
Machine Learning
ITCS 6156/8156

Linear Regression

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Supervised Learning

• Task = learn an (unknown) function t : X ® T that maps
input instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous
component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

2

Supervised Learning

• Task = learn an (unknown) function t : X ® T that maps
input instances x Î X to output targets t(x) Î T:
– function t is known (only) through (noisy) set of training examples:

• Training/Test data: (x1,t1), (x2,t2), … (xn,tn)

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches target t well on test data:

=> h is able to generalize to unseen data.

3

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

4

Linear Regression

1. (Simple) Linear Regression
– House price prediction

2. Linear Regression with Polynomial Features
– Polynomial curve fitting
– Regularization
– Ridge regression

3. Multiple Linear Regression
– House price prediction
– Normal equations

5

House Price Prediction

• Given the floor size in square feet, predict the selling price:
– x is the size, t is the price
– Need to learn a function h such that h(x) ≈ t(x).

• Is this classification or regression?
– Regression, because price is real valued.

• and there are many possible prices.
– (Simple) linear regression, because one input value.
– Would a problem with only two labels t1 = 0.5 and t2 = 1.0 still be

regression?

6

House Prices in Athens

7

50 houses, randomly selected from the 106
houses or townhomes:
• sold recently in Athens, OH.
• built 1990 or later.

House Prices in Athens

8

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

9

House Prices in Athens

10

House Prices in Athens

11

Linear Regression

• Use a linear function approximation:
– hw(x) = wTx = [w0, w1]T[1, x] = w1x+w0.

• w0 is the intercept (or the bias term).
• w1 controls the slope.

– Learning = optimization:
• Find w that obtains the best fit on the training data, i.e. find w

that minimizes the sum of square errors:

!𝐰 = argmin
𝐰

𝐽(𝐰)
12

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &

Univariate Linear Regression

• Learning = finding the “right” parameters wT = [w0, w1]
– Find w that minimizes an error function E(w) = J(w) which

measures the misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xnÞ

h(x,w) will perform well on arbitrary test examples xÎ X.

• Sum-of-Squares error function:

13

Inductive Learning Hyphotesis

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &

Minimizing Sum-of-Squares Error

• Sum-of-Squares error function:

• How do we find w* that minimizes E(w)?

• Least Square solution is found by solving a system of 2 linear equations:

14

why squared?

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &

!𝐰 = arg min
𝐰
𝐽(𝐰)

𝑤$𝑁 + 𝑤%$
&'%

(

𝑥& = $
&'%

(

𝑡& 𝑤$$
&'%

(

𝑥& + 𝑤%$
&'%

(

𝑥&) = $
&'%

(

𝑡& 𝑥&

Polynomial Basis Functions

• Q: What if the raw feature is insufficient for good
performance?
– Example: non-linear dependency between label and raw feature.

• A: Engineer / Learn higher-level features, as functions of
the raw feature.

• Polynomial curve fitting:
– Add new features, as polynomials of the original feature.

15

Regression: Curve Fitting

target t

• Training: Build a function h(x), based on (noisy) training
examples (x1,t1), (x2,t2), … (xN,tN)

16

Regression: Curve Fitting

learned h

target t

• Training: Build a function h(x), based on (noisy) training
examples (x1,t1), (x2,t2), … (xN,tN)

17

Regression: Curve Fitting

learned h

• Testing: for arbitrary (unseen) instance x Î X , compute
target output h(x); want it to be close to t(x).

target t

18

Regression: Polynomial Curve Fitting

h(x) = h(x,w) = w0 +w1x +w2x
2 +…+wMx

M = wjx
j

j=0

M

∑

t = ?

parameters features 19

Polynomial Curve Fitting

• Parametric model:

• Polynomial curve fitting is (Multiple) Linear Regression:
x = [1, x, x2, ..., xM]T

h(x) = h(x,w) = hw(x) = wTx

• Learning = minimize the Sum-of-Squares error function:

20

h(x) = h(x,w) = w0 +w1x +w2x
2 +…+wMx

M = wjx
j

j=0

M

∑

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &!𝐰 = arg min
𝐰
𝐽(𝐰)

Sum-of-Squares Error Function

• How to find w* that minimizes E(w), i.e.
• Solve ∇J(w) = 0.

21

)(minarg* ww E
w

=

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &

Polynomial Curve Fitting

• Least Square solution is found by solving a set of M + 1
linear equations:

• Prove it.

å åå
= =

+

=

===
N

n

N

n

i
nni

ji
nijij

M

j
ij xtTxATwA

1 10
 and , where,

A𝐰 = T

22

Polynomial Curve Fitting

• Generalization = how well the parameterized h(x,w)
performs on arbitrary (unseen) test instances xÎ X.

• Generalization performance depends on the value of M.

23

0th Order Polynomial

24

1st Order Polynomial

25

3rd Order Polynomial

26

9th Order Polynomial

27

Polynomial Curve Fitting

• Model Selection: choosing the order M of the polynomial.
– Best generalization obtained with M = 3.
– M = 9 obtains poor generalization, even though it fits training

examples perfectly:
• But M = 9 polynomials subsume M = 3 polynomials!

• Overfitting º good performance on training examples, poor
performance on test examples.

28

Overfitting

• Measure fit using the Root-Mean-Square (RMS) error (RMSE):

• Use 100 random test examples, generated in the same way:

ERMS (w) =
wTxn − tn()

2

n∑
N

29

Over-fitting and Parameter Values

30

Overfitting vs. Data Set Size

• More training data Þ less overfitting.
• What if we do not have more training data?

– Use regularization.

31

M = 9 M = 9

Regularization

• Parameter norm penalties (term in the objective).
• Limit parameter norm (constraint).
• Dataset augmentation.
• Dropout.
• Ensembles.
• Semi-supervised learning.
• Early stopping.
• Noise robustness.
• Sparse representations.
• Adversarial training.

32

Regularization

• Penalize large parameter values:

regularizer

)(minarg* ww E
w

=

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 & +
𝜆
2
𝐰 &

33

9th Order Polynomial with Regularization

34

9th Order Polynomial with Regularization

35

Training & Test error vs.

36

How do we find the optimal value of l?

Model Selection

• Put aside an independent validation set.
• Select parameters giving best performance on validation set.

37

Validation Training

}15,20,25,30,35,40{ln ------Îl

ln l -40 -35 -30 -25 -20 -15
ERMS 1.05 0.30 0.25 0.27 0.52 0.55

K-fold Cross-Validation

38

https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

• Split the training data into K folds and try a wide range of
tunning parameter values:
– split the data into K folds of roughly equal size
– iterate over a set of values for 𝜆

• iterate over k = 1, 2, ..., K
– use all folds except k for training
– validate (calculate test error) in the k-th fold

• error[𝜆] = average error over the K folds
– choose the value of 𝜆 that gives the smallest error.

39

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Model Evaluation

• K-fold evaluation:
– randomly partition dataset in K equally sized subsets P1, P2, … Pk

– for each fold i in {1, 2, …, k}:
• test on Pi, train on P1 È … È Pi-1 È Pi+1 È … È Pk

– compute average error/accuracy across K folds.

40

4-fold evaluation

Multiple Linear Regression

• Q: What if the raw feature is insufficient for good
performance?
– Example: house prices depend not only on floor size, but also

number of bedrooms, age, location, …

• A: Use Multiple Linear Regression.

41

Multiple Linear Regression

• Polynomial curve fitting:
x = [1, x, x2, ..., xM]T

= [x0, x1, …, xM]T

h(x) = h(x,w) = wTx

• Multiple linear regression:
x = [x0, x1, …, xM]T

h(x) = h(x,w) = wTx

• Training examples: (x(1),t1), (x(2),t2), … (x(N),tN)

42

Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

• Computing the gradient ∇J(w) and setting it to zero:

• Solving for w yields
– Prove it.

43

𝐽 𝐰 =
1
2𝑁0

"#$

%

ℎ𝐰(𝐱(")) − 𝑡𝑛
&!𝐰 = arg min

𝐰
𝐽(𝐰)

0
"#$

%

𝐰)𝐱(") − 𝑡𝑛 𝐱(")= 0

𝐰 = X!X "#X!𝐭

The Moore-Penrose
pseudo-inverse of X.

Normal Equations

• Solution is

• X is the data matrix, or the design matrix:

• t = [t1, t2, …, tN]T is the vector of labels.

44

𝑋 =

𝐱 (!

𝐱) !

…
…

𝐱 * !

=

𝑥+
(() 𝑥(

(()… 𝑥.
(()

𝑥+
()) 𝑥(

())… 𝑥.
())

…
…

𝑥+
(*) 𝑥(

(*)… 𝑥.
(*)

𝐰 = X/X 0(X/𝐭

1 𝑥$ 𝑥$&… 𝑥$*

1 𝑥& 𝑥&&… 𝑥&*
…
…

1 𝑥% 𝑥%&… 𝑥%*

For poly fit:

Ridge Regression

• Multiple linear regression with L2 regularization:

• Solution is
– Prove it.

45

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 & +
𝜆
2
𝐰 &

!𝐰 = arg min
𝐰
𝐽(𝐰)

𝐰 = λ𝑁𝐈 + X/X
0(
X/𝐭

Regularization: Ridge vs. Lasso

• Ridge regression:

• Lasso:

– If λ is sufficiently large, some of the coefficients wj are driven to 0
=> sparse model.

46

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 & +
𝜆
2
0
+#$

*

𝑤+&

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 & +
𝜆
2
0
+#$

*

𝑤+

Regularization: Ridge vs. Lasso

47

Regularization

• Regularization alleviates overfitting when using models
with high capacity (e.g. high degree polynomials):
– Want high capacity because we do not know how complicated the

data is.

• Q: Can we achieve high capacity when doing curve fitting
without using high degree polynomials?

• A: Use piecewise polynomial curves.
– Example: Cubic spline smoothing.

48

Cubic Spline Smoothing

• Cubic spline smoothing is a regularized version of cubic
spline interpolation.
– Cubic spline interpolation: given n points {(xi , yi)}, connect

adjacent points using cubic functions Si , requiring that the spline
and its first and second derivative remain continuous at all points:

– Cubic spline smoothing: the spline S = {Si} is allowed to deviate
from the data points and has low curvature => constrained
optimization problem with objective:

49

Cubic Spline Smoothing

50

http://ace.cs.ohio.edu/~razvan/papers/icmla11.pdf

Polynomial Curve Fitting (Revisited)

51

å
=

=++++==
M

j

j
j

M
M xwxwxwxwwxyxy

0

2
210),()(w

t = ?

parameters features

Generalization: Basis Functions as Features

• Generally

where jj(x) are known as basis functions.

• Typically j0(x) = 1, so that w0 acts as a bias.

• In the simplest case, use linear basis functions : jd(x) = xd.

52

Linear Basis Function Models (1)

• Polynomial basis functions:

• Global behavior:
– a small change in x affect all basis

functions.

53

Linear Basis Function Models (2)

• Gaussian basis functions:

• Local behavior:
– a small change in x only

affects nearby basis functions.
– µj and s control location and

scale (width).

54

Linear Basis Function Models (3)

• Sigmoidal basis functions:

where

• Local behavior:
– a small change in x only affect

nearby basis functions.
– µj and s control location and

scale (slope).

55

Solving Linear Regression using Maximum
Likelihood

56

Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function y with added
Gaussian noise 𝜖:

which is the same as saying:

57

where

=
𝛽
2𝜋

𝑒,-
."
&

=
𝛽
2𝜋

𝑒,-
/,0(𝐱,𝐰)

&
"

Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function with
added Gaussian noise:

which is the same as saying:

• Given observed i.i.d inputs X = {x1, ..., xN} and targets t =
[t1, ..., tN]T, we obtain the likelihood function:

58

where

Least Squares <=> Maximum Likelihood (2)

• Taking the logarithm, we get the log-likelihood function:

where

• ED(w) is the sum-of-squares error!

59

Least Squares <=> Maximum Likelihood (3)

• Minimizing square error <=> maximizing likelihood:

• How do we find w (and b)?

60

),|(lnmaxarg)(minarg* bwtw
ww

pE MLD === ww

Least Squares <=> Maximum Likelihood (4)

61

• Computing the gradient and setting it to zero yields:

• Solving for w, we get

where

The Moore-Penrose
pseudo-inverse, .

Least Squares <=> Maximum Likelihood (5)

• Minimizing square error <=> maximizing likelihood:

• Maximizing with respect to w gives:

• Maximizing with respect to b gives:

62

),|(lnmaxarg)(minarg* bwtw
ww

pE MLD === ww

Regularized Least Square

63

• Consider the error function:

• With the sum-of-squares error function and a quadratic
regularizer, we get:

which is minimized by:

Data term + Regularization term

l is called the
regularization
coefficient.

Regularized Least Square <=> Maximum A
Posteriori (MAP)

• Define a conjugate prior over w:

• We also have the likelihood function:

• Bayes to combine prior with the likelihood => posterior:

64

𝑝 𝐰 X, 𝐭, 𝛼, 𝛽 =
𝑝 𝐭 𝐰, X, 𝛽 𝑝 𝐰 𝛼

𝑝 𝐭 X, 𝛼, 𝛽
∝ 𝑝 𝐭 𝐰, X, 𝛽 𝑝 𝐰 𝛼

𝑝 𝐰 𝐭 =
𝑝 𝐭 𝐰 𝑝(𝐰)

𝑝(𝐭)

Regularized Least Square <=> Maximum A
Posteriori (MAP)

• Taking the logarithm of the posterior distribution:

• The MAP estimate of w is:

65

ln p(w | t) = − β
2

{tn
n=1

N

∑ −wTϕ(xn)}
2 −

α
2
wTw+ const

)|(ln maxarg tww
w

pMAP =

= argmax
w

 − 1
2

{tn −w
Tϕ(xn)}2

n=1

N

∑ −
α
β

2
wTw

= argmin
w

 1
2

{tn −w
Tϕ(xn)}2

n=1

N

∑ +
λ
2
wTw

)()(minarg ww
w WD EE +=

Regularized Least Square <=> Maximum A
Posteriori (MAP)

• Define a conjugate prior over w:

• We also have the likelihood function:

• Using Bayes and results for marginal and conditional Gaussian
distributions, gives the posterior

66

where

!𝐰 = 𝐦% =
𝛼
𝛽
𝐈 + Φ3Φ

,$
Φ3𝐭 = 𝜆𝐈 + Φ3Φ ,$Φ3𝐭

Supplemental Readings

• PRML:
– Section 1.1 (Polynomial curve fitting).
– Section 1.2 (up to and including 1.2.5).
– Section 3.1.4 (Regularized least squares).

67

