Machine Learning ITCS 6156/8156

The Perceptron Algorithm The Kernel Trick

Razvan C. Bunescu

Department of Computer Science @ CCI
razvan.bunescu@uncc.edu

Linear Discriminant Classification

- Use a linear function of the input vector:

- Decision:
$\mathbf{x} \in C_{1}$ if $h(\mathbf{x}) \geq 0$, otherwise $\mathbf{x} \in C_{2}$.
\Rightarrow decision boundary is hyperplane $h(\mathbf{x})=0$.
- Properties:
- \mathbf{w} is orthogonal to vectors lying within the decision surface.
- w_{0} controls the location of the decision hyperplane.

Geometric Interpretation

$$
h(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}
$$

Linear Discriminant Classification: Two Classes ($\mathrm{K}=2$)

- What algorithms can be used to learn $y(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \varphi(\mathbf{x})+w_{0}$?

Assume a training dataset of $N=N_{1}+N_{2}$ examples in C_{1} and C_{2}.

- Perceptron:
- Voted/Averaged Perceptron
- Kernel Perceptron
- Support Vector Machines:
- Linear
- Kernel
- Fisher's Linear Discriminant

Linear Discriminant Classification

- Assume classes $T=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\{1,-1\}$.
- Training set is $\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$.

$$
\begin{aligned}
& \mathbf{x}=\left[1, x_{1}, x_{2}, \ldots, x_{k}\right]^{\mathrm{T}} \\
& \hat{t}(\mathbf{x})=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)=\operatorname{sgn}\left(w_{0}+w_{1} x_{1}+\ldots+w_{k} x_{k}\right)
\end{aligned}
$$

Linear Discriminant Classification: Objective Function

- Learning $=$ finding the "right" parameters $\mathbf{w}^{\mathrm{T}}=\left[w_{0}, w_{1}, \ldots, w_{k}\right]$
- Find \mathbf{w} that minimizes an error function $E(\mathbf{w})$ which measures the misfit between $\hat{t}\left(\mathbf{x}_{\mathrm{n}}\right)$ and t_{n}.
- Least Squares error function?

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(\hat{t}\left(\mathbf{x}_{n}\right)-t_{n}\right)^{2} \quad \hat{t}(\mathbf{x})=\left\{\begin{array}{cc}
1 & \text { if } \mathbf{w}^{T} \mathbf{x} \geq 0 \\
-1 & \text { otherwise }
\end{array}\right.
$$

Least Squares vs. Perceptron Criterion

- Least Squares $=>$ cost is \# of misclassified patterns:
- Piecewise constant function of \mathbf{w} with discontinuities.
- Cannot find closed form solution for \mathbf{w} that minimizes cost.
- Cannot use gradient methods (gradient zero almost everywhere).
- Perceptron Criterion:
- Set labels to be +1 and -1 . Want $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}>0$ for $t_{n}=1$, and $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}<0$ for $t_{n}=-1$.
\Rightarrow would like to have $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n} t_{n}>0$ for all patterns.
\Rightarrow want to minimize $-\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n} t_{n}$ for all missclassified patterns M.
$\Rightarrow \operatorname{minimize} E_{p}(\mathbf{w})=-\sum_{n \in M} \mathbf{w}^{T} \mathbf{x}_{n} t_{n}$

Stochastic Gradient Descent

- Perceptron Criterion:

$$
\operatorname{minimize} E_{p}(\mathbf{w})=-\sum_{n \in M} \mathbf{w}^{T} \mathbf{x}_{n} t_{n}
$$

- Update parameters \mathbf{w} sequentially after each mistake:

$$
\begin{aligned}
\mathbf{w}^{(\tau+1)} & =\mathbf{w}^{(\tau)}-\eta \nabla E_{P}\left(\mathbf{w}^{(\tau)}, \mathbf{x}_{n}\right) \\
& =\mathbf{w}^{(\tau)}+\eta \mathbf{x}_{n} t_{n}
\end{aligned}
$$

- The magnitude of \mathbf{w} is inconsequential $\Rightarrow>$ can set $\eta=1$.

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}+\mathbf{x}_{n} t_{n} \cdots \cdots \cdots \cdots, \text { Prove it. }
$$

The Perceptron Algorithm: Two Classes

1.	initialize parameters $\mathbf{w}=0$
2.	for $n=1 \ldots \mathrm{~N}$
3.	$h_{n}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}\right)$
4.	if $h_{\mathrm{n}} \neq t_{n}$ then
5.	$\mathbf{w}=\mathbf{w}+t_{n} \mathbf{x}_{n}$

$$
\begin{aligned}
\operatorname{sgn}(z)=+1 & \text { if } z>0, \\
0 & \text { if } z=0, \\
-1 & \text { if } z<0
\end{aligned}
$$

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps. - see Theorem 1 (Block, Novikoff) in [Freund \& Schapire, 1999].

The Perceptron Algorithm: Two Classes

1.	initialize parameters $\mathbf{w}=0$
2. for $n=1 \ldots \mathrm{~N}$	
3.	$h_{n}=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}$
4.	
if $h_{\mathrm{n}} t_{n} \leq 0$ then	
5.	$\mathbf{w}=\mathbf{w}+t_{n} \mathbf{x}_{n}$

$$
\begin{aligned}
\operatorname{sgn}(z)=+1 & \text { if } z>0, \\
0 & \text { if } z=0, \\
-1 & \text { if } z<0
\end{aligned}
$$

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps. - see Theorem 1 (Block, Novikoff) in [Freund \& Schapire, 1999].

The Perceptron Algorithm: Two Classes

1. initialize parameters $\mathbf{w}=0$
2. for $n=1 \ldots \mathrm{~N}$
3. $h_{n}=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}$
4.
5.
6.
7.

$$
\begin{aligned}
\operatorname{sgn}(z)=+1 & \text { if } z>0 \\
0 & \text { if } z=0 \\
-1 & \text { if } z<0
\end{aligned}
$$

Repeat:
a) until convergence.
b) for a number of epochs E .

What is the impact of the perceptron update on the score $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}$ of the misclassified example \mathbf{x}_{n} ?

Linear vs. Non-linear Decision Boundaries

And

Xor

$$
\left.\begin{array}{c}
\varphi(\mathbf{x})=\left[1, x_{1}, x_{2}\right]^{T} \\
\mathbf{w}=\left[w_{0}, w_{1}, w_{2}\right]^{T}
\end{array}\right] \Rightarrow \mathbf{w}^{T} \varphi(\mathbf{x})=\left[w_{1}, w_{2}\right]^{T}\left[x_{1}, x_{2}\right]+w_{0}
$$

How to Find Non-linear Decision Boundaries

1) Perceptron with manually engineered features:

- Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:

- Quadratic kernels, Gaussian kernels.

> Deep Learning
3) Self-supervised feature learning (e.g. auto-encoders):

- Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:

- Automatically learned features.

Non-Linear Classification: XOR Dataset

$$
\mathbf{x}=\left[x_{1}, x_{2}\right]
$$

1) Manually Engineered Features: Add $x_{1} x_{2}$

$$
\mathbf{x}=\left[x_{1}, x_{2}, x_{1} x_{2}\right]
$$

Logistic Regression with Manually Engineered Features

$$
\mathbf{x}=\left[x_{1}, x_{2}, x_{1} x_{2}\right]
$$

Perceptron with Manually Engineered Features

Project $\mathbf{x}=\left[x_{1}, x_{2}, x_{1} x_{2}\right]$ and decision hyperplane back to $\mathbf{x}=\left[x_{1}, x_{2}\right]$

Classifiers \& Margin

- Which classifier has the smallest generalization error?
- The one that maximizes the margin [Computational Learning Theory]
- margin $=$ the distance between the decision boundary and the closest sample.

Averaged Perceptron: Two Classes

1. initialize parameters $\mathbf{w}=0, \tau=1, \overline{\mathbf{w}}=0 \quad \begin{array}{r}\operatorname{sgn}(z)=+1\end{array} \quad \begin{array}{r}\text { if } z>0, \\ 0 \text { if } z=0, \\ -1\end{array}$
2. for $n=1 \ldots \mathrm{~N}$
3. $h_{n}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}\right)$
4. if $h_{n} \neq t_{n}$ then
$\mathbf{w}=\mathbf{w}+t_{n} \mathbf{x}_{n}$
5. $\overline{\mathbf{w}}=\overline{\mathbf{w}}+\mathbf{w}$
6. $\tau=\tau+1$

Repeat:
a) until convergence.
b) for a number of epochs E.
8. return $\overline{\mathbf{w}} / \tau$

During testing: $\mathrm{h}(\mathbf{x})=\operatorname{sgn}\left(\overline{\mathbf{w}}^{T} \mathbf{x}\right)$

2) Kernel Methods with Non-Linear Kernels

- Perceptrons, SVMs can be 'kernelized':

1. Re-write the algorithm such that during training and testing feature vectors \mathbf{x}, \mathbf{y} appear only in dot-products $\mathbf{x}^{\mathrm{T}} \mathbf{y}$.
2. Replace dot-products $\mathbf{x}^{\mathrm{T}} \mathbf{y}$ with non-linear kernels $\mathrm{K}(\mathbf{x}, \mathbf{y})$:

- K is a kernel if and only if $\exists \varphi$ such that $\mathrm{K}(\mathbf{x}, \mathbf{y})=\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$
$-\varphi$ can be in a much higher dimensional space.
» e.g. combinations of up to k original features
$-\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ can be computed efficiently without enumerating $\varphi(\mathbf{x})$ or $\varphi(\mathbf{y})$.

The Perceptron Representer Theorem

1. initialize parameters $\mathbf{w}=0$
2. for $n=1 \ldots \mathrm{~N}$
3. $h_{n}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}\right)$
4. if $h_{n} \neq t_{n}$ then
5. $\quad \mathbf{w}=\mathbf{w}+t_{n} \mathbf{x}_{\mathrm{n}}$

Repeat:
a) until convergence.
b) for a number of epochs E.

Loop invariant: \mathbf{w} is a weighted sum of training vectors:
$\mathbf{w}=\sum_{n=1 . . N} \alpha_{n} t_{n} \mathbf{x}_{n} \Rightarrow \mathbf{w}^{T} \mathbf{x}=\sum_{n=1 . . N} \alpha_{n} t_{n} \mathbf{x}_{n}^{T} \mathbf{x}$

Kernel Perceptron: Two Classes

1. define $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}=\sum_{j=1 . . N} \alpha_{j} t_{j} \mathbf{x}_{j}^{T} \mathbf{x}=\sum_{j=1 . . N} \alpha_{j} t_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
2. initialize dual parameters $\alpha_{n}=0$
3. for $n=1 \ldots \mathrm{~N}$
4. $\quad h_{n}=\operatorname{sgn} f\left(\mathbf{x}_{n}\right)$
5. if $h_{n} \neq t_{n}$ then
6. $\alpha_{n}=\alpha_{n}+1$

Repeat:
a) until convergence.
b) for a number of epochs E.

During testing: $h(\mathbf{x})=\operatorname{sgn} f(\mathbf{x})$

Kernel Perceptron: Two Classes

1. define $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}=\sum_{j=1 . . N} \alpha_{j} t_{j} \mathbf{x}_{j}^{T} \mathbf{x}=\sum_{j=1 . . N} \alpha_{j} t_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
2. initialize dual parameters $\alpha_{n}=0$
3. for $n=1 \ldots \mathrm{~N}$
4. $\quad h_{n}=\operatorname{sgn} f\left(\mathbf{x}_{n}\right)$
5. if $h_{n} \neq t_{n}$ then
6. $\alpha_{n}=\alpha_{n}+1$
Repeat:
a) until convergence.
b) for a number of epochs E.

Let $S=\left\{j \mid \alpha_{j} \neq 0\right\}$ be the set of support vectors. Then $f(\mathbf{x})=\sum_{j \in S} \alpha_{j} t_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
During testing: $h(\mathbf{x})=\operatorname{sgn} f(\mathbf{x})$

Kernel Perceptron: Equivalent Formulation

1. define $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}=\sum_{j} \alpha_{j} \mathbf{x}_{j}^{T} \mathbf{x}=\sum_{j} \alpha_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
2. initialize dual parameters $\alpha_{n}=0$
3. for $n=1 \ldots \mathrm{~N}$
4. $\quad h_{n}=\operatorname{sgn} f\left(\mathbf{x}_{n}\right)$
5. if $h_{n} \neq t_{n}$ then
6. $\alpha_{n}=\alpha_{n}+t_{n}$

Repeat:

a) until convergence.
b) for a number of epochs E .

During testing: $h(\mathbf{x})=\operatorname{sgn} f(\mathbf{x})$

The Perceptron vs. Boolean Functions

Perceptron with Quadratic Kernel

- Discriminant function:

$$
f(\mathbf{x})=\sum_{i} \alpha_{i} t_{i} \varphi\left(\mathbf{x}_{i}\right)^{T} \varphi(\mathbf{x})=\sum_{i} \alpha_{i} t_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- Quadratic kernel:

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

\Rightarrow corresponding feature space $\varphi(\mathbf{x})=$?
conjunctions of two atomic features

Perceptron with Quadratic Kernel

Quadratic Kernels

- Circles, hyperbolas, and ellipses as separating surfaces:
$K(\mathbf{x}, \mathbf{y})=\left(1+\mathbf{x}^{T} \mathbf{y}\right)^{2}=\varphi(x)^{T} \varphi(y)$

$$
\varphi(x)=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right]^{T}
$$

Quadratic Kernels

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}=\varphi(\mathbf{x})^{T} \varphi(\mathbf{y})
$$

Explicit Features vs. Kernels

- Explicitly enumerating features can be prohibitive:
$-1,000$ basic features for $\mathbf{x}^{\mathrm{T}} \mathbf{y}=>500,500$ quadratic features for $\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}$
- Much worse for higher order features.
- Solution:
- Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
- $\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}$ takes 1001 multiplications.
- $\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ in feature space takes 500,500 multiplications.

Kernel Functions

- Definition:

A function $k: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ is a kernel function if there exists a feature mapping $\varphi: \mathrm{X} \rightarrow \mathrm{R}^{\mathrm{n}}$ such that:

$$
k(\mathbf{x}, \mathbf{y})=\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})
$$

- Theorem:
$k: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ is a valid kernel \Leftrightarrow the Gram matrix K whose elements are given by $k\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)$ is positive semidefinite for all possible choices of the set $\left\{\mathbf{x}_{\mathrm{n}}\right\}$.

Kernel Examples

- Linear kernel: $K(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{y}$
- Quadratic kernel: $K(\mathbf{x}, \mathbf{y})=\left(c+\mathbf{x}^{T} \mathbf{y}\right)^{2}$
- contains constant, linear terms and terms of order two ($\mathrm{c}>0$).
- Polynomial kernel: $K(\mathbf{x}, \mathbf{y})=\left(c+\mathbf{x}^{T} \mathbf{y}\right)^{M}$
- contains all terms up to degree $M(\mathrm{c}>0)$.
also called r or γ
- Gaussian kernel: $K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} 2 \sigma^{2}\right)$
- Corresponding feature space has infinite dimensionality.
- Prove using Taylor expansion of exponential.

$$
\varphi(x)=e^{-\gamma x^{2}}\left[1, \sqrt{2 \gamma} x, \sqrt{2} \gamma x^{2}, \ldots\right]
$$

Techniques for Constructing Kernels

Given valid kernels $k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ and $k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, the following new kernels will also be valid:

$$
\begin{align*}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =c k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \tag{6.13}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =f(\mathbf{x}) k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) \tag{6.14}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =q\left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right) \tag{6.15}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\exp \left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right) \tag{6.16}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \tag{6.17}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \tag{6.18}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =k_{3}\left(\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right) \tag{6.19}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}^{\prime} \tag{6.20}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =k_{a}\left(\mathbf{x}_{a}, \mathbf{x}_{a}^{\prime}\right)+k_{b}\left(\mathbf{x}_{b}, \mathbf{x}_{b}^{\prime}\right) \tag{6.21}\\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =k_{a}\left(\mathbf{x}_{a}, \mathbf{x}_{a}^{\prime}\right) k_{b}\left(\mathbf{x}_{b}, \mathbf{x}_{b}^{\prime}\right) \tag{6.22}
\end{align*}
$$

where $c>0$ is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\boldsymbol{\phi}(\mathbf{x})$ is a function from \mathbf{x} to $\mathbb{R}^{M}, k_{3}(\cdot, \cdot)$ is a valid kernel in $\mathbb{R}^{M}, \mathbf{A}$ is a symmetric positive semidefinite matrix, \mathbf{x}_{a} and \mathbf{x}_{b} are variables (not necessarily disjoint) with $\mathrm{x}=\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$, and k_{a} and k_{b} are valid kernel functions over their respective spaces.

Kernels over Discrete Structures

- Subsequence Kernels [Lodhi et al., JMLR 2002]:
$-\Sigma$ is a finite alphabet (set of symbols).
- $\mathbf{x}, \mathbf{y} \in \Sigma^{*}$ are two sequences of symbols with lengths $|\mathbf{x}|$ and $|\mathbf{y}|$
- $k(\mathbf{x}, \mathbf{y})$ is defined as the number of common substrings of length n.
- $k(\mathbf{x}, \mathbf{y})$ can be computed in $\mathrm{O}(n|\mathbf{x} \| \mathbf{y}|)$ time complexity.
- Tree Kernels [Collins and Duffy, NIPS 2001]:
- T_{1} and T_{2} are two trees with N_{1} and N_{2} nodes respectively.
- $k\left(T_{1}, T_{2}\right)$ is defined as the number of common subtrees.
- $k\left(T_{1}, T_{2}\right)$ can be computed in $\mathrm{O}\left(N_{1} N_{2}\right)$ time complexity.
- in practice, time is linear in the size of the trees.

Supplementary Reading

- PRML Chapter 6:
- Section 6.1 on dual representations for linear regression models.
- Section 6.2 on techniques for constructing new kernels.

Linear Discriminant Functions: Multiple Classes ($\mathrm{K}>2$)

1) Train K or $\mathrm{K}-1$ one-versus-the-rest binary classifiers.
2) Train $\mathrm{K}(\mathrm{K}-1) / 2$ one-versus-one binary classifiers.
3) Train K linear functions:

$$
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \varphi(\mathbf{x})+w_{k 0}
$$

- Decision:
$\mathbf{x} \in \mathrm{C}_{\mathrm{k}}$ if $y_{k}(\mathbf{x})>y_{j}(\mathbf{x})$, for all $j \neq k$.
\Rightarrow decision boundary between classes C_{k} and C_{j} is hyperplane defined by $y_{k}(\mathbf{x})=y_{j}(\mathbf{x})$ i.e. $\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right)^{T} \varphi(\mathbf{x})+\left(w_{k 0}-w_{j 0}\right)=0$
\Rightarrow same geometrical properties as in binary case.

Linear Discriminant Functions: Multiple Classes ($\mathrm{K}>2$)

4) More general ranking approach:

$$
y(\mathbf{x})=\arg \max _{t \in T} \mathbf{w}^{T} \varphi(\mathbf{x}, t) \quad \text { where } T=\left\{c_{1}, c_{2} \ldots, c_{K}\right\}
$$

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input \mathbf{x}), assuming inference can be done efficiently.

The Perceptron Algorithm: K classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\arg \max _{i \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5.

$$
\left.\mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}\right)\right]
$$

Repeat:
a) until convergence.
b) for a number of epochs E.

During testing:

$$
t^{*}=\arg \max _{t \in T} \mathbf{w}^{T} \phi(\mathbf{x}, t)
$$

Averaged Perceptron: K classes

1. initialize parameters $\mathbf{w}=0, \tau=1, \overline{\mathbf{w}}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\arg \max _{t \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5.

$$
\mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}\right)
$$

6. $\quad \overline{\mathbf{w}}=\overline{\mathbf{w}}+\mathbf{w}$
7. $\tau=\tau+1$
Repeat:
a) until convergence.
b) for a number of epochs E.
8. return $\overline{\mathbf{w}} / \tau$

During testing: $t^{*}=\arg \max _{t \in T} \overline{\mathbf{w}}^{T} \varphi(\mathbf{x}, t)$

The Perceptron Algorithm: K classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $c_{j}=\arg \max _{t \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$
4. if $c_{\mathrm{j}} \neq t_{i}$ then
5. $\quad \mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, c_{j}\right)$

Repeat:
a) until convergence.
b) for a number of epochs E.

Loop invariant: \mathbf{w} is a weighted sum of training vectors:

$$
\begin{aligned}
& \mathbf{w}=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)-\phi\left(\mathbf{x}_{i}, c_{j}\right)\right) \\
& \Rightarrow \quad \mathbf{w}^{T} \phi(\mathbf{x}, t)=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right)
\end{aligned}
$$

Kernel Perceptron: K classes

1. define $f(\mathbf{x}, t)=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right)$
2. initialize dual parameters $\alpha_{i j}=0$
3. for $i=1 \ldots n$
4. $\mathrm{c}_{\mathrm{j}}=\arg \max _{t \in T} f\left(\mathbf{x}_{i}, t\right)$
5. if $y_{\mathrm{i}} \neq t_{i}$ then
6. $\quad \alpha_{i j}=\alpha_{i j}+1$
Repeat:
a) until convergence.
b) for a number of epochs E.

During testing:

$$
t^{*}=\arg \max _{t \in T} f(\mathbf{x}, t)
$$

Kernel Perceptron: K classes

- Discriminant function:

$$
\begin{aligned}
f(\mathbf{x}, t) & =\sum_{i, j} \alpha_{i, j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right) \\
& =\sum_{i, j} \alpha_{i j}\left(K\left(\mathbf{x}_{i}, t_{i}, \mathbf{x}, t\right)-K\left(\mathbf{x}_{i}, c_{j}, \mathbf{x}, t\right)\right)
\end{aligned}
$$

where:

$$
\begin{array}{r}
K\left(\mathbf{x}_{i}, t_{i}, \mathbf{x}, t\right)=\varphi^{T}\left(\mathbf{x}_{i}, t_{i}\right) \varphi(\mathbf{x}, t) \\
K\left(\mathbf{x}_{i}, y_{i}, \mathbf{x}, t\right)=\phi^{T}\left(\mathbf{x}_{i}, y_{i}\right) \phi(\mathbf{x}, t)
\end{array}
$$

