
LSTM-Sentiment

April 20, 2023

1 Sentiment Classification w ith R NNs (LSTMs)
In this assignment you will experiment with training and evaluating sentiment classification models
that use recurrent neural networks (RNNs) implemented in PyTorch, where an input document
(movie review) is represented as a sequence of word embeddings.

1.1 Write Your Name Here:

2 Submission Instructions
2.1 Local computer:

1. Click the Save button at the top of the Jupyter Notebook.
2. Please make sure to have entered your name above.
3. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will

keep the content of ll cells).
4. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
5. Once you’ve rerun everything, select File -> Download as -> PDF via LaTeX and download

a PDF version lstm-sentiment.pdf showing the code and the output of all cells, and save it in
the same folder that contains the notebook file lstm-sentiment.ipynb.

6. Look at the PDF file and make sure all your solutions are there, displayed correctly.
7. Submit both your PDF and notebook on Canvas. Make sure the PDF and notebook show

the outputs of the training and evaluation procedures. Also upload the output on the test
datasets.

8. Verify your Canvas submission contains the correct files by downloading them after posting
them on Canvas.

2.2 Google Colab
While the code in this notebook can be run locally on a powerful machine, it is highly recommended
that the notebook is run on the GPU infrastructure availabe for free through Google’s Colab. To
load the notebook in Colab:

1. Point your browser to https://colab.research.google.com/
2. If a pop-up window opens, click on the Upload button and select this notebook file

code/LSTM-Sentiment.ipynb) from the homework folder.
3. Alternatively, in the notebook window menu clik File -> Open notebook and load the same

notebook file.
4. You will also need to upload the data folder and the auxiliarry *.py files from the code folder.

To do this:

1

https://colab.research.google.com/

• Using the menu, click ‘File’ / ‘Locate in Drive’. This will open a new browser window
showing the contents of the Drive folder containing the notebook file.

• Using the manu pane on the left, clik on ‘+ New’, followed by ‘File upload’ (to upload
the .py files) or ‘Folder upload’ (to upload the data folder).

2.3 Educational cluster:
1. Please make sure to have entered your name above.
2. Run the Python code on the cluster, using the instructions at:

https://webpages.charlotte.edu/rbunescu/courses/itcs6156/centaurus.pdf
3. Look at the Slurm output file and make sure all your solutions are there, displayed correctly.
4. Edit the Analysis section in the notebook file, and save it as a PDF. Alternatively, you can

use a text editor to edit yoru Analysis, then export it as PDF.
5. Submit the Slurm output file, the Python source code file lstm-sentiment.py, and the

analysis PDF on Canvas. Also upload the output on the test datasets.
6. Verify your Canvas submission contains the correct files by downloading them after posting

them on Canvas.

[]: from models import *
from sentiment_data import *

import random
import numpy as np
import torch
from typing import NamedTuple

class HyperParams(NamedTuple):
lstm_size: int
hidden_size: int
lstm_layers: int
drop_out: float
num_epochs: int
batch_size: int
seq_max_len: int

3 LSTM-based training and evaluation procedures
We will use the RNNet class defined in models.py that uses LSTMs implemented in PyTorch.
Depending on the options, this class runs one LSTM (forward) or two LSTMS (bidirectional,
forward-backward) on the padded input text. The last state (or concatenated last states), or the
average of the states, is used as input to a fully connected network with 3 hidden layers, with a
final output sigmoid node computing the probability of the positive class.

[]: # Training procedure for LSTM-based models
def train_model(hp: HyperParams,

train_exs: List[SentimentExample],
dev_exs: List[SentimentExample],
test_exs: List[SentimentExample],

2

word_vectors: WordEmbeddings,
use_average, bidirectional):

train_size = len(train_exs)
class_num = 1

Specify training on gpu: set to False to train on cpu
use_gpu = False
use_gpu = torch.cuda.is_available()
if use_gpu: # Set tensor type when using GPU

float_type = torch.cuda.FloatTensor
else: # Set tensor type when using CPU

float_type = torch.FloatTensor

To get you started off, we'll pad the training input to 60 words to make␣
↪→it a square matrix.

train_mat = np.asarray([pad_to_length(np.array(ex.indexed_words), hp.
↪→seq_max_len) for ex in train_exs])

Also store the actual sequence lengths.
train_seq_lens = np.array([len(ex.indexed_words) for ex in train_exs])

Training input reversed, useful is using bidirectional LSTM.
train_mat_rev = np.asarray([pad_to_length(np.array(ex.

↪→get_indexed_words_reversed()), hp.seq_max_len) for ex in train_exs])

Extract labels.
train_labels_arr = np.array([ex.label for ex in train_exs])
targets = train_labels_arr

Extract embedding vectors.
embed_size = word_vectors.get_embedding_length()
embeddings_vec = np.array(word_vectors.vectors).astype(float)

Create RNN model.
rnnModel = RNNet(hp.lstm_size, hp.hidden_size, hp.lstm_layers, hp.drop_out,

class_num, word_vectors,
use_average, bidirectional,
use_gpu =use_gpu)

If GPU is available, then run experiments on GPU
if use_gpu:

rnnModel.cuda()

Specify optimizer.
optimizer = optim.Adam(filter(lambda p: p.requires_grad, rnnModel.

↪→parameters()),
lr = 5e-3, weight_decay =5e-3, betas = (0.9, 0.9))

3

Define loss function: Binary Cross Entropy loss for logistic regression␣
↪→(binary classification).

criterion = nn.BCELoss()

Get embeddings of words for forward and reverse sentence: (num_ex *␣
↪→seq_max_len * embedding_size)

x = np.zeros((train_size, hp.seq_max_len, embed_size))
x_rev = np.zeros((train_size, hp.seq_max_len, embed_size))
for i in range(train_size):

x[i] = embeddings_vec[train_mat[i].astype(int)]
x_rev[i] = embeddings_vec[train_mat_rev[i].astype(int)]

Train the RNN model, gradient descent loop over minibatches.
for epoch in range(hp.num_epochs):

rnnModel.train()

ex_idxs = [i for i in range(train_size)]
random.shuffle(ex_idxs)

total_loss = 0.0
start = 0
while start < train_size:

end = min(start + hp.batch_size, train_size)

Get embeddings of words for forward and reverse sentence: (num_ex␣
↪→* seq_max_len * embedding_size)

x_batch = form_input(x[ex_idxs[start:end]]).type(float_type)
x_batch_rev = form_input(x_rev[ex_idxs[start:end]]).type(float_type)
y_batch = form_input(targets[ex_idxs[start:end]]).type(float_type)
seq_lens_batch = train_seq_lens[ex_idxs[start:end]]

Compute output probabilities over all examples in minibatch.
probs = rnnModel(x_batch, x_batch_rev, seq_lens_batch).flatten()

Compute loss over all examples in minibatch.
loss = criterion(probs, y_batch)
total_loss += loss.data

Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()

start = end

print("Loss on epoch %i: %f" % (epoch, total_loss))

4

Print accuracy on training and development data.
if epoch % 10 == 0:

acc = eval_model(rnnModel, train_exs, embeddings_vec, hp.
↪→seq_max_len)

print('Epoch', epoch, ': Accuracy on training set:', acc)
acc = eval_model(rnnModel, dev_exs, embeddings_vec, hp.seq_max_len)
print('Epoch', epoch, ': Accuracy on development set:', acc)

Evaluate model on the training dataset.
acc = eval_model(rnnModel, train_exs, embeddings_vec, hp.seq_max_len)
print('Accuracy on training set:', acc)

Evaluate model on the development dataset.
acc = eval_model(rnnModel, dev_exs, embeddings_vec, hp.seq_max_len)
print('Accuracy on develpment set:', acc)

return rnnModel

Here is the testing (evaluation) procedure.

[]: # Evaluate the trained model on test examples and return predicted labels or␣
↪→accuracy.

def eval_model(model, exs, embeddings_vec, seq_max_len, pred_only = False):
Put model in evaluation mode.
model.eval()

Extract size pf word embedding.
embed_size = len(embeddings_vec[0])

Get embeddings of words for forward and reverse sentence: (num_ex *␣
↪→seq_max_len * embedding_size)

exs_mat = np.asarray([pad_to_length(np.array(ex.indexed_words),␣
↪→seq_max_len) for ex in exs])

exs_mat_rev = np.asarray([pad_to_length(np.array(ex.
↪→get_indexed_words_reversed()), seq_max_len) for ex in exs])

exs_seq_lens = np.array([len(ex.indexed_words) for ex in exs])

Get embeddings of words for forward and reverse sentence: (num_ex *␣
↪→seq_max_len * embedding_size)

x = np.zeros((len(exs), seq_max_len, embed_size))
x_rev = np.zeros((len(exs), seq_max_len, embed_size))
for i,ex in enumerate(exs):

x[i] = embeddings_vec[exs_mat[i].astype(int)]
x_rev[i] = embeddings_vec[exs_mat_rev[i].astype(int)]

x = form_input(x)

5

x_rev = form_input(x_rev)

Run the model on the test examples.
preds = model(x, x_rev, exs_seq_lens).cpu().detach().numpy().flatten()
preds[preds >= 0.5] = 1
preds[preds < 0.5] = 0

if pred_only == True:
return preds

else:
targets = np.array([ex.label for ex in exs])
return np.mean(preds == targets)

4 Experimental evaluations on the Rotten Tomatoes dataset.
First, code for reading the examples and the corresponding GloVe word embeddings.

[]: random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

word_vecs_path = '../data/glove.6B.300d-relativized.txt'

train_path = '../data/rt/train.txt'
dev_path = '../data/rt/dev.txt'
blind_test_path = '../data/rt/test-blind.txt'
test_output_path = 'test-blind.output.txt'

word_vectors = read_word_embeddings(word_vecs_path)
word_indexer = word_vectors.word_indexer

train_exs = read_and_index_sentiment_examples(train_path, word_indexer)
dev_exs = read_and_index_sentiment_examples(dev_path, word_indexer)
test_exs = read_and_index_sentiment_examples(blind_test_path, word_indexer)

print(repr(len(train_exs)) + " / " +
repr(len(dev_exs)) + " / " +
repr(len(test_exs)) + " train / dev / test examples")

4.1 Use only the last state from one LSTM
Evaluate One LSTM + fully connected network, use the last hidden state of LSTM. If the evaluation
takes more than 1 hour on your computer, for debugging purposes you can try reducing lstm_size,
hidden_size, batch_size and even num_epochs.

Our accuracy on development data is 75.98%

6

[]: random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

hp = HyperParams(lstm_size = 50, # hidden units in lstm
hidden_size = 50, # hidden size of fully-connected layer
lstm_layers = 1, # layers in lstm
drop_out = 0.5, # dropout rate
num_epochs = 50, # number of epochs for SGD-based procedure
batch_size = 1024, # examples in a minibatch
seq_max_len = 60) # maximum length of an example sequence

use_average = False
bidirectional = False

Train RNN model.
model1 = train_model(hp, train_exs, dev_exs, test_exs, word_vectors,␣
↪→use_average, bidirectional)

Generate RNN model predictions for test set.
embeddings_vec = np.array(word_vectors.vectors).astype(float)
test_exs_predicted = eval_model(model1, test_exs, embeddings_vec, hp.
↪→seq_max_len, pred_only = True)

Write the test set output
for i, ex in enumerate(test_exs):

ex.label = int(test_exs_predicted[i])
write_sentiment_examples(test_exs, test_output_path, word_indexer)

print("Prediction written to file for Rotten Tomatoes dataset.")

4.2 Use the average of all states from one LSTM (10 points)
Evaluate One LSTM + fully connected network, use average of all states of the LSTM.

Our accuracy on development data is 77.67%

[]: random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

YOUR CODE HERE

4.3 Use a bidirectional LSTM, concatenate last states (10 points)
Evaluate Two LSTMs (bidirectional) + fully connected network, concatenate their last states.

Our accuracy on development data is 76.83%

7

[]: random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

YOUR CODE HERE

4.4 Use a bidirectional LSTM, concatenate the averages of their states (10
points)

Evaluate Two LSTMs (bidirectional) + fully connected network, concatenate the averages of their
states.

Our accuracy on development data is 77.39%

[]: random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

YOUR CODE HERE

4.5 Average performance and standard deviation (20 points)
The NN performance can vary depending on the random initialization of its parameters. Train and
evaluate each model 10 times, from different random initializations (10 different seeds). Average the
accuracy over the 10 runs and compare the performance of the 4 models on the Rotten Tomatoes
dataset. Report in your analysis the average and standard deviation for each model.

[]: ## YOUR CODE HERE

5 Experimental evaluations on the IMDB dataset (20 points)
Run the same 4 evaluations on the IMDB dataset.

[]: train_path = '../data/imdb/train.txt'
dev_path = '../data/imdb/dev.txt'
test_path = '../data/imdb/test.txt'

test_output_path = 'test-imdb.output.txt'

YOUR CODE HERE

5.1 Cross-domain evaluation (30 points)
Compare the performance of the Bidirectional LSTM with state averaging on the IMDB test set
in two scenarios:

1. The model is trained on the IMDB training data.

2. The model is trained on the Rotten Tomatoes data.

8

[]: ## YOUR CODE HERE

5.2 Bonus points
Anything extra goes here.

5.3 Analysis (10 points)
Include an analysis of the results that you obtained in the experiments above. Also compare with
the sentiment classification performance from previous assignments and explain the difference in
accuracy. Show the results using table(s).

[]:

9

	Sentiment Classification with RNNs (LSTMs)
	Write Your Name Here:

	 Submission Instructions
	Local computer:
	Google Colab
	Educational cluster:

	LSTM-based training and evaluation procedures
	Experimental evaluations on the Rotten Tomatoes dataset.
	Use only the last state from one LSTM
	Use the average of all states from one LSTM (10 points)
	Use a bidirectional LSTM, concatenate last states (10 points)
	Use a bidirectional LSTM, concatenate the averages of their states (10 points)
	Average performance and standard deviation (20 points)

	Experimental evaluations on the IMDB dataset (20 points)
	Cross-domain evaluation (30 points)
	Bonus points
	Analysis (10 points)

