Machine Learning
ITCS 6156/8156

Gradient Descent

Razvan C. Bunescu
Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

mailto:razvan.bunescu@uncc.edu

ML 1s Optimization

e Try to find the value for w that minimizes:

1
J(w) = §W2—4w+9

1
Jw) = S (w—4?+1
. Set VJ(w)=0

=w-4=0
=>w =4

Machine Learning is Optimization

[

e Parametric ML involves minimizing an objective function
J(W):
— Also called cost function or error function.

— Want to find W = argmin J (w)
w

e Numerical optimization procedure:
Start with some guess for w?, set 7 = 0.
Update w* to w**! such that J(w™!) < J(w?).

Incrementt=1+ 1.

aihed o

Repeat from 2 until J cannot be improved anymore.

Gradient-based Optimization

=

« How toupdate w* to w**! such that J(w*1) < J(w?)?

 Move w 1n the direction of steepest descent:
witl=w® + nA

— | A 1s the direction of steepest descent, 1.e. direction along which J
decreases the most.

- 1 1s the learning rate and controls the magnitude of the change.

Gradient-based Optimization

 Move w in the direction of steepest descent:
witl=w? + nA

 What is the direction of steepest descent of J(w) at w*?
— The gradient VJ(w) is in the direction of steepest ascent.
— Set A =—-VJ(w) => the gradient descent update:

WT+1 =w? — UV](WT)

Gradient Descent Algorithm

=

e Want to minimize a function J: R" — R.

— J 1s differentiable and convex.
— compute gradient of J i.e. direction of steepest increase:

o] d] aj

, , [N} ’_
dwy dw, owy,

Vj(w) =

Set learning rate n = 0.001 (or other small value).
Start with some guess for w?, set 7 = 0.
Repeat for epochs E or until J does not improve:
T=1+ 1.
WT+1 —w? — T)V](WT)

e YN =

What 1f objective 1s not differentiable?

[

e Subgradient methods.
— Minimize convex functions that are not necessarily differentiable.
* Gradient free methods:
— Evolutionary Programming.
— Bayesian Optimization.
e https://arxiv.org/abs/1807.02811

— Particle swarm optimization.

— Surrogate optimization

— Simmulated annealing.

https://arxiv.org/abs/1807.02811

Gradient Descent Algorithm

=

e Want to minimize a function J: R" — R.

— J 1s differentiable and convex.
— compute gradient of J i.e. direction of steepest increase:

o] d] aj

, , [N} ’_
dwy dw, owy,

Vj(w) =

Set learning rate n = 0.001 (or other small value).
Start with some guess for w?, set 7 = 0.
Repeat for epochs E or until J does not improve:
T=1+ 1.
WT+1 —w? — T)V](WT)

e YN =

Gradient Descent: Large Updates

Start
d here

Performance
surface

Gradient

vectors

|
|
|
w(0) ... w* Low(l) W
—- -
move this way by 1VJ(0) move this way by nVJ(1)

Gradient Descent: Small Updates

Cost

Learning step

Minimum

' B>
Random 6

initial value A

https.//'www.safaribooksonline.com/library/view/hands-on-machine-learning

The Learning Rate

=

1. Setlearning rate n = 0.001 (or other small value).
2. Start with some guess for w', set 7= 0.

3. Repeat for epochs E or until J does not improve:

% T=1+ 1.

5. witl =w? —glJ(w?)

= How big should the learning rate be?
o If learning rate too small => slow convergence.

o If learning rate too big => oscillating behavior => may not even
converge.

Learning Rate too Small

Learning Rate too Large

Learning Rates vs. GD Behavior

Descending with step coefficient 0.005 {iteration 50) Descending with step coefficient 0.05 {iteration 50)

30 30
fx) = %2 * sin(x) fx) = %2 * sin(x)
20t . 20t
107 Start (2.5,3.7) 1 10} Start (2.53.7)

30 .. . End(49.237), a0 .., EndB4227)
" 2 3 4 5 B 7 8 1 2 3 4 5 B 7 8

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

How big should the learning rate be?
— If learning rate too big => oscillating behavior.

— If learning rate too small => hinders convergence.

Use line search (backtracking line search, conjugate gradient, ...).
Use second order methods (Newton’s method, L-BFGS, ...).
* Requires computing or estimating the Hessian.
Use a simple learning rate annealing schedule:
— Start with a relatively large value for the learning rate.

— Decrease the learning rate as a function of the number of epochs or
as a function of the improvement in the objective.
Use adaptive learning rates:
* Adagrad, Adadelta, RMSProp, Adam.

15
e

Gradient Descent: Nonconvex Objective

Cost

Saddle point

Plateau

. Global
Local minimum .
minimum

Convex Multivariate Objective

Gradient Step and Contour Lines

Gradient Descent: Nonconvex Objectives

(Gradient Descent & Plateaus

X
V4
7
0 9.9 ¢
&

PRy
(O 74N
“$“\\\' 7 4 4\(’///11;"0’0’0 T
B Ve / <\ \\' : :'&0"¢$$$‘\\ =
o \\. " 19 %‘ $

R %0

§
%

(Gradient Descent & Saddle Points

+ 42
+ 3%
+ 27
+ 19
N
- 3
L
* 12

(Gradient Descent & Ravines

10419

10119

(Gradient Descent & Ravines

 Ravines are areas where the surface curves much more
steeply 1n one dimension than another.
— Common around local optima.

— GD oscillates across the slopes of the ravines, making slow progress
towards the local optimum along the bottom.

e Use momentum to help accelerate GD 1n the relevant
directions and dampen oscillations:
— Add a fraction of the past update vector to the current update vector.

e The momentum term increases for dimensions whose previous
gradients point in the same direction.

* It reduces updates for dimensions whose gradients change sign.
 Also reduces the risk of getting stuck in local minima.

23
R

Gradient Descent & Momentum

Vanilla Gradient Descent: Gradient Descent w/ Momentum:
V‘L‘+1:n‘7](w‘[) VT+1:yVT +77|7](WT)
witl=w? — yT+1 witl =w? — y7+1

)

y is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose gradients change
directions.

Momentum & Nesterov Accelerated Gradient

(=

GD with Momentum: Nesterov Accelerated Gradient:

vt =yvT + nlJ (WP vt = v + nlVJ (W= yv?P)

T+1 witl=w? — yT+1

witl=w?’— v

Nesterov update (Source: G. Hinton’s lecture 6¢)

By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNS. |
25 |

e ——

Batch vs. Stochastic Gradient Descent

WT+1 =w? — 77 V](W‘L’)

* Depending on how much data 1s used to compute the
gradient at each step:
— Batch gradient descent:
« Use all the training examples.
— Stochastic gradient descent (SGD).
« Use one training example, update after each.
 Minibatch gradient descent.

— Use a constant number of training examples (minibatch).

Batch Gradient Descent: Linear Regression

[

* Sum-of-squares error: h(x™) =wTx(™
N
JW) =55 Y (hux™) = t,)
2N] o o
n=

WT+1 L. WT — 7 V](WT)

N
1
wrt=w' -~ Z (hu(x™) = t,) x™
n=1

Stochastic Gradient Descent: Linear
Regression

=

ho (xM) = wTx™
e Sum-of-squares error: w(XY) = wix

N

N
1 v
J(w) =~ (ho(x™) — t,)° %Z J(w?,x™)

n=1

W'l'+1 = WT — 7 V](WT,X(n))

Wt =W = () — £,) X

« Update parameters w after each example, sequentially:
=> the least-mean-square (LMS) algorithm.

Batch GD vs. Stochastic GD

* Accuracy:

* Time complexity:

* Memory complexity:

* Online learning;:

Batch GD vs. Stochastic GD

_ Gradient Descent

Pre-processing Features

« Features may have very different scales, e.g. x; = rooms
VS. X, = size 1n sq ft.
— Right (different scales): GD goes first towards the bottom of the
bowl, then slowly along an almost flat valley.
— Left (scaled features): GD goes straight towards the minimum.

‘12

8,
A

Feature Scaling

[

e Scaling between [0, 1] or [-1, +1]:
— For each feature x;, compute min; and max; over the training examples.

xj—mmj

— Scale X; as follows: fj = :
maxj —mlnj

* Scaling to standard normal distribution:

— For each feature x;, compute sample y; and sample o; over the training
examples.
Xj—Hj
&

— Scale X; as follows: 9?]- =

* Use the same scaling factors at test time:

— Clip to min; and max;.

Gradient Descent vs. Normal Equations

=

e Gradient Descent:
— Need to select learning rate 7.
— May need many iterations:
« Can do Early Stopping on validation data for regularization.
— Scalable when number of training examples N i1s large.

 Normal Equations:
— No iterations => easy to code.
— Computing (XTX)! has cubic time complexity => slow for large N.
~ XTX may be singular:
1. Redundant (linearly dependent) features.

2. #features > #examples => do feature selection or regularization.

33
e

Implementation: Vectorization

e Version 1: Compute gradient component-wise.

h,(x™) =wTx™

N
7)== (hx™) = £,)x™
n=1

grad = np.zeros(K)

for n in range(N):
h = w.dot(X][:,n]) / This NumPy code assumes examples stored in columns of X.
temp = h — t[n]
for k in range(K):

grad(k) = grad(k) + temp * X[n,k]
for k in range(K):
grad(k) = grad(k) / N

Implementation: Vectorization

=

* Version 2: Compute gradient, partially vectorized.
h,(x™) =wTx™

N
7)== (hx®) = £,)x®
n=1

grad = np.zeros(K)

for n in range(N): // This NumPy code assumes examples stored in columns of X.
grad = grad + (w.dot(X[:,n])) — t[n]) * X[:,n]

grad = grad / N

Implementation: Vectorization

(=

* Version 3: Compute gradient, vectorized.
h, (x(W)=wTx(™

N
7)== (hx™) — £,)x™
n=1

grad = X.dot(w.dot(X) —t) /N

NumPy code above assumes examples stored in columns of X.

Homework: Rewrite to work with examples stored on rows.

Batch Gradient Descent: Ridge Regression

« Sum-of-squares error + regularizer h(x™) =wTx(™
1 ¢ A
2
A Z (hy(x™) — t,)" + = lwl|?
n=

W‘L'+1 =w? — 7 V](WT)

N
1

WS wE (Nz w<x<">>—t)x<">>
n=1

Implementation: Vectorization

* Version 3: Compute gradient, vectorized.
1 N
7) (W) = Aw + z (hy(x®) — £,) x® b (x) = wTx®
n=1

grad = A1 * w + X.dot(w.dot(X) — t) /N

NumPy code above assumes examples stored in columns of X.

Homework: Rewrite to work with examples stored on rows.

Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

ij(8)=1im](6+g)_](g_€)
do e 2¢€

Numerical approximation of derivative:

ij(@)z JO+e)-J(O-¢)
do 2¢€

where € = 0.0001

Implementation: Gradient Checking

[

e If 0 1s a vector of parameters 0.,
— Compute numerical derivative with respect to each 0..

— Aggregate all derivatives into numerical gradient G,,,,(0).

e Compare numerical gradient G,,,,(0) with implementation
of gradient Gy;,,(0):

G ® -G, O] _ ot
0)+G,,,(0)]

num

Gradient Descent Optimization Algorithms

* Momentum.
* Nesterov Accelerated Gradient (NAG).
e Adaptive learning rates methods:

— Idea 1s to perform larger updates for infrequent params and smaller
updates for frequent params, by accumulating previous gradient
values for each parameter.

* Adagrad:
— Divide update by sqrt of sum of squares of past gradients.

e Adadelta.
« RMSProp.
* Adaptive Moment Estimation (Adam)

(Gradient Descent & Saddle Points

+ 42
+ 3%
+ 27
+ 19
N
- 3
L
* 12

(Gradient Descent & Ravines

10419

10119

(Gradient Descent & Ravines

 Ravines are areas where the surface curves much more
steeply 1n one dimension than another.
— Common around local optima.

— GD oscillates across the slopes of the ravines, making slow progress
towards the local optimum along the bottom.

e Use momentum to help accelerate GD 1n the relevant
directions and dampen oscillations:
— Add a fraction of the past update vector to the current update vector.

e The momentum term increases for dimensions whose previous
gradients point in the same direction.

* It reduces updates for dimensions whose gradients change sign.
 Also reduces the risk of getting stuck in local minima.

45
R

Gradient Descent & Momentum

Vanilla Gradient Descent: Gradient Descent w/ Momentum:
V‘L‘+1:n‘7](w‘[) VT+1:yVT +77|7](WT)
witl=w? — yT+1 witl =w? — y7+1

)

y is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose gradients change
directions.

Momentum & Nesterov Accelerated Gradient

(=

GD with Momentum: Nesterov Accelerated Gradient:

vt =yvT + nlJ (WP vt = v + nlVJ (W= yv?P)

T+1 witl=w? — yT+1

witl=w?’— v

nvj(wt—yv®)

Nesterov update (Source: G. Hinton’s lecture 6¢)

By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNS. |
47 |

e ——

AdaGrad

Optimized for problems with sparse features.

Per-parameter learning rate: make smaller updates for
params that are updated more frequently:

t,i
=w; —17 \/et_G“ where Gy ; = Y5 gzz-,i
0] (w)
9ti = OW:
l

Require less tuning of the learning rate compared with
SGD.

RMSProp

=

» Element-wise gradient: gi= V] (W)

* Gradientis g; = [gf, 95, covy gzt{]
« Element-wise square gradient: g2 = g, o g,

RMSProp:
Eclg?] = yEc—1lg8%] + (1 —y) 8f
_ n
Wiy, = We — \/Et[g2]+egt

y is usually set to 0.9, 1 is set to 0.001

Adam: Adaptive Moment Estimation

[

« Maintain an exponentially decaying average of past
gradients (1%t m.) and past squared gradients (2"¢ m.):

) mg=pm 1 +(1—-p5)8:
2) Ve=P1Veg +(1—By) 8¢

« Biased towards 0 during initial steps, use bias-corrected
first and second order estimates:
mg
1-3;
. Ve
SF g

1) ﬁ\lt —

2) ¥

Adam: Adaptive Moment Estimation

* First and second moment:
m; =y my_; + (11— (1) 8¢
V; = Buioq1 + (1= B1) 87

 Bias-correction:

A~ m A V.
M, = - t,:andvt=1 ;t
e ! /-2
Adam:
_ /N
Wit1 = W — =~ 1I;

Visualization

* Adagrad, RMSprop, Adadelta, and Adam are very similar
algorithms that do well in similar circumstances.

— Insofar, Adam might be the best overall choice.

7 N —
Z Ny — SGD - SGD
7 — & j——
=] == Momentum - Momentum
= s — NAG
—— ~ NAG - y _
— - I '/
— Adagrad s —— Adagrad
1 s Adadelt
Adadelta W J adelta
sy,
ST ALT 77
- et e, Rmspro
Rmsprop |) prop

(7%
L)
K
KK
¢/
SN

