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How to Automate Solutions to
Computational Problems?

* Spam email;

— Binary classification of emails into Spam vs. Ham.

« Expert Systems approach (also called rule-based):

1. A group of experts write rules determining whether an email 1s
spam or not.

2. A programmer implement the rules into computer code.

« Example rules:
—  ”MONEY” appears in the text?
e  What if email sent by grandmother?




How to Automate Solutions to
Computational Problems?

=

« Expert Systems approach (also called rule-based):
— Cognitively demanding:
e Difficult for humans to reason with many useful but imprecise
features that are indicative (signals) of spam or not spam:
— Words, phrases, images, meta-data, time series, ...

— Need to combine a large number of signals, figure out

their relative importance in determining spam vs. ham
label.

— Brittle: Always going to miss some useful features or patterns.
— “All grammars leak.” (Edward Sapir).

— Spam filtering 1s adversarial, new features need to be
added over time.




Why Machine Learning?

=

« Machine Learning (ML) approach:
— Because ML 1s hot? No!
e Rule-based (knowledge-based) may work very well.

Input = Output

302 Wl => 63.3
O AR => 2285
46.2 0.5 => 29

2 A = 2




Why Machine Learning?

 Machine Learning (ML) approach:
1. Acquire a large enough dataset of labeled examples:
Email 1s the instance, the label 1s spam (+1) vs. not spam (-1).
2. Represent emails as feature vectors:

« Each feature has a weight, the sign of the weighted sum of
features should match the label.

A. Traditional ML: engineer the features.
B. Deep ML: learn the features.

3. Learn the weights s.t. the model (weighted combination of
features) does well on labeled examples.




What is Machine Learning?

 Machine Learning = constructing computer programs that
learn from experience to perform well on a given task.

— Supervised Learning 1.e. discover patterns from labeled examples
that enable predictions on (previously unseen) unlabeled examples.

labeled pattern recognizer
Training . Model
——— ML algorithm
examples g — (W)
unlabeled pattern recognizer

Test — Model — [ abels

examples (W)




Example

M;: x1s Red =>x € C,

M,: x is a Square or x 1s a Diamond => x € C,

M;: x 1s Red and x is a Quadrilateral => x € C,




Occam’s Razor

William of Occam (1288 — 1348)

English Franciscan friar, theologian and philosopher.

“Entia non sunt multiplicanda praeter necessitatem’

— Entities must not be multiplied beyond necessity.

1.e. Do not make things needlessly complicated.
1.e. Prefer the simplest hypothesis that fits the data.




ML Objective

[

* Find a model M
that 1s simple + that fits the training data.

Va\

M = argmin Complexity(M) + Error(M, Data)
M

* Inductive hypothesis: Models that perform well on training
examples are expected to do well on test (unseen) examples.

* Occam’s Razor: Simpler models are expected to do better
than complex models on test examples (assuming similar
training performance).




Example

M;: x1s Red =>x € C,

M,: x is a Square or x 1s a Diamond => x € C,

M;: x 1s Red and x is a Quadrilateral => x € C,
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Feature Vectors

Features ¢(x,)
(1) Red? 1
(92) Quad? 1
(p3) Square? 1
(9p4) Diamond? 0
(y) Label y,=+1

0(x))  0(x3) O(xy) O (Xs)
1 0 0 0
1 0 1 0
0 0 0 0
1 0 0 0
y>=+t1 y:=1 ya—1 ys=1
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Learning with Labeled Feature Vectors

Features O(x)  0(x) o(x3) O(xy) O(Xs)

(¢1) Red? 1 1 0 0 0

(92) Quad? 1 1 0 1 0

(p3) Square? 1 0 0 0 0

(p4) Diamond? 0 1 0 0 0

(y) Label y;=+1 y,=+1 yi=—1 y=—T1 ys=—1
o(x)=[1, 1, 1,0]" o(x)=[1,1,0,1]" ¢(x;)=[0,0,0,0]" .
yi=tl y,=+1 yy=—1

Learning = finding parameters w = [w, W,, W3, W,]! and 7 such that:
« wlox)>r1,ify,=+1

© wox) <t ify;=-1

where W'o(x) = w9(X) + W,0,(x) + W303(X) + W,404(X)
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Model M;: x; is Red =>y; = +1

-
Red‘7 Quad? Squa i .Diamond?

o(x,) = fl, i, f, O]AT label y, = +1 =>wlp(x)=1>1

o(x,)=[1,1,0,1]" label y,=+1 = wlp(x,)=1>1

0(x3)=1[0,0,0,0]" labely;=—-1 =>wlp(x;)=0<1

o(x4)=1[0,1,0,0]" labely;=—-1 =>wlopx,)=0<1

0(x5)=1[0,0,0,0]" labely;=—-1 =>wlp(xs)=0<1

w=[1,0,0,0]" => M, error is 0%

Learning = finding parameters w = [w,, W,, W3, W,]! such that:

* wiox) =1, ify,=+1
* wiox) <1, ify,=-1

T=1

where Wo(x) = w0,(X) + W,05(X) + W303(X) + W404(X)
13
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M,: x; is Square or Diamond => y, = +1

9 Square?
Red Quad? .~ Diamond?
o) = (1,1, 1,0/ labely, =+1  =>wip(x) =121
(P(X2) i [19 19 O: I]T labely2 =l 4 WT(P(X2) = 1=y
([)(X3) T [Oa 07 O: O]T label T — ] WT(P(X3) =L
(P(X4) T [Oa 19 O: O]T label e — T3 WT(P(X4) ==l
¢(x5)=[0,0,0,0]" labely;=-1 =>wlo(x5)=0<1

w=[0,0,1,1]" => M, error is 0%

Learning = finding parameters w = [w,, W,, W3, W,]! such that (t =1):
© wox)=1,ify,=+1
© whox)<lify,=-1

where Wo(x) = w0,(X) + W,05(X) + W303(X) + W404(X)
14
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M, or M,,?

Model M;: x; is Red => y, = +1
— wid=71,0,0,0]"
— Error =0%

Model M,: x; is Square or Diamond => y; = +1
~ w®=10,0,1,1]"
— Error =0%

Which one should we choose?

— Which one is expected to perform better on unseen (new) examples?




ML Objective

(=

* Find a model w that 1s simple and that fits the training data.

o\

w = argmin Complexity(w) + Error(w, Data)

w




M, or M,,?

[ —

* Model M;: x;is Red => y, =+1
— wid=71,0,0,0]"
— Error =0%

* Model M,: x; is Square or Diamond => y; = +1
— w®=1[0,0,1, 1]T
— Error =0%

A

w = argmin Complexity(w) + Error(w, Data)

W

= ||[w||y 1.€. # non-zero values

*
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Complexity(w) = 7 [ ||w||; 1.e. sum of absolute values

....0‘ 2 g
w||; 1.e sum of squared values |




ML Objectives

[

* Find a model w that 1s simple and that fits the training data.

w = argmin Complexity(w) + Error(w, Data)

w

N
Ridge Regression: argvrvnin %HWHZ + %Z{y(xn, w)—t }

N
a
Logistic Regression: argminz lw]||? — z Inp(t,|x,)
n=1




ML Objectives

Support Vector Machines:

Upper bound on the number of
misclassified training examples

-
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subject to:

t (wo(x)+b)21-¢, Vnell,..., N}
& 20




Definition: Bias wy= — Threshold T

=

W101(X) T Wh0p(X) T W33(X) + Wy@u(X) > T

W101(X) T Wrp(X) + W305(X) + Wyg(X) —T7=0

Define the intercept or bias w, = — 7.

W101(X) T W0p(X) T W305(X) + Wy@y(Xx) + Wy =0

h(x) =wlp(x)+wy =0 h(x) =wlepx) >0
where: where:
W= [Wla Wy, W3, W4] W= [W07 Wi, Wy, W3, W4]

(P(X) - [(PI(X)9 (P2(X)9 (|)3(X), (P4(X)] (P(X) - [19 (PI(X)a (P2(X)9 (P3(X)9 (P4(X)]




Geometric Interpretation

Often we drop the ¢ and use bolded x itself to denote the
feature vector X =[xy, X5, ..., X¢].

Example x 1s a point in a K-dimensional feature space.
Parameters w form a vector.

What does it mean that w'x + wy > 0?




[inear Discriminant Functions:
Two classes (K = 2)

« Use a linear function of the input vector:
h(x) = wix+w,

A i

weight vector bias = — threshold

* Decision:
x € C; if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

* Properties:
— w 1s orthogonal to vectors lying within the decision surface.
— w, controls the location of the decision hyperplane.

22
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Geometric Interpretation

h(x) = wix + w,




Outline

We want to use a linear function of the feature vector:
h(x) = wix+w,

How to find w automatically? Use ML!
— Perceptron.
— Logistic Regression.
— SVMs.

What 1f the data 1s not linearly separable? Make it!

— Engineer new features or use kernels (Perceptron, SVMs).

— Learn new features (Neural Networks).




Machine Learning (most of ML pre-2006)

* Hope raw data x is linearly separable. X

h(x) =wlx + wy

* Engineer features ¢(x), o(x)
aim to make data X e
linearly separable. 3 ) h(x) = w” ¢(x) + wo

Use a Perceptron or LR or SVMs to learn w.

25
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Deep Learning

[

e A raw observation vector x 1s pre-processed and further
transformed into a sequence of higher-level feature vectors
?(x) = [eD(x), (Xx), ..., e®(x)]T that are learned.

P (x) PP(x) PU(x)
X h=wlp®(x) + wy
o o©) P®) h

- - > >

w1 wz 500 WK




Linear Models: #(x) = w'x

=

* Given N training examples (X,7)), (X»,%), ... (Xn,fy) Where:
= AkabelSi, € {galiet 1 1

— Each example x; is assumed to also contain a bias feature set to 1,
corresponding to parameter w,,.

e Find parameter vector w such the the linear model /(x) =
w’x fits the training examples.




The Perceptron Algorithm: Two Classes

s sgn(z) =+1 ifz>0,
initialize parameters w = 0 0 ifz=0

forn=1...N g -1 ifz<0
h,=sgn(w'x,) Repeat:

. a) until convergence.
if 1, # 7, then b) for a number of epochs E.
W=w+17X,

S

AN ok e

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




The Perceptron Algorithm: Two Classes

sgn(z) =+1 ifz>0,

b) for a number of epochs E.

1. initialize parameters w = 0 0 ifz=0.
25 “forgne1 . BN 5 =L dtz=l
B h,=w'x, Repeat:
4 if 41 <0 then — a) until convergence.

: nln =
£%

W=w+17X,

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




The Perceptron Algorithm: Two Classes

1. initialize parameters w =0 $gn(@) = +é ;Zig ’
2 forgn=1 . N 7 -1 ifz<0
B h,=w'x,
4, if ,>0andz,=—1 Repeat:
— a) until convergence.

. W=W—X
2 > e @ e & 1 b) for a number of epochs E.
6. if h,<0and? =+
7. W=W+X,

What 1s the impact of the perceptron update on the score
w!x, of the misclassified example x,,?




The Perceptron Algorithm: Two Classes

initialize parameters w = (
for epoche=1 ... E
mistakes = 0
for examplen=1... N
h,=sgn(w'x,)
if 1, #t, then

W=w+I7X,

S

mistakes = mistakes + 1 _
if mistakes =0
break Converged!

1 epoch = one pass over all
training examples.




The Perceptron Algorithm: Two Classes

1. initialize parameters w = (
25 togne1 . BN g
5. h,=sgn(w'x,) Repeat:
! — a) until convergence.
4 if 1, = 7, then b) for a number of epochs E.
S w=w+17X, A

Loop invariant: w is a weighted sum of training vectors:

w = z X, =8 Wix = z a,t,Xhx

n n




Classifiers & Margin

* Which classifier has the smallest generalization error?
— The one that maximizes the margin [Computational Learning Theory]

« margin = the distance between the decision boundary and the
closest sample.




ML Concepts & Notation

* A (labeled) example (x, 7) consists of:
— Instance / observation / raw feature vector Xx.
— Label +.

« Examples:

1. Digit recognition:

instance x = ?
2 |
label t =9 |

2. Language modeling:

o machimes:.. ... % 1s a hot topic in AI” instance x = ?

eaz‘./ g B label £ =9 |

learning

on |




ML Concepts & Notation

e A training dataset is a set of (training) examples (X,,t,), (X5,5,), ...
(Xps )
— The data matrix X contains all instance vectors X, X,, ..., Xy TOW-
wise.

— The'label vectort = [z, t, ..., ty] -

« A test dataset is a set of (test) examples (Xyi1,fve1)s -+ > Xywns Even):

— Must be unseen, i.e. new, i.e. different from the training examples!




ML Concepts & Notation

e There 1s a function fthat maps an instance Xx to its label # = f(x).
— f1s unknown / not given.

— But we observe samples from f: (X,,£,=AX;)), (X5,55), ... Xy ).

* Learning means finding a model / that maps an instance x to a label
h(x) = f(x), 1.€. close to the true label of x.

— Machine learning = finding a model % that approximates well the
unknown function f.

— Machine learning = function approximation.




ML Concepts & Notation

Machine learning 1is inductive:

— Inductive hypothesis: if a model performs well on training examples,
it 1s expected to also perform well on unseen (test) examples.

» Assume within-distribution test examples.

The model £ is often specified through a set of parameters w:
— x is mapped by the model to A4(x, w).

The objective function J(w) captures how poorly the model does on the
training dataset:

— Want to find W = argmin J (w)
w

e Machine learning = optimization.

ST
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Fitting vs. Generalization

Fitting performance = how well the model performs on
training examples.

Generalization performance = how well the model
performs on unseen (test) examples.

We are interested in Generalization:
— Prefer finding patterns to memorizing examples!
 Overfitting:
 Underfitting:

« Regularization:




Regularization = Any Method that Alleviates
Overfitting

Parameter norm penalties (term in the objective).
Limit parameter norm (constraint).

Dataset augmentation.

Dropout.

Ensembles.

Semi-supervised learning.

Early stopping.

Noise robustness.

Sparse representations.

Adversarial training.




Supervised Learning

=

Training
Training Examples H I:) Leamlng I__:> Model A
(X, 1) Algorithm
Testing

' Generalization
Test E | )
[ Model 7 }':_J—? > (,: atr)np > H Performance




Features

Learning = finding parameters w = [w, W,, W3, W] and T
such that:

wlio(x) >, ify, =+1

wio(x) <7,ify; =1

where wlo(x) = W1X(l11(X) 3 sz(PAz(X) o W3X(F13(X) . W4X(Pit(X)

Red? Quad? Square? Diamond?

\ }
|

Where do these features come from?




Object Recognition: Cats




Pixels as Features?

=

o(x) = [25, 63, 125, 32, 84, 257, ..., 13,
D7 3EER 2481 07,6508 755 - 01,

7=l o aY o0 GG /DA /o 9
> >

Poor recognition accuracy!

7 7 7 7

ooy 2808
955 44, 69,185,768, 54,87, ...; 1 1

IF1 7859, 1157, 210, 177384, 72,4 1R I

* Learning = finding parameters w = [w;, W,, W3, ... W] such that:
wliop(x,)) > 1, if y, = +1 (cat)
w!lo(x)) <t,if y, = —1 (other)
where wW'Q(X) = w X (X) + WyX@y(X) + W3X@3(X) + ... WiX@(X)




ML Concepts & Notation

« Often, a raw observation x 1s pre-processed and further transformed |
into a feature vector @(x) = [¢(X), ¢{(X), ..., Ox(X)]". |

— Where do the features ¢, come from?
« Feature engineering, €.g. in polynomial curve fitting:

— manual, can be time consuming (e.g. SIFT).

* (Unsupervised) feature learning, e.g. in modern computer vision

— automatic, used in deep learning models.




Machine Learning vs. Deep Learning

2 : P(x)
h(x,W) h(p(x),W) |

h 1, h
¢1(x) P12(x) ¢1x(X)
: h(QDIK (x),W) |
¢ (25 Px h




What is Machine Learning?

 Machine Learning = constructing computer programs that
automatically improve with experience:

— Supervised Learning 1.e. learning from labeled examples:
 Classification
« Regression

— Unsupervised Learning i.e. learning from unlabeled examples:
 Clustering.
* Dimensionality reduction (visualization).
* Density estimation.

— Reinforcement Learning 1.e. learning with delayed feedback.




Supervised Learning

=

e Task =learn a function { : X — T that maps input instances
X € X to output targets € T:
— Classification:
* The output # € T 1s one of a finite set of discrete categories.
— Regression:

* The output ¢ € T 1s continuous, or has a continuous component.

* Supervision = set of training examples:
(X1,01), (Xp:10), - (X, 1,)




Classification vs. Regression
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Classification: Junk Email Filtering
[Sahami, Dumais & Heckerman, AAAI’98]I

From: Tammy Jordan From: UK National Lottery

jordant@oak.cats.ohiou.edu

Subject: Spring 2015 Course Subject: Award Winning Notice

CS690: Machine Learning UK NATIONAL LOTTERY. GOVERNMENT
ACCREDITED LICENSED LOTTERY.

Instructor: Razvan Bunescu REGISTERED UNDER THE UNITED KINGDOM

Email: bunescu(@ohio.edu DATA PROTECTION ACT;

Time and Location: Tue, Thu 9:00 AM , ARC 101

Website: http://ace.cs.ohio.edu/~razvan/courses/ml6830 We happily announce to you the draws of ( UK
NATIONAL LOTTERY PROMOTION ) International

Course description: programs held in London , England Your email address

Machine Learning is concerned with the design and analysis of LTI BTN (9 IR IUT LD SR E SR RIS GEIR 1T LTS
algorithms that enable computers to automatically find patterns  [BEZSZLVALNG IR TR LT I8 0T LS W S92l 80 1 TV 1
in the data. This introductory course will give an overview ... subsequently won you the lottery in the first category ...

e Email filtering:
— Provide emails labeled as {Spam, Ham,.

— Train Naive Bayes model to discriminate between the two.

49
T



mailto:edreyes@uknational.co.uk
mailto:jordant@oak.cats.ohiou.edu
mailto:bunescu@ohio.edu
http://ace.cs.ohio.edu/~razvan/courses/cs690

Classification: Handwritten Zip Code

Recognltlon [Le Cun et al., Neural Computation ‘89]

Ol /] 4dY
<724

e Handwritten digit recognition:

— Provide images of handwritten digits, labeled as {0, 1, ..., 9}.

— Train Convolutional Neural Network model to recognize digits.




Classification: Medical Diagnosis
[Krishnapuram et al., GENSIPS’02]

» (Cancer diagnosis from gene expression signatures:

— Create database of gene expression profiles (X) from tissues of
known cancer status (Y):

 Human accute leukemia dataset:

— http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

* Colon cancer microarray data:

— http://microarray.princeton.edu/oncology

— Train Logistic Regression /| SVM | RVM model to classify the gene
expression of a tissue of unknown cancer status.



http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://microarray.princeton.edu/oncology

Classification: Other Examples

Named Entity Recognition
Named Entity Disambiguation
Relation Extraction

Word Sense Disambiguation
Coreference Resolution
Sentiment Analysis

Chord Recognition

Voice Separation

Tone recognition

Gesture Recognition

Galaxy Morphology
Recognition

Dysarthria Prediction

Tone Classification in
Mandarin Chinese




Regression: Examples

1. Stock market, o1l price, GDP, income prediction:

— Use the current stock market conditions (x € X) to predict
tomorrow’s value of a particular stock (t € T).

2. Blood glucose level prediction.

3. Chemical processes:

— Predict the yield in a chemical process based on the concentrations
of reactants, temperature and pressure.

e Algorithms:

— Linear Regression, Neural Networks, Support Vector Machines, ...




Unsupervised Learning: Clustering

 Partition unlabeled examples into disjoint clusters such that:
— Examples in the same cluster are similar.

— Examples in different clusters are different.
A




Unsupervised Learning: Clustering

 Partition unlabeled examples into disjoint clusters such that:
— Examples in the same cluster are similar.

— Examples in different clusters are different.

| * k-Means, need to provide:
A — number of clusters (k= 2)
@ ® — similarity measure (Euclidean)

O o 4%

e o

Q ONe
o
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Unsupervised Learning: Dimensionality
Reduction

* Manifold Learning:

— Data lies on a low-dimensional manifold embedded in a high-
dimensional space.

— Useful for feature extraction and visualization.

15




Unsupervised Feature Learning: Auto-encoders

(s

25863, 125, 32384 52577 SR8,
ghi 3088 213 S0, 54, 7RSO |
6159, 125SSH1 2. 54, 355%519
188587, W81 4 288K 54, 53,70508
93744369885, 63,5408, ..., IS
117, 59, TNES210, 177, 54572588

25638125, 32, 849051, ... 18]
27, 3948883 = 10751 54:§/3 ..., il
@1,459, 7258 112549857 ... 9
I8SSEslR, 142, 162, S48, .(- 28
937 AaNO0EES, G85e4, 87, .. 9Kls
117, 591888210, 177, 54,172 ]




Learned Features (Representations)
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Learned Features (Representations)
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Reinforcement Learning




observation 4/ Y\ \ s\ [ A action




Reinforcement Learning: TD-Gammon
[Tesauro, CACM*95]

=

e Learn to play Backgammon:
— Immediate reward:
e +100 if win
« —100 if lose
« ( for all other states
— Temporal Difference Learning with a Multilayer Perceptron.
— Trained by playing 1.5 million games against itself.

— Played competitively against top-ranked players in international
tournaments.




Reinforcement Learning

 Interaction between agent and environment modeled as a
sequence of actions & states:

— Learn policy for mapping states to actions in order to maximize a
reward.

— Reward may be given only at the end state => delayed reward.
— States may be only partially observable.

— Trade-off between exploration and exploitation.

 Examples:
— Backgammon [Tesauro, CACM‘95], helicopter flight [ Abbeel, NIPS’07].
— 49 Atari games, using deep RL [Mnih et al., Nature’15].
— AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017], ...




Background readings

Python:
— Introductory Python lecture.

Probability theory:

— Basic probability theory (pp. 12-19) in Pattern Recognition and
Machine [earning.

— Chapter 3 in DL textbook on Probability and Information Theory.

Linear algebra:
— Chapter 2 in DL textbook on Linear Algebra.
— Chapter 2 on Linear Algebra in Mathematics for Machine Learning.

Calculus:

— Basic properties for derivatives, exponentials, and logarithms.

— Chapter 4.3 in DT textbook on Numerical Computation.
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https://webpages.charlotte.edu/rbunescu/courses/itcs6156/python.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.deeplearningbook.org/contents/prob.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://mml-book.github.io/
https://personal.math.ubc.ca/~feldman/m101/formulae.pdf
https://www.deeplearningbook.org/contents/numerical.html

