
normalized by calling normalizeData().

2. Cost & Gradient: You will need to write code for the function sparseAutoencoderCost()
in sparseAutoencoder.py that computes the cost and the gradient. The cost should
be computed according to the formula shown on slide 5 in Lecture 8, whereas the
backpropagation algorithm (originally shown on slide 42 in Lecture 7) should use the
updated equation shown on slide 9. Use the sigmoid as activation and output function.

3. Vectorization: It is very important to vectorize your code so that it runs quickly.

4. Gradient checking: Once you implemented the cost and the gradient in sparseAutoencoderCost(),
verify that your gradient code is correct by running the sparseAutoencoderExercise.py
in –debug mode. This will use the computeNumericalGradient.py code that you wrote
for the previous assignment. The norm of the difference between the numerical gradient
and your analytical gradient should be small, less than 10−9.

5. Feature learning: Training the autoencoder is done using L-BFGS for 400 epochs,
through the SciPy function scipy.optimize.fmin l bfgs b(). If completely vectorized,
training the model on 20,000 random samples from the entire MNIST dataset should
take about 20 minutes on california. Training on the 10,000 random patches from
natural images should be much faster, due to the smaller number of samples and
parameters.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html


Figure 1: Learned features: edges for natural images, pen strokes for digits.

6. Visualization: To vizualize a learned feature, the code computes an input image
that would maximally activate the corresponding hidden neuron. This is done using
the formula in a theory question from the previous assignment, as implemented in the
displayNetwork() function. The learned features should be similar to the ones shown
in Figure 1: for natural images they should resemble Gabor edges, whereas for digits
they should resemble pen strokes.

2 Sparse AE: PyTorch Implementation (50 points)

Coding effort: my implementation has 5 + 10 lines of code in sparseAutoencoder.py.

You will need to write code in sparseAutoencoder.py, in functions get vars() and cost():

1. get vars() should create, initialize, and return variables for the data matrix X and
the parameters W1, b1 for the hidden layer, and W2, b2 for the output layer. The bias
weights should be initialized with 0, whereas for W1 and W2 use the Glorot uniform
initializer , also called Xavier uniform initializer. It draws samples from a uniform
distribution within [−limit, limit] where limit is

√
(6/(fanin + fanout)) where fanin

is the number of input units in the weight tensor and fanout is the number of output
units in the weight tensor.

2. cost() should compute and return the cost of the sparse autoencoder on the input
data matrix X, by running forward propagation to compute the data cost and adding
the L2 regularization and KL-divergence sparsity terms.

The code for running gradient descent with minibatches is provided in sparseAutoen-
coderExercise.py. While you do not need to change this code, it is recommended that you
read it and understand how it works.

http://pytorch.org/docs/master/_modules/torch/nn/init.html
http://pytorch.org/docs/master/_modules/torch/nn/init.html


2.1 Bonus (25 points)

Change the code in sparseAutoencoderExercise.py to do batch training with L-BFGS for 400
iterations instead of SGD with Adam.

3 PCA and Whitening in 2D (50 points)

Coding effort: my implementation has 9 lines of code.

In this exercise you will implement PCA, PCA whitening and ZCA whitening, as de-
scribed in the Lecture 3. The only file you need to modify is pca 2d.py. Implementing this
exercise will make the next exercise significantly easier to understand and complete.

Step 0: Load data: The starter code contains code to load 45 2D data points. When
plotted using the scatter function, the results should look like in Figure 2(a).

Step 1: Implement PCA: In this step, you will implement PCA to obtain xRot, the
matrix in which the data is ”rotated” to the basis made up of the principal components.
You should make use of NumPy’s svd() function here.

Step 1a: Finding the PCA basis: Find u1 and u2, and draw two lines in your figure
to show the resulting basis on top of the given data points. Your figure should look like in
Figure 2(b).

Figure 2: (a) Raw data; (b) Raw data and PCA basis.

Step 1b: Check xRot: Compute xRot, and use the NumPy scatter() function to check
that xRot looks as it should, which should be something like in Figure 3(a).

Step 2: Dimensionality reduction: In the next step, set k, the number of components
to retain, to be 1. Compute the resulting xHat and plot the results, as in Figure 3(b).

Step 3: PCA Whitening: Implement PCA whitening using the formula from Lecture 3.
Plot xPCAWhite, and verify that it looks like in Figure 4(a).



Figure 3: (a) Data rotated through PCA; (b) One-dimensional projection.

Step 4: ZCA Whitening: Implement ZCA whitening and plot the results. The results
should look like in Figure 4(b).

Figure 4: (a) PCA Whitening; (b) ZCA Whitening.

4 PCA and Whitening on natural images (50 points)

Coding effort: my implementation has 19 lines of code.

In this exercise, you will implement PCA, PCA whitening and ZCA whitening, and ap-
ply them to image patches taken from natural images. The only file you need to modify is
pca image.py.

Step 0a: Load data: The starter code contains code to load a set of natural images and
sample 12x12 patches from them. The raw patches will look something like in Figure 5(a).
These patches are stored as column vectors in the 144 x 10,000 array x.

Step 0b: Zero mean the data: First, for each image patch, compute the mean pixel value
and subtract it from that image, this centering the image around zero. You should compute



a different mean value for each image patch.

Step 1a: Implement PCA: In this step, you will implement PCA to obtain xRot, the
matrix in which the data is ”rotated” to the basis comprising the principal components.
Note that in this part of the exercise, you should not whiten the data.

Step 1b: Check covariance: To verify that your implementation of PCA is correct, you
should check the covariance matrix for the rotated data xrot. PCA guarantees that the
covariance matrix for the rotated data is a diagonal matrix (a matrix with non-zero entries
only along the main diagonal). Implement code to compute the covariance matrix and verify
this property. One way to do this is to compute the covariance matrix, and visualise it using
the SciPy function misc.imsave(). The image should show a white diagonal line against a
dark background. For this dataset, because of the range of the diagonal entries, the diagonal
line may not be apparent, but this trick of visualizing using imsave() will come in handy
later in this exercise.

Step 2: Find number of components to retain: Next, choose k, the number of prin-
cipal components to retain. Pick k to be as small as possible, but so that at least 99% of
the variance is retained. In the step after this, you will discard all but the top k principal
components, reducing the dimension of the original data to k. Write down the value of k in
your report.

Step 3: PCA with dimensionality reduction: Now that you have found k, compute x̃,
the reduced-dimension representation of the data. This gives you a representation of each
image patch as a k dimensional vector instead of a 144 dimensional vector. If you are training
a sparse autoencoder or other algorithm on this reduced-dimensional data, it will run faster
than if you were training on the original 144 dimensional data.

To see the effect of dimensionality reduction, go back from x̃ to produce the matrix
x̂, the dimension-reduced data but expressed in the original 144 dimensional space of image
patches. Visualise x̂ and compare it to the raw data, x, as shown in Figure 5. You will observe
that there is little loss due to throwing away the principal components that correspond to
dimensions with low variation. For comparison, you may also wish to generate and visualise
x̂ for when only 90% of the variance is retained.

Step 4a: Implement PCA with whitening and regularization: Now implement PCA
with whitening and regularization to produce the matrix xPCAWhite. Use epsilon = 0.1.

Step 4b: Check covariance: Similar to using PCA alone, PCA with whitening also
results in processed data that has a diagonal covariance matrix. However, unlike PCA
alone, whitening additionally ensures that the diagonal entries are equal to 1, i.e. that the
covariance matrix is the identity matrix.

That would be the case if you were doing whitening alone with no regularization. How-
ever, in this case you are whitening with regularization, to avoid numerical problems as-
sociated with small eigenvalues. As a result of this, some of the diagonal entries of the
covariance of your xPCAwhite will be smaller than 1. To verify that your implementation of
PCA whitening with and without regularization is correct, you can check these properties.
Implement code to compute the covariance matrix and verify this property. As earlier, you



Figure 5: (a) Raw patches; (b) PCA projected images, 99% variance.

can visualise the covariance matrix with the SciPy function misc.imsave().

Step 5: ZCA whitening: Now implement ZCA whitening to produce the matrix xZ-
CAWhite. Visualize xZCAWhite and compare it to the raw data, x, as shown in Figure 6.
You should observe that whitening results in, among other things, enhanced edges. Try
repeating this with epsilon set to 1, 0.1, and 0.01, and see what you obtain. The example in
Figure 6 was obtained with epsilon = 0.1.

Figure 6: (a) Raw patches; (b) ZCA whitened images.



5 Submission

Electronically submit on Canvas a hw07.zip file that contains the hw07 folder in which your
code is in the required files, as well as the report.pdf.

On a Linux system, creating the archive can be done using the command:
> zip -r hw07.zip hw07.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.
We will not debug your code.

4. For your report, it is recommended to use an editor such as Latex or Word or Jupyter-
Notebook that allows editing and proper formatting of equations, plots, and tables
with results.

5. Make sure your your Canvas submission contains the correct files by downloading and
unzipping it after posting on Canvas.


	Sparse AE: NumPy Implementation (*) (100 points)
	Sparse AE: PyTorch Implementation (50 points)
	Bonus (25 points)

	PCA and Whitening in 2D (50 points)
	PCA and Whitening on natural images (50 points)
	Submission

