Machine Learning ITCS 6156/8156

Linear Regression

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

Supervised Learning

- **Task** = learn an (unknown) function $t : X \rightarrow T$ that maps input instances $\mathbf{x} \in X$ to output targets $t(\mathbf{x}) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output *t*(**x**) ∈ T is continuous, or has a continuous component.
- Target function t(x) is known (only) through (noisy) set of training examples:

 $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$

Supervised Learning

- **Task** = learn an (unknown) function $t : X \rightarrow T$ that maps input instances $\mathbf{x} \in X$ to output targets $t(\mathbf{x}) \in T$:
 - function t is known (only) through (noisy) set of training examples:
 - Training/Test data: $(x_1,t_1), (x_2,t_2), ..., (x_n,t_n)$
- **Task** = build a function $h(\mathbf{x})$ such that:
 - *h* matches *t* well on the *training data*: *h* is able to fit data that it has seen.
 - *h* also matches target *t* well on *test data*: *h* is able to generalize to unseen data.

Parametric Approaches to Supervised Learning

- **Task** = build a function $h(\mathbf{x})$ such that:
 - -h matches t well on the training data:
 - =>h is able to fit data that it has seen.
 - *h* also matches *t* well on test data:
 h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters w:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w},\mathbf{x})$
 - what classes of functions are "nice"?

Linear Regression

- 1. (Simple) Linear Regression
 - House price prediction
- 2. Linear Regression with Polynomial Features
 - Polynomial curve fitting
 - Regularization
 - Ridge regression
- 3. Multiple Linear Regression
 - House price prediction
 - Normal equations

House Price Prediction

- Given the floor size in square feet, predict the selling price:
 - -x is the size, t is the price
 - Need to learn a function h such that $h(x) \approx t(x)$.
- Is this classification or regression?
 - **Regression**, because price is real valued.
 - and there are many possible prices.
 - (Simple) linear regression, because one input value.
 - Would a problem with only two labels $t_1 = 0.5$ and $t_2 = 1.0$ still be regression?

House Prices in Athens

House Prices in Athens

Parametric Approaches to Supervised Learning

- **Task** = build a function $h(\mathbf{x})$ such that:
 - -h matches t well on the training data:
 - =>h is able to fit data that it has seen.
 - *h* also matches *t* well on test data:
 h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters w:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w},\mathbf{x})$
 - what classes of functions are "nice"?

House Prices in Athens

House Prices in Athens

Linear Regression

- Use a linear function approximation:
 - $h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} = [w_0, w_1]^{\mathrm{T}}[1, x] = w_1 x + w_0.$
 - w_0 is the intercept (or the bias term).
 - w_1 controls the slope.
 - Learning = optimization:
 - Find w that obtains the best fit on the training data, i.e. find w that minimizes the **sum of square errors**:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

 $\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$

Univariate Linear Regression

- Learning = finding the "right" parameters $\mathbf{w}^{T} = [w_0, w_1]$
 - Find w that minimizes an *error function* $E(\mathbf{w}) = J(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_n \Rightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathbf{X}$.

• Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

Inductive Learning Hyphotesis

Minimizing Sum-of-Squares Error

• Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_{n}) - t_{n})^{2}$$

• How do we find \mathbf{w}^* that minimizes $E(\mathbf{w})$?

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} J(\mathbf{w})$$

• Least Square solution is found by solving a system of 2 linear equations:

$$w_0 N + w_1 \sum_{n=1}^{N} x_n = \sum_{n=1}^{N} t_n$$

$$w_0 \sum_{n=1}^{N} x_n + w_1 \sum_{n=1}^{N} x_n^2 = \sum_{n=1}^{N} t_n x_n$$

why squared?

Polynomial Basis Functions

- *Q*: What if the raw feature is insufficient for good performance?
 - Example: non-linear dependency between label and raw feature.
- A: Engineer / Learn higher-level features, as functions of the raw feature.
- Polynomial curve fitting:
 - Add new features, as polynomials of the original feature.

Regression: Curve Fitting

Training: Build a function h(x), based on (noisy) training examples (x1,t1), (x2,t2), ... (xN,tN)

Regression: Curve Fitting

Training: Build a function h(x), based on (noisy) training examples (x1,t1), (x2,t2), ... (xN,tN)

Regression: Curve Fitting

Testing: for arbitrary (unseen) instance x ∈ X, compute target output h(x); want it to be close to t(x).

Regression: Polynomial Curve Fitting

Polynomial Curve Fitting

• Parametric model:

$$h(x) = h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

- Polynomial curve fitting is (Multiple) Linear Regression: $\mathbf{x} = [1, x, x^2, ..., x^M]^T$ $h(x) = h(\mathbf{x}, \mathbf{w}) = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- Learning = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

Sum-of-Squares Error Function

- How to find \mathbf{w}^* that minimizes $E(\mathbf{w})$, i.e. $\mathbf{w}^* = \arg \min E(\mathbf{w})$
- Solve $\nabla J(\mathbf{w}) = 0$.

Polynomial Curve Fitting

• *Least Square* solution is found by solving a set of M + 1 linear equations:

Aw = T

$$\sum_{j=0}^{M} A_{ij} w_j = T_i \text{, where } A_{ij} = \sum_{n=1}^{N} x_n^{i+j} \text{, and } T_i = \sum_{n=1}^{N} t_n x_n^i$$

• <u>Prove it</u>.

Polynomial Curve Fitting

- Generalization = how well the parameterized $h(x, \mathbf{w})$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M.

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Polynomial Curve Fitting

- Model Selection: choosing the order M of the polynomial.
 - Best generalization obtained with M = 3.
 - M = 9 obtains poor generalization, even though it fits training examples perfectly:
 - But M = 9 polynomials subsume M = 3 polynomials!
- Overfitting = good performance on training examples, poor performance on test examples.

Overfitting

• Measure fit using the Root-Mean-Square (RMS) error (RMSE):

$$E_{RMS}(\mathbf{w}) = \sqrt{\frac{\sum_{n} \left(\mathbf{w}^{T} \mathbf{x}_{n} - t_{n}\right)^{2}}{N}}$$

• Use 100 random test examples, generated in the same way:

Over-fitting and Parameter Values

	M=0	M = 1	M=3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Overfitting vs. Data Set Size

- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
 - Use regularization.

Regularization

- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping.
- Noise robustness.
- Sparse representations.
- Adversarial training.

Regularization

• Penalize large parameter values:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_{n}) - t_{n})^{2} + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

regularizer

 $\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$

9th Order Polynomial with Regularization

9th Order Polynomial with Regularization

Training & Test error vs. $\ln \lambda$

How do we find the optimal value of λ ?

Model Selection

- Put aside an independent *validation set*.
- Select parameters giving best performance on validation set.

K-fold Cross-Validation

https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

- Split the training data into K folds and try a wide range of tunning parameter values:
 - split the data into K folds of roughly equal size
 - iterate over a set of values for λ
 - iterate over k = 1, 2, ..., K
 - use all folds except k for training
 - validate (calculate test error) in the k-th fold
 - $\operatorname{error}[\lambda]$ = average error over the K folds
 - choose the value of λ that gives the smallest error.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Model Evaluation

- K-fold evaluation:
 - randomly partition dataset in K equally sized subsets $P_1, P_2, \dots P_k$
 - for each fold i in $\{1, 2, ..., k\}$:
 - test on P_i , train on $P_1 \cup \ldots \cup P_{i-1} \cup P_{i+1} \cup \ldots \cup P_k$
 - compute average error/accuracy across K folds.

Multiple Linear Regression

- Q: What if the raw feature is insufficient for good performance?
 - Example: house prices depend not only on *floor size*, but also number of *bedrooms*, *age*, *location*, ...
- A: Use Multiple Linear Regression.

Multiple Linear Regression

- Polynomial curve fitting:
 - $\mathbf{x} = [1, x, x^2, ..., x^M]^T$ $= [x_0, x_1, ..., x_M]^T$ $h(x) = h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$
- Multiple linear regression: $\mathbf{x} = [x_0, x_1, ..., x_M]^T$
 - $h(\mathbf{x}) = h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}$
- Training examples: $(\mathbf{x}^{(1)}, t_1), (\mathbf{x}^{(2)}, t_2), \dots (\mathbf{x}^{(N)}, t_N)$

Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - t_n \right)^2$$

• Computing the gradient $\nabla J(\mathbf{w})$ and setting it to zero:

$$\sum_{n=1}^{N} \left(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} - t_{n} \right) \, \mathbf{x}^{(n)} = 0$$

The Moore-Penrose pseudo-inverse of X.

- Solving for w yields $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{t}$
 - Prove it.

Normal Equations

- Solution is $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{t}$
- X is the data matrix, or the **design matrix**:

$$X = \begin{pmatrix} \mathbf{x}^{(1)^{\mathrm{T}}} \\ \mathbf{x}^{(2)^{\mathrm{T}}} \\ \dots \\ \dots \\ \mathbf{x}^{(N)^{\mathrm{T}}} \end{pmatrix} = \begin{pmatrix} x_{0}^{(1)} x_{1}^{(1)} \dots x_{M}^{(1)} \\ x_{0}^{(2)} x_{1}^{(2)} \dots x_{M}^{(2)} \\ \dots \\ \dots \\ \dots \\ x_{0}^{(N)} x_{1}^{(N)} \dots x_{M}^{(N)} \end{pmatrix} \qquad For poly fit:$$

$$\begin{pmatrix} 1 x_{1} x_{1}^{2} \dots x_{1}^{M} \\ 1 x_{2} x_{2}^{2} \dots x_{2}^{M} \\ \dots \\ \dots \\ 1 x_{N} x_{N}^{2} \dots x_{N}^{M} \end{pmatrix}$$

• $\mathbf{t} = [t_1, t_2, ..., t_N]^T$ is the vector of labels.

Ridge Regression

• Multiple linear regression with L2 regularization:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

• Solution is $\mathbf{w} = (\lambda N \mathbf{I} + \mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{t}$

– Prove it.

Regularization: Ridge vs. Lasso

• Ridge regression:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} w_j^2$$

• Lasso:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_{n}) - t_{n})^{2} + \frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|$$

- If λ is sufficiently large, some of the coefficients w_j are driven to 0 => *sparse* model.

Regularization: Ridge vs. Lasso

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q = 2 on the left and the lasso regularizer q = 1 on the right, in which the optimum value for the parameter vector w is denoted by w^{*}. The lasso gives a sparse solution in which $w_1^* = 0$.

Regularization

- Regularization alleviates overfitting when using models with high capacity (e.g. high degree polynomials):
 - Want high capacity because we do not know how complicated the data is.
- Q: Can we achieve high capacity when doing curve fitting without using high degree polynomials?
- A: Use piecewise polynomial curves.
 - Example: Cubic spline smoothing.

Cubic Spline Smoothing

- **Cubic spline smoothing** is a regularized version of cubic spline interpolation.
 - Cubic spline interpolation: given *n* points $\{(x_i, y_i)\}$, connect adjacent points using cubic functions S_i , requiring that the spline and its first and second derivative remain continuous at all points:

 $S_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, \forall x \in [x_i, x_{i+1}]$

- **Cubic spline smoothing**: the spline $S = \{S_i\}$ is allowed to deviate from the data points and has low curvature => constrained optimization problem with objective:

$$L = \sum_{i=1}^{n} \frac{w_i}{Z} (S_i(x_i) - y_i)^2 + \frac{\lambda}{x_n - x_1} \int_{x_1}^{x_n} |S''(x)|^2 dx$$

 $w_i = \begin{cases} C, & \text{if } (x_i, y_i) \text{ is a significant local optima} \\ 1, & \text{otherwise} \end{cases}$

Cubic Spline Smoothing

http://ace.cs.ohio.edu/~razvan/papers/icmla11.pdf

Fig. 3. Cubic spline smoothing with $\lambda = e^{-20}$ and C = 1000.

Polynomial Curve Fitting (Revisited)

Generalization: Basis Functions as Features

Generally $y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ where $\boldsymbol{\phi}(\mathbf{x})$ are known as basis functions

where $\varphi_j(\mathbf{x})$ are known as *basis functions*.

- Typically $\varphi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- In the simplest case, use linear basis functions : $\varphi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (1)

• Polynomial basis functions:

 $\phi_j(x) = x^j.$

- Global behavior:
 - a small change in x affect all basis functions.

Linear Basis Function Models (2)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- Local behavior:
 - a small change in x only affects nearby basis functions.
 - μ_j and *s* control location and scale (width).

Linear Basis Function Models (3)

• Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where $\sigma(a) = \frac{1}{1+\exp(-a)}$

- Local behavior:
 - a small change in x only affect nearby basis functions.
 - μ_j and *s* control location and scale (slope).

Solving Linear Regression using Maximum Likelihood

Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function y with added Gaussian noise ϵ :

which is the same as saying:

 $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$

$$=\frac{\sqrt{\beta}}{\sqrt{2\pi}} e^{-\beta \frac{(t-y(\mathbf{x},\mathbf{w}))^2}{2}}$$

Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying:

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

• Given observed i.i.d inputs $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$ and targets $\mathbf{t} = [t_1, ..., t_N]^T$, we obtain the *likelihood* function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Least Squares <=> Maximum Likelihood (2)

• Taking the logarithm, we get the *log-likelihood* function:

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where $E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$

• $E_D(\mathbf{w})$ is the sum-of-squares error!

Least Squares <=> Maximum Likelihood (3)

• Minimizing square error <=> maximizing likelihood:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) = \mathbf{w}_{ML} = \arg\max_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta)$$

• How do we find w (and β)?

Least Squares <=> Maximum Likelihood (4)

• Computing the gradient and setting it to zero yields:

$$abla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, eta) = eta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

• Solving for w, we get

$$\mathbf{w}_{ML} = \left(\mathbf{\Phi}^{T} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{T} \mathbf{t}$$
The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\dagger}$.
where

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Least Squares <=> Maximum Likelihood (5)

• Minimizing square error <=> maximizing likelihood:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) = \mathbf{w}_{ML} = \arg\max_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta)$$

- Maximizing with respect to w gives: $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$
- Maximizing with respect to β gives:

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Regularized Least Square

• Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$ Data term + Regularization term

• With the sum-of-squares error function and a quadratic regularizer, we get:

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

which is minimized by:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the *regularization coefficient*.

Regularized Least Square <=> Maximum A Posteriori (MAP)

• Define a conjugate **prior** over w:

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

• We also have the **likelihood** function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

• Bayes to combine prior with the likelihood => posterior:

$$p(\mathbf{w}|\mathbf{t}) = \frac{p(\mathbf{t}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{t})}$$

$$p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \alpha, \beta) = \frac{p(\mathbf{t}|\mathbf{w}, \mathbf{X}, \beta)p(\mathbf{w}|\alpha)}{p(\mathbf{t}|\mathbf{X}, \alpha, \beta)} \propto p(\mathbf{t}|\mathbf{w}, \mathbf{X}, \beta)p(\mathbf{w}|\alpha)$$

Regularized Least Square <=> Maximum A Posteriori (MAP)

• Taking the logarithm of the posterior distribution:

$$\ln p(\mathbf{w} \mid \mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + const$$

• The MAP estimate of w is:

$$\mathbf{W}_{MAP} = \arg \max_{\mathbf{w}} \ln p(\mathbf{w} | \mathbf{t})$$

= $\arg \max_{\mathbf{w}} -\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$
= $\arg \min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$
= $\arg \min_{\mathbf{w}} E_D(\mathbf{w}) + E_W(\mathbf{w})$

Regularized Least Square <=> Maximum A Posteriori (MAP)

• Define a conjugate **prior** over w:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

• We also have the **likelihood** function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

• Using Bayes and results for marginal and conditional Gaussian distributions, gives the **posterior**

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N) \quad \text{where} \begin{cases} \mathbf{m}_N &= \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \\ \mathbf{S}_N^{-1} &= \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \end{cases}$$

$$\widehat{\mathbf{w}} = \mathbf{m}_N = \left(\frac{\alpha}{\beta}\mathbf{I} + \Phi^T \Phi\right)^{-1} \Phi^T \mathbf{t} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

Supplemental Readings

• PRML:

- Section 1.1 (Polynomial curve fitting).
- Section 1.2 (up to and including 1.2.5).
- Section 3.1.4 (Regularized least squares).