Machine Learning
 ITCS 6156/8156

Linear Regression

Razvan C. Bunescu

Department of Computer Science @ CCI
rbunescu@uncc.edu

Supervised Learning

- Task = learn an (unknown) function $t: \mathrm{X} \rightarrow \mathrm{T}$ that maps input instances $\mathbf{x} \in \mathrm{X}$ to output targets $t(\mathbf{x}) \in \mathrm{T}$:
- Classification:
- The output $t(\mathbf{x}) \in \mathrm{T}$ is one of a finite set of discrete categories.
- Regression:
- The output $t(\mathbf{x}) \in \mathrm{T}$ is continuous, or has a continuous component.
- Target function $t(\mathbf{x})$ is known (only) through (noisy) set of training examples:

$$
\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)
$$

Supervised Learning

- Task = learn an (unknown) function $t: \mathrm{X} \rightarrow \mathrm{T}$ that maps input instances $\mathbf{x} \in \mathrm{X}$ to output targets $t(\mathbf{x}) \in \mathrm{T}$:
- function t is known (only) through (noisy) set of training examples:
- Training/Test data: $\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$
- Task $=$ build a function $h(\mathbf{x})$ such that:
- h matches t well on the training data:
$=>h$ is able to fit data that it has seen.
- h also matches target t well on test data:
$=>h$ is able to generalize to unseen data.

Parametric Approaches to Supervised Learning

- Task = build a function $h(\mathbf{x})$ such that:
- h matches t well on the training data:
$=>h$ is able to fit data that it has seen.
- h also matches t well on test data:
$=>h$ is able to generalize to unseen data.
- Task = choose h from a "nice" class of functions that depend on a vector of parameters \mathbf{w} :
$-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
- what classes of functions are "nice"?

Linear Regression

1. (Simple) Linear Regression

- House price prediction

2. Linear Regression with Polynomial Features

- Polynomial curve fitting
- Regularization
- Ridge regression

3. Multiple Linear Regression

- House price prediction
- Normal equations

House Price Prediction

- Given the floor size in square feet, predict the selling price:
- x is the size, t is the price
- Need to learn a function h such that $h(x) \approx t(x)$.
- Is this classification or regression?
- Regression, because price is real valued.
- and there are many possible prices.
- (Simple) linear regression, because one input value.
- Would a problem with only two labels $t_{1}=0.5$ and $t_{2}=1.0$ still be regression?

House Prices in Athens

House Prices in Athens

Parametric Approaches to Supervised Learning

- Task = build a function $h(\mathbf{x})$ such that:
- h matches t well on the training data:
$=>h$ is able to fit data that it has seen.
- h also matches t well on test data:
$=>h$ is able to generalize to unseen data.
- Task = choose h from a "nice" class of functions that depend on a vector of parameters \mathbf{w} :
$-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
- what classes of functions are "nice"?

House Prices in Athens

House Prices in Athens

Linear Regression

- Use a linear function approximation:
$-h_{\mathbf{w}}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{x}=\left[w_{0}, w_{1}\right]^{\mathrm{T}}[1, x]=w_{1} x+w_{0}$.
- w_{0} is the intercept (or the bias term).
- w_{1} controls the slope.
- Learning = optimization:
- Find \mathbf{w} that obtains the best fit on the training data, i.e. find \mathbf{w} that minimizes the sum of square errors:

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}
$$

$$
\widehat{\mathbf{w}}=\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})
$$

Univariate Linear Regression

- Learning $=$ finding the "right" parameters $\mathbf{w}^{\mathrm{T}}=\left[w_{0}, w_{l}\right]$
- Find \mathbf{w} that minimizes an error function $E(\mathbf{w})=J(\mathbf{w})$ which measures the misfit between $h\left(\mathbf{x}_{n}, \mathbf{w}\right)$ and t_{n}.
- Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_{n} \Rightarrow$ $h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathrm{X}$.
- Sum-of-Squares error function:

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}
$$

Minimizing Sum-of-Squares Error

- Sum-of-Squares error function:

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}
$$

- How do we find \mathbf{w}^{*} that minimizes $E(\mathbf{w})$?

$$
\widehat{\mathbf{w}}=\arg \min _{\mathbf{w}} J(\mathbf{w})
$$

- Least Square solution is found by solving a system of 2 linear equations:

$$
w_{0} N+w_{1} \sum_{n=1}^{N} x_{n}=\sum_{n=1}^{N} t_{n}
$$

$$
w_{0} \sum_{n=1}^{N} x_{n}+w_{1} \sum_{n=1}^{N} x_{n}^{2}=\sum_{n=1}^{N} t_{n} x_{n}
$$

Polynomial Basis Functions

- Q : What if the raw feature is insufficient for good performance?
- Example: non-linear dependency between label and raw feature.
- A : Engineer / Learn higher-level features, as functions of the raw feature.
- Polynomial curve fitting:
- Add new features, as polynomials of the original feature.

Regression: Curve Fitting

- Training: Build a function $h(x)$, based on (noisy) training examples $\left(x_{1}, \mathrm{t}_{1}\right),\left(x_{2}, \mathrm{t}_{2}\right), \ldots\left(x_{\mathrm{N}}, \mathrm{t}_{\mathrm{N}}\right)$

Regression: Curve Fitting

- Training: Build a function $h(x)$, based on (noisy) training examples $\left(x_{1}, \mathrm{t}_{1}\right),\left(x_{2}, \mathrm{t}_{2}\right), \ldots\left(x_{\mathrm{N}}, \mathrm{t}_{\mathrm{N}}\right)$

Regression: Curve Fitting

- Testing: for arbitrary (unseen) instance $x \in \mathrm{X}$, compute target output $h(x)$; want it to be close to $t(x)$.

Regression: Polynomial Curve Fitting

Polynomial Curve Fitting

- Parametric model:

$$
h(x)=h(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}
$$

- Polynomial curve fitting is (Multiple) Linear Regression:

$$
\begin{aligned}
& \mathbf{x}=\left[1, x, x^{2}, \ldots, x^{\mathrm{M}}\right]^{\mathrm{T}} \\
& h(x)=h(\mathbf{x}, \mathbf{w})=h_{\mathbf{w}}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{x}
\end{aligned}
$$

- Learning = minimize the Sum-of-Squares error function:

$$
\widehat{\mathbf{w}}=\arg \min _{\mathbf{w}} J(\mathbf{w}) \quad J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}
$$

Sum-of-Squares Error Function

- How to find \mathbf{w}^{*} that minimizes $E(\mathbf{w})$, i.e. $\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E(\mathbf{w})$
- Solve $\nabla J(\mathbf{w})=0$.

Polynomial Curve Fitting

- Least Square solution is found by solving a set of $\mathrm{M}+1$ linear equations:

$$
\begin{aligned}
& \mathrm{A} \mathbf{w}=\mathrm{T} \\
& \sum_{j=0}^{M} A_{i j} w_{j}=T_{i}, \text { where } A_{i j}=\sum_{n=1}^{N} x_{n}^{i+j}, \text { and } T_{i}=\sum_{n=1}^{N} t_{n} x_{n}^{i}
\end{aligned}
$$

- Prove it.

Polynomial Curve Fitting

- Generalization $=$ how well the parameterized $h(x, \mathbf{w})$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M .

$0^{\text {th }}$ Order Polynomial

$1{ }^{\text {st }}$ Order Polynomial

$3^{\text {rd }}$ Order Polynomial

$9^{\text {th }}$ Order Polynomial

Polynomial Curve Fitting

- Model Selection: choosing the order M of the polynomial.
- Best generalization obtained with $\mathrm{M}=3$.
$-M=9$ obtains poor generalization, even though it fits training examples perfectly:
- But $\mathrm{M}=9$ polynomials subsume $\mathrm{M}=3$ polynomials!
- Overfitting \equiv good performance on training examples, poor performance on test examples.

Overfitting

- Measure fit using the Root-Mean-Square (RMS) error (RMSE):

$$
E_{R M S}(\mathbf{w})=\sqrt{\frac{\sum_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}-t_{n}\right)^{2}}{N}}
$$

- Use 100 random test examples, generated in the same way:

Over-fitting and Parameter Values

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Overfitting vs. Data Set Size

- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
- Use regularization.

Regularization

- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping.
- Noise robustness.
- Sparse representations.
- Adversarial training.

Regularization

- Penalize large parameter values:

$$
\begin{aligned}
J(\mathbf{w}) & =\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}+\underbrace{\frac{\lambda}{2}\|\mathbf{w}\|^{2}}_{\text {regularizer }} \\
\mathbf{w}^{*} & =\arg \min _{\mathbf{w}} E(\mathbf{w})
\end{aligned}
$$

$9^{\text {th }}$ Order Polynomial with Regularization

9 $^{\text {th }}$ Order Polynomial with Regularization

Training \& Test error vs. $\ln \lambda$

How do we find the optimal value of λ ?

Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.

K-fold Cross-Validation

\square
Training data
Test data

K-fold Cross-Validation

- Split the training data into K folds and try a wide range of tunning parameter values:
- split the data into K folds of roughly equal size
- iterate over a set of values for λ
- iterate over $\mathrm{k}=1,2, \ldots, \mathrm{~K}$
- use all folds except k for training
- validate (calculate test error) in the k-th fold
- error $[\lambda]=$ average error over the K folds
- choose the value of λ that gives the smallest error.
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Model Evaluation

- K-fold evaluation:
- randomly partition dataset in K equally sized subsets $P_{1}, P_{2}, \ldots P_{k}$
- for each fold i in $\{1,2, \ldots, k\}$:
- test on P_{i}, train on $P_{1} \cup \ldots \cup P_{i-1} \cup P_{i+1} \cup \ldots \cup P_{k}$
- compute average error/accuracy across K folds.

$\left.\begin{array}{l}\text { run } 1 \\ \text { run } 2 \\ \text { run } 3 \\ \text { run } 4\end{array}\right\}$ 4-fold evaluation

Multiple Linear Regression

- Q : What if the raw feature is insufficient for good performance?
- Example: house prices depend not only on floor size, but also number of bedrooms, age, location, ...
- A : Use Multiple Linear Regression.

Multiple Linear Regression

- Polynomial curve fitting:

$$
\begin{aligned}
& \mathbf{x}=\left[1, x, x^{2}, \ldots, x^{\mathrm{M}}\right]^{\mathrm{T}} \\
&=\left[x_{0}, x_{1}, \ldots, x_{\mathrm{M}}\right]^{\mathrm{T}} \\
& h(x)=h(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}
\end{aligned}
$$

- Multiple linear regression:

$$
\begin{aligned}
& \mathbf{x}=\left[x_{0}, x_{1}, \ldots, x_{\mathrm{M}}\right]^{\mathrm{T}} \\
& h(x)=h(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}
\end{aligned}
$$

- Training examples: $\left(\mathbf{x}^{(1)}, t_{1}\right),\left(\mathbf{x}^{(2)}, t_{2}\right), \ldots\left(\mathbf{x}^{(\mathbb{N})}, t_{\mathrm{N}}\right)$

Multiple Linear Regression

- Learning = minimize the Sum-of-Squares error function:

$$
\widehat{\mathbf{w}}=\arg \min _{\mathbf{w}} J(\mathbf{w}) \quad J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right)^{2}
$$

- Computing the gradient $\nabla J(\mathbf{w})$ and setting it to zero:

$$
\sum_{n=1}^{N}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)}-t_{n}\right) \mathbf{x}^{(n)}=0
$$

- Solving for \mathbf{w} yields $\mathbf{w}={\left(X^{T} X\right)^{-1} X^{T}}_{t}$
- Prove it.

Normal Equations

- Solution is $\mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} t$
- X is the data matrix, or the design matrix:
- $\mathbf{t}=\left[t_{1}, t_{2}, \ldots, t_{\mathrm{N}}\right]^{\mathrm{T}}$ is the vector of labels.

Ridge Regression

- Multiple linear regression with L2 regularization:

$$
\begin{aligned}
J(\mathbf{w}) & =\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} \\
\widehat{\mathbf{w}} & =\arg \min _{\mathbf{w}} J(\mathbf{w})
\end{aligned}
$$

- Solution is $\mathbf{w}=\left(\lambda N I+X^{T} X\right)^{-1} \mathrm{X}^{\mathrm{T}} \mathbf{t}$
- Prove it.

Regularization: Ridge vs. Lasso

- Ridge regression:

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{M} w_{j}^{2}
$$

- Lasso:

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}_{\mathrm{n}}\right)-t_{n}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{M}\left|w_{j}\right|
$$

- If λ is sufficiently large, some of the coefficients w_{j} are driven to 0 => sparse model.

Regularization: Ridge vs. Lasso

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer $q=2$ on the left and the lasso regularizer $q=1$ on the right, in which the optimum value for the parameter vector w is denoted by w^{\star}. The lasso gives a sparse solution in which $w_{1}^{\star}=0$.

Regularization

- Regularization alleviates overfitting when using models with high capacity (e.g. high degree polynomials):
- Want high capacity because we do not know how complicated the data is.
- Q : Can we achieve high capacity when doing curve fitting without using high degree polynomials?
- A : Use piecewise polynomial curves.
- Example: Cubic spline smoothing.

Cubic Spline Smoothing

- Cubic spline smoothing is a regularized version of cubic spline interpolation.
- Cubic spline interpolation: given n points $\left\{\left(x_{\mathrm{i}}, y_{\mathrm{i}}\right)\right\}$, connect adjacent points using cubic functions S_{i}, requiring that the spline and its first and second derivative remain continuous at all points:

$$
S_{i}(x)=a_{i}\left(x-x_{i}\right)^{3}+b_{i}\left(x-x_{i}\right)^{2}+c_{i}\left(x-x_{i}\right)+d_{i}, \forall x \in\left[x_{i}, x_{i+1}\right]
$$

- Cubic spline smoothing: the spline $\mathrm{S}=\left\{S_{i}\right\}$ is allowed to deviate from the data points and has low curvature $=>$ constrained optimization problem with objective:

$$
\begin{gathered}
L=\sum_{i=1}^{n} \frac{w_{i}}{Z}\left(S_{i}\left(x_{i}\right)-y_{i}\right)^{2}+\frac{\lambda}{x_{n}-x_{1}} \int_{x_{1}}^{x_{n}}\left|S^{\prime \prime}(x)\right|^{2} d x \\
w_{i}=\left\{\begin{array}{cl}
C, & \text { if }\left(x_{i}, y_{i}\right) \text { is a significant local optima } \\
1, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Cubic Spline Smoothing

http://ace.cs.ohio.edu/~razvan/papers/icmla11.pdf

$$
\begin{array}{|l}
\hline \text { • CGMS - Spline with ridge: } \exp (-20), \mathrm{C}=1000 \\
\hline
\end{array}
$$

Fig. 3. Cubic spline smoothing with $\lambda=e^{-20}$ and $C=1000$.

Polynomial Curve Fitting (Revisited)

Generalization: Basis Functions as Features

- Generally

$$
y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

where $\varphi_{j}(\mathbf{x})$ are known as basis functions.

- Typically $\varphi_{0}(\mathbf{x})=1$, so that w_{0} acts as a bias.
- In the simplest case, use linear basis functions : $\varphi_{d}(\mathbf{x})=x_{d}$.

Linear Basis Function Models (1)

- Polynomial basis functions:

$$
\phi_{j}(x)=x^{j}
$$

- Global behavior:
- a small change in x affect all basis functions.

Linear Basis Function Models (2)

- Gaussian basis functions:

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

- Local behavior:
- a small change in x only affects nearby basis functions.
- μ_{j} and s control location and scale (width).

Linear Basis Function Models (3)

- Sigmoidal basis functions:

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

where $\sigma(a)=\frac{1}{1+\exp (-a)}$.

- Local behavior:
- a small change in x only affect nearby basis functions.
- μ_{j} and s control location and scale (slope).

Solving Linear Regression using Maximum Likelihood

Least Squares <=> Maximum Likelihood (1)

- Assume observations from a deterministic function y with added Gaussian noise ϵ :

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon
$$

where $p(\epsilon \mid \beta)=\mathcal{N}\left(\epsilon \mid 0, \beta^{-1}\right)$

$$
=\frac{\sqrt{\beta}}{\sqrt{2 \pi}} e^{-\beta \frac{\epsilon^{2}}{2}}
$$

which is the same as saying:

$$
\begin{aligned}
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N} & \left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right) \\
& =\frac{\sqrt{\beta}}{\sqrt{2 \pi}} e^{-\beta \frac{(t-y(\mathbf{x}, \mathbf{w}))^{2}}{2}}
\end{aligned}
$$

Least Squares <=> Maximum Likelihood (1)

- Assume observations from a deterministic function with added Gaussian noise:

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon \quad \text { where } \quad p(\epsilon \mid \beta)=\mathcal{N}\left(\epsilon \mid 0, \beta^{-1}\right)
$$

which is the same as saying:

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right) .
$$

- Given observed i.i.d inputs $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$ and targets $\mathbf{t}=$ $\left[t_{1}, \ldots, t_{\mathrm{N}}\right]^{\mathrm{T}}$, we obtain the likelihood function:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) .
$$

Least Squares <=> Maximum Likelihood (2)

- Taking the logarithm, we get the log-likelihood function:

$$
\begin{aligned}
\ln p(\mathbf{t} \mid \mathbf{w}, \beta) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \\
& =\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)-\beta E_{D}(\mathbf{w})
\end{aligned}
$$

where

$$
E_{D}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

- $E_{D}(\mathbf{w})$ is the sum-of-squares error!

Least Squares <=> Maximum Likelihood (3)

- Minimizing square error $<=>$ maximizing likelihood:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})=\mathbf{w}_{M L}=\arg \max _{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)
$$

- How do we find \mathbf{w} (and β)?

Least Squares <=> Maximum Likelihood (4)

- Computing the gradient and setting it to zero yields:

$$
\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)=\beta \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)^{\mathrm{T}}=\mathbf{0}
$$

- Solving for \mathbf{w}, we get

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

The Moore-Penrose pseudo-inverse, $\boldsymbol{\Phi}^{\dagger}$.
where

$$
\mathbf{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

Least Squares <=> Maximum Likelihood (5)

- Minimizing square error $<=>$ maximizing likelihood:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})=\mathbf{w}_{M L}=\arg \max _{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)
$$

- Maximizing with respect to w gives:

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

- Maximizing with respect to β gives:

$$
\frac{1}{\beta_{\mathrm{ML}}}=\frac{1}{N} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

Regularized Least Square

- Consider the error function:

$$
E_{D}(\mathbf{w})+\lambda E_{W}(\mathbf{w})
$$

Data term + Regularization term

- With the sum-of-squares error function and a quadratic regularizer, we get:

$$
\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}
$$

which is minimized by:

$$
\mathbf{w}=\left(\lambda \mathbf{I}+\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} .
$$

λ is called the regularization coefficient.

Regularized Least Square < $=>$ Maximum A Posteriori (MAP)

- Define a conjugate prior over w:

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
$$

- We also have the likelihood function:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

- Bayes to combine prior with the likelihood $=>$ posterior:

$$
\begin{aligned}
& p(\mathbf{w} \mid \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t})} \\
& p(\mathbf{w} \mid \mathrm{X}, \mathbf{t}, \alpha, \beta)=\frac{p(\mathbf{t} \mid \mathbf{w}, \mathrm{X}, \beta) p(\mathbf{w} \mid \alpha)}{p(\mathbf{t} \mid \mathrm{X}, \alpha, \beta)} \propto p(\mathbf{t} \mid \mathbf{w}, \mathrm{X}, \beta) p(\mathbf{w} \mid \alpha)
\end{aligned}
$$

Regularized Least Square < $=>$ Maximum A Posteriori (MAP)

- Taking the logarithm of the posterior distribution:

$$
\ln p(\mathbf{w} \mid \mathbf{t})=-\frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}-\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}+\text { const }
$$

- The MAP estimate of w is:

$$
\begin{aligned}
\mathbf{w}_{M A P} & =\arg \max _{\mathbf{w}} \ln p(\mathbf{w} \mid \mathbf{t}) \\
& =\arg \max _{\mathbf{w}}-\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}-\frac{\alpha / \beta}{2} \mathbf{w}^{T} \mathbf{w} \\
& =\arg \min _{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} \\
& =\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})+E_{W}(\mathbf{w})
\end{aligned}
$$

Regularized Least Square < $=>$ Maximum A Posteriori (MAP)

- Define a conjugate prior over w:

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
$$

- We also have the likelihood function:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

- Using Bayes and results for marginal and conditional Gaussian distributions, gives the posterior

$$
p(\mathbf{w} \mid \mathbf{t})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right) \quad \text { where }\left\{\begin{array}{l}
\mathbf{m}_{N}=\beta \mathbf{S}_{N} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \\
\mathbf{S}_{N}^{-1}=\alpha \mathbf{I}+\beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}
\end{array}\right.
$$

$$
\widehat{\mathbf{w}}=\mathbf{m}_{N}=\left(\frac{\alpha}{\beta} \mathbf{I}+\Phi^{T} \Phi\right)^{-1} \Phi^{T} \mathbf{t}=\left(\lambda \mathbf{I}+\Phi^{T} \Phi\right)^{-1} \Phi^{T} \mathbf{t}
$$

Supplemental Readings

- PRML:
- Section 1.1 (Polynomial curve fitting).
- Section 1.2 (up to and including 1.2.5).
- Section 3.1.4 (Regularized least squares).

