
Machine Learning
ITCS 6156/8156

Linear Regression

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu


Supervised Learning

• Task = learn an (unknown) function t : X ® T that maps 
input instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous 
component.

• Target function t(x) is known (only) through (noisy) set of 
training examples:

(x1,t1), (x2,t2), … (xn,tn)
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Supervised Learning 

• Task = learn an (unknown) function t : X ® T that maps 
input instances x Î X to output targets t(x) Î T:
– function t  is known (only) through (noisy) set of training examples:

• Training/Test data: (x1,t1), (x2,t2), … (xn,tn)

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches target t well on test data:

=> h is able to generalize to unseen data.
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Parametric Approaches to Supervised 
Learning 

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that 
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?
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Linear Regression

1. (Simple) Linear Regression
– House price prediction

2. Linear Regression with Polynomial Features
– Polynomial curve fitting
– Regularization
– Ridge regression

3. Multiple Linear Regression
– House price prediction
– Normal equations
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House Price Prediction

• Given the floor size in square feet, predict the selling price:
– x is the size, t is the price
– Need to learn a function h such that h(x) ≈ t(x).

• Is this classification or regression?
– Regression, because price is real valued.

• and there are many possible prices.
– (Simple) linear regression, because one input value.
– Would a problem with only two labels t1 = 0.5 and t2 = 1.0 still be 

regression?
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House Prices in Athens
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50 houses, randomly selected from the 106 
houses or townhomes:
• sold recently in Athens, OH.
• built 1990 or later.



House Prices in Athens
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Parametric Approaches to Supervised 
Learning 

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that 
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

9



House Prices in Athens
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House Prices in Athens
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Linear Regression

• Use a linear function approximation:
– hw(x) = wTx = [w0, w1]T[1, x] = w1x+w0.

• w0 is the intercept (or the bias term).
• w1 controls the slope.

– Learning = optimization:
• Find w that obtains the best fit on the training data, i.e. find w

that minimizes the sum of square errors:

!𝐰 = argmin
𝐰

𝐽(𝐰)
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Univariate Linear Regression

• Learning = finding the “right” parameters wT = [w0, w1]
– Find w that minimizes an error function  E(w) = J(w) which 

measures the misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xnÞ

h(x,w) will perform well on arbitrary test examples xÎ X.

• Sum-of-Squares error function:
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Minimizing Sum-of-Squares Error

• Sum-of-Squares error function:

• How do we find w* that minimizes E(w)?

• Least Square solution is found by solving a system of 2 linear equations:
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Polynomial Basis Functions

• Q: What if the raw feature is insufficient for good 
performance?
– Example: non-linear dependency between label and raw feature.

• A: Engineer / Learn higher-level features, as functions of 
the raw feature.

• Polynomial curve fitting:
– Add new features, as polynomials of the original feature.
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Regression: Curve Fitting

target t

• Training: Build a function h(x), based on (noisy) training 
examples (x1,t1), (x2,t2), … (xN,tN)
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Regression: Curve Fitting

learned h

target t

• Training: Build a function h(x), based on (noisy) training 
examples (x1,t1), (x2,t2), … (xN,tN)
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Regression: Curve Fitting

learned h

• Testing: for arbitrary (unseen) instance x Î X , compute 
target output h(x); want it to be close to t(x).

target t
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Regression: Polynomial Curve Fitting

h(x) = h(x,w) = w0 +w1x +w2x
2 +…+wMx

M = wjx
j

j=0

M

∑

t = ?
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Polynomial Curve Fitting

• Parametric model:

• Polynomial curve fitting is (Multiple) Linear Regression:
x = [1, x, x2, ..., xM]T

h(x) = h(x,w) = hw(x) = wTx

• Learning = minimize the Sum-of-Squares error function:

20

h(x) = h(x,w) = w0 +w1x +w2x
2 +…+wMx

M = wjx
j

j=0

M

∑

𝐽 𝐰 =
1
2𝑁

0
"#$

%

ℎ𝐰(𝐱n) − 𝑡𝑛 &!𝐰 = arg min
𝐰
𝐽(𝐰)



Sum-of-Squares Error Function

• How to find w* that minimizes E(w), i.e.
• Solve ∇J(w) = 0.
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Polynomial Curve Fitting

• Least Square solution is found by solving a set of M + 1 
linear equations:

• Prove it.
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Polynomial Curve Fitting

• Generalization = how well the parameterized h(x,w) 
performs on arbitrary (unseen) test instances xÎ X.

• Generalization performance depends on the value of M.
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0th Order Polynomial

24



1st Order Polynomial
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3rd Order Polynomial
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9th Order Polynomial
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Polynomial Curve Fitting

• Model Selection: choosing the order M of the polynomial.
– Best generalization obtained with M = 3.
– M = 9 obtains poor generalization, even though it fits training 

examples perfectly:
• But M = 9 polynomials subsume M = 3 polynomials!

• Overfitting º good performance on training examples, poor 
performance on test examples.
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Overfitting

• Measure fit using the Root-Mean-Square (RMS) error (RMSE):

• Use 100 random test examples, generated in the same way:

ERMS (w) =
wTxn − tn( )

2

n∑
N

29



Over-fitting and Parameter Values
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Overfitting vs. Data Set Size

• More training data Þ less overfitting.
• What if we do not have more training data?

– Use regularization.
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Regularization

• Parameter norm penalties (term in the objective).
• Limit parameter norm (constraint).
• Dataset augmentation.
• Dropout.
• Ensembles.
• Semi-supervised learning.
• Early stopping.
• Noise robustness.
• Sparse representations.
• Adversarial training.
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Regularization

• Penalize large parameter values:

regularizer
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9th Order Polynomial with Regularization
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9th Order Polynomial with Regularization
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Training & Test error vs.
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How do we find the optimal value of l?



Model Selection

• Put aside an independent validation set.
• Select parameters giving best performance on validation set.
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Validation Training

}15,20,25,30,35,40{ln ------Îl

ln l -40 -35 -30 -25 -20 -15
ERMS 1.05 0.30 0.25 0.27 0.52 0.55



K-fold Cross-Validation
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https://scikit-learn.org/stable/modules/cross_validation.html
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K-fold Cross-Validation

• Split the training data into K folds and try a wide range of 
tunning parameter values:
– split the data into K folds of roughly equal size
– iterate over a set of values for 𝜆

• iterate over k = 1, 2, ..., K
– use all folds except k for training
– validate (calculate test error) in the k-th fold

• error[𝜆] = average error over the K folds
– choose the value of 𝜆 that gives the smallest error.
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html



Model Evaluation

• K-fold evaluation:
– randomly partition dataset in K equally sized subsets P1, P2, … Pk

– for each fold i in {1, 2, …, k}:
• test on Pi, train on P1 È … È Pi-1 È Pi+1 È … È Pk

– compute average error/accuracy across K folds.
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4-fold evaluation



Multiple Linear Regression

• Q: What if the raw feature is insufficient for good 
performance?
– Example: house prices depend not only on floor size, but also 

number of bedrooms, age, location, …

• A: Use Multiple Linear Regression.
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Multiple Linear Regression

• Polynomial curve fitting:
x = [1, x, x2, ..., xM]T

= [x0, x1, …, xM]T

h(x) = h(x,w) = wTx

• Multiple linear regression:
x = [x0, x1, …, xM]T

h(x) = h(x,w) = wTx

• Training examples: (x(1),t1), (x(2),t2), … (x(N),tN)
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Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

• Computing the gradient ∇J(w) and setting it to zero:

• Solving for w yields
– Prove it.

43

𝐽 𝐰 =
1
2𝑁0

"#$

%

ℎ𝐰(𝐱(")) − 𝑡𝑛
&!𝐰 = arg min

𝐰
𝐽(𝐰)

0
"#$

%

𝐰)𝐱(") − 𝑡𝑛 𝐱(")= 0

𝐰 = X!X "#X!𝐭

The Moore-Penrose 
pseudo-inverse of X.



Normal Equations

• Solution is 

• X is the data matrix, or the design matrix:

• t = [t1, t2, …, tN]T is the vector of labels.
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Ridge Regression

• Multiple linear regression with L2 regularization:

• Solution is
– Prove it.
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Regularization: Ridge vs. Lasso

• Ridge regression:

• Lasso:

– If λ is sufficiently large, some of the coefficients wj are driven to 0 
=> sparse model.
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Regularization: Ridge vs. Lasso
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Regularization

• Regularization alleviates overfitting when using models 
with high capacity (e.g. high degree polynomials):
– Want high capacity because we do not know how complicated the 

data is.

• Q: Can we achieve high capacity when doing curve fitting 
without using high degree polynomials?

• A: Use piecewise polynomial curves.
– Example: Cubic spline smoothing.

48



Cubic Spline Smoothing

• Cubic spline smoothing is a regularized version of cubic 
spline interpolation.
– Cubic spline interpolation: given n points {(xi , yi)}, connect 

adjacent points using cubic functions Si , requiring that the spline 
and its first and second derivative remain continuous at all points: 

– Cubic spline smoothing: the spline S = {Si} is allowed to deviate 
from the data points and has low curvature => constrained 
optimization problem with objective:
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Cubic Spline Smoothing
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Polynomial Curve Fitting (Revisited)
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Generalization: Basis Functions as Features

• Generally

where jj(x) are known as basis functions.

• Typically j0(x) = 1, so that w0 acts as a bias.

• In the simplest case, use linear basis functions : jd(x) = xd.
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Linear Basis Function Models (1)

• Polynomial basis functions:

• Global behavior:
– a small change in x affect all basis 

functions.
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Linear Basis Function Models (2)

• Gaussian basis functions:

• Local behavior:
– a small change in x only 

affects nearby basis functions.
– µj and s control location and 

scale (width).
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Linear Basis Function Models (3)

• Sigmoidal basis functions:

where

• Local behavior:
– a small change in x only affect 

nearby basis functions. 
– µj and s control location and 

scale (slope).
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Solving Linear Regression using Maximum 
Likelihood
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Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function y with added 
Gaussian noise 𝜖:

which is the same as saying:
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Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function with 
added Gaussian noise:

which is the same as saying:

• Given observed i.i.d inputs X = {x1, ..., xN} and targets t = 
[t1, ..., tN]T, we obtain the likelihood function:  
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Least Squares <=> Maximum Likelihood (2)

• Taking the logarithm, we get the log-likelihood function:

where

• ED(w) is the sum-of-squares error!
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Least Squares <=> Maximum Likelihood (3)

• Minimizing square error <=> maximizing likelihood:

• How do we find w (and b)?
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Least Squares <=> Maximum Likelihood (4)
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• Computing the gradient and setting it to zero yields:

• Solving for w, we get 

where

The Moore-Penrose 
pseudo-inverse,       .



Least Squares <=> Maximum Likelihood (5)

• Minimizing square error <=> maximizing likelihood:

• Maximizing with respect to w gives:

• Maximizing with respect to b gives:
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Regularized Least Square
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• Consider the error function:

• With the sum-of-squares error function and a quadratic 
regularizer, we get:  

which is minimized by:

Data term + Regularization term

l is called the 
regularization 
coefficient.



Regularized Least Square <=> Maximum A 
Posteriori (MAP) 

• Define a conjugate prior over w:

• We also have the likelihood function:

• Bayes to combine prior with the likelihood => posterior:
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Regularized Least Square <=> Maximum A 
Posteriori (MAP) 

• Taking the logarithm of the posterior distribution:

• The MAP estimate of w is:
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Regularized Least Square <=> Maximum A 
Posteriori (MAP) 

• Define a conjugate prior over w:

• We also have the likelihood function:

• Using  Bayes and results for marginal and conditional Gaussian 
distributions, gives the posterior
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Supplemental Readings

• PRML:
– Section 1.1 (Polynomial curve fitting).
– Section 1.2 (up to and including 1.2.5).
– Section 3.1.4 (Regularized least squares).
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