
HW Assignment 8, Theory and Implementation

Problems marked with a (∗) are mandatory only for ITCS 8156 students. Bonus problems
are optional, solving them will result in extra points.

1 Theory (25 points)

1. [CNN Complexity] Consider the final convolutional network from step 7 in the
implementation part below. What is the total number of parameters? Show your
work, i.e. a breakdown of the total number of parameters, layer by layer. Describe at
least three different ways of reducing the number of parameters in this network, and
discuss their relative advantages/disadvantages.

2 Implementation (100 points)

Implement the ConvNet for digit classification, as explained in the 7 steps below, using
PyTorch. Make sure that you organize your code in folders as shown in the table below.

itcs6156/
hw08/
pytorch/

train cnn.py
cnnExercise.py
expand mnist.py
output.txt

report.pdf
theory.pdf

data/
mnist/

Write code only in train cnn.py. The traces from running python3 cnnExercise.py

<mode> for each of the 7 steps below should be saved in output.txt. In each step you
will train the corresponding architecture and report the accuracy on the test data. Hyper-
parameters are kept unchanged from one step to the next, unless changes are explicitly
mentioned. By default, the code is written to run on the CPU, with the expected accuracy
numbers shown in cnnExercise.py. If your PyTorch installation and architecture supports
GPUs, you can set self.use gpu = True inside train cnn.py which can make the code run
twice as fast. It is recommended that you read and understand the code in cnnExercise.py

and expand mnist.py.
Most of the functionality needed for completing this assignment is implemented in the

package torch.nn. One approach is to create a Sequential model, to which you add modules
in order using the add module() method. All types of layers and processing you need are
already implemented in torch.nn, by subclassing from torch.nn.Module. Alternative, but
very similar approaches for coding CNNs can also be seen in the PyTorch tutorials, e.g.
the Training an Image Classifier tutorial. Relevant classes and functions: nn.Sequential,
nn.Linear, nn.Sigmoid, nn.ReLU, nn.LogSoftmax, nn.Conv2D, nn.MaxPool2d, nn.Dropout.

https://pytorch.org/docs/stable/nn.html
http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-an-image-classifier


Note that the nll loss function used to compute the loss as given in the skeleton code
requires as input the logarithm of the softmax probabilities, which can be done using an
nn.LogSoftmax layer.

Also note that each layer needs to be non-linear. As such, make sure you use a non-linear
activation after each pooling layer (sigmoid for steps 1 to 3, ReLU afterwards).

The output of a convolutional layer for one example is a 3D tensor. To be used as input for
a fully connected layer, it needs to be transformed into a 1D tensor. For your convenience, a
generic shape transformation is implemented as a PyTorch module in the ViewOP class. You
need to add this between the last convolutional layer and the first fully connected layer, using
the add module() function as with all other computational layers. An example is shown in
the code below, where input size is the total number of values (neurons) computed by the
convolutional layer: model.add module("ChangeView", ViewOP(-1, input size)).

Step 1: Baseline with one hidden layer: Create a shallow architecture using a sin-
gle hidden layer, fully connected, containing 100 neurons, with sigmoid activation function.
Train for 30 epochs, using SGD with a learning rate of 0.1, a mini-batch size of 10, and no
regularization.

Step 2: One convolutional + one hidden layer: Insert a convolutional layer at the
beginning of the network, followed by a max-pooling layer and the fully connected layer from
step 1. Use 5x5 local receptive fields, a stride of 1, and 20 kernels. The max-pooling layer
should combine features using 2x2 pooling windows. The overall architecture should look as
in the figure below.

Step 3: Two convolutional + one hidden layer: Insert a second convolutional-pooling
layer between the existing convolutional-pooling layer and the fully-connected hidden layer.
Use a 5x5 local receptive field for 40 kernels and pool over 2x2 regions.

Step 4: Two convolutional + one hidden layer, ReLU: Replace sigmoid with ReLU as
activation function in the entire network from step 3. Train the model using a new learning
rate of 0.03.

Step 5: Two convolutional + one hidden layer, ReLU, data augmentation: Aug-
ment the training data by displacing each training image by a single pixel: up one pixel, down
one pixel, left one pixel, or right one pixel. Do this by running the program expand mnist.py

in the mnist/data/ folder. Retrain the model from step 4 on the augmented dataset.

https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html


Step 6: Two convolutional + two hidden layers, ReLU, data augmentation: Add
a second fully-connected layer with 100 neurons to the model from step 5.

Step 7: Two convolutional + two large hidden layers, ReLU, data augmentation,
Dropout: Increase the number of neurons on the fully connected layers to 200. Do regu-
larization by applying Dropout on the activations of the two fully-connected layers, using a
dropout rate of 0.5.

2.1 Bonus (25 points)

In train cnn.py, we have manually split the dataset into minibatches. Write code to do this
using the torch.utils.data.DataLoader class. You may find this Data Loading and Processing
Tutorial useful.

2.2 Bonus (50 + 50 points)

Implement all the above using NumPy. This requires updating backpropagation (50 points)
to go through convolutional and pooling layers. How to do this is explained in the UFLDL
Tutorial. Alternatively, for 50 bonus points, you can implement only forward propagation
and the cost in NumPy and use autograd for the gradient computation.

3 Submission

Electronically submit on Canvas a hw08.zip file that contains the hw08 folder in which your
code is in the required files, as well as the report.pdf containing your analysis of results
and the theory.pdf with the theory solutions.

On a Linux system, creating the archive can be done using the command:
> zip -r hw08.zip hw08.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.
We will not debug your code.

4. For your report, it is recommended to use an editor such as Latex or Word or Jupyter-
Notebook that allows editing and proper formatting of equations, plots, and tables
with results.

5. Make sure your your Canvas submission contains the correct files by downloading and
unzipping it after posting on Canvas.

https://arxiv.org/pdf/1207.0580.pdf
http://pytorch.org/docs/master/data.html
http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#sphx-glr-beginner-data-loading-tutorial-py
http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#sphx-glr-beginner-data-loading-tutorial-py
http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionAndPooling/
http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionAndPooling/
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