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Linear Discriminant Classification

Use a linear function of the input vector:
h(x) = w' o (x) + wg

weight vector bias = —threshold

Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

Properties:
— w 1s orthogonal to vectors lying within the decision surface.

— w, controls the location of the decision hyperplane.
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Geometric Interpretation

h(x) = wix + w,




Linear Discriminant Classification:
Two Classes (K = 2)

* What algorithms can be used to learn y(x) = wip(x) + w,?

Assume a training dataset of N= N, + N, examples in C; and C,.

— Perceptron:
* Voted/Averaged Perceptron

« Kernel Perceptron

— Support Vector Machines:

e Linear
 Kernel

— Fisher’s Linear Discriminant




Linear Discriminant Classification

Xo(1 Wo output
function
1@ il 1
o > L ~@ |
x, @ e Ewl.xi _ 2(x) ={ 1 ifw'x >0 |
f(z)={‘11 ii zg —1 otherwise |

* Assume classes'T = {c;, ¢} = {1, —1}.
e Sl raining SERIS (X{%), (X5, t5), - - (X0 Lok
Xl I i, , ]

t(X) = sgn(w'x) = sgn(wy + w; x; + ... + w; x)

N

a linear discriminant function 53l




[Linear Discriminant Classification:
Objective Function

=

e Learning = finding the “right” parameters w™ = [wg, wy, ..., w; ]

— Find w that minimizes an error function E(w) which measures the
misfit between £(x,) and ¢,

« Least Squares error function?

—1 otherwise

N
1 L
Jw) = M E_l (f(xn) A tn)Z £(x) ={ I ifwx=>0

1 4 times # of mistakes




Least Squares vs. Perceptron Criterion

=

* Least Squares => cost 1s # of misclassified patterns:
— Piecewise constant function of w with discontinuities.
— Cannot find closed form solution for w that minimizes cost.

— Cannot use gradient methods (gradient zero almost everywhere).

* Perceptron Criterion:

— Set labels to be +1 and — 1. Want w'x, >0 forz,= 1, and w'x, < 0
fort,=—1.

= would like to have w'x,z, > 0 for all patterns.
— want to minimize —w'x, ¢, for all missclassified patterns M.
T

= minimize E,(W) = — X ,,emy W' Xpty




Stochastic Gradient Descent

* Perceptron Criterion:

e b

minimize E,(W) = — Yey W

e Update parameters w sequentially after each mistake:
W(r+l) o W(‘v) & UVEP (W(t),Xn)

=w® +nx,t,

 [The magnitude of w 1s inconsequential (=> can set 77 = 1.

.

T+1) " 7)WL
wtD = w@ 4 Xnbip-.._

1 Prove it.




The Perceptron Algorithm: Two Classes

s sgn(z) =+1 ifz>0,
initialize parameters w = 0 0 ifz=0

forn=1...N g -1 ifz<0
h,=sgn(w'x,) Repeat:

. a) until convergence.
if 1, # 7, then b) for a number of epochs E.
W=w+17X,

S

AN ok e

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




The Perceptron Algorithm: Two Classes

sgn(z) =+1 ifz>0,

b) for a number of epochs E.

1. initialize parameters w = 0 0 ifz=0.
25 “forgne1 . BN 5 =L dtz=l
B h,=w'x, Repeat:
4 if 41 <0 then — a) until convergence.

: nln =
£%

W=w+17X,

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




The Perceptron Algorithm: Two Classes

1. initialize parameters w =0 $gn(@) = +é ;Zig ’
2 forgn=1 . N 7 -1 ifz<0
B h,=w'x,
4, if ,>0andz,=—1 Repeat:
— a) until convergence.

. W=W—X
2 > e @ e & 1 b) for a number of epochs E.
6. if h,<0and? =+
7. W=W+X,

What 1s the impact of the perceptron update on the score
w!x, of the misclassified example x,,?




Linear vs. Non-linear Decision Boundaries




How to Find Non-linear Decision Boundaries

[

1) Perceptron with manually engineered features:

— Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:

—  Quadratic kernels, Gaussian kernels.

Deep Learning

3) Self-supervised feature learning (e.g. auto-encoders):

—  Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
— Automatically learned features.




Non-Linear Classification: XOR Dataset

X =[x, X,]




1) Manually Engineered Features: Add x,x,

X = [x1, X5, X1X,]




Logistic Regression with Manually
Engineered Features

X = [x1, X5, X1X,]




Perceptron with Manually Engineered Features

Project x =[xy, x,, x;X,] and decision hyperplane back to x =[x, x,]




Classifiers & Margin

* Which classifier has the smallest generalization error?
— The one that maximizes the margin [Computational Learning Theory]

« margin = the distance between the decision boundary and the
closest sample.




Averaged Perceptron: Two Classes

|

return w/r

During testing: h(x) = sgn(w’x)

sgn(z)=+1 ifz>0,

1. initialize parameters w=0,1=1, w=0 0 ifz=0.
2.5 fornEl . BN 7 —1ifz<0
5. h,=sgn(w'x,) Repeat:

! a) until convergence.
4 if 7, = £, then _ b) for a number of epochs E.
g% w=w-+17X,
6. W=W+W
g T —"tapl
8.




2) Kernel Methods with Non-Linear Kernels

=

* Perceptrons, SVMs can be ‘kernelized’:

IS

Re-write the algorithm such that during training and testing
feature vectors x, y appear only in dot-products x'y.

Replace dot-products x'y with non-linear kernels K(x, y):
« K is a kernel if and only if 3¢ such that K(x, y) = @(x)" ¢(y)
— @ can be in a much higher dimensional space.
» €.g. combinations of up to k£ original features

— @(x)' ¢(y) can be computed efficiently without
enumerating @(x) or @(y).




The Perceptron Representer Theorem

initialize parameters w = (
forn=1...N g
h,=sgn(w'x,) Repeat:

S

a) until convergence.

if hn Z i then b) for a number of epochs E.

wW=w+17X,

AN ok e

Loop invariant: w 1s a weighted sum of training vectors:

W= 2 At X, = WX = 2 a,t, XX
n=1.N n=1.N




Kernel Perceptron: Two Classes

=

1. define f(x) = wlx = z oOjtiX; X = z a;t;K (X;, X)

j=1.N j=1.N

Repeat:
a) until convergence.
b) for a number of epochs E.

2. initialize dual parameters «, =0
3. fornp="1... N |

4, h,=sgn f(x,)

D, if 1, # t, then )

6. cl="e Ll 3

During testing: A(x) = sgn f(X)




Kernel Perceptron: Two Classes

=

1. define f(x) = wix = z ajtjijx = z ajth(x-,x)

s j=1.N j=1.N
2. initialize dual parameters «, =0
3. fornp="1... N |
4, h,=sgn f(x,) Repeat:
: — a) until convergence.
S. if 7, # 7, then b) for a number of epochs E.
6. 07, =500 = | 3

Let S = {jla; # 0} be the set of support vectors. Then f(X) = Zajtjl((xj,x)
JES

During testing: 4(X) = sgn f(X)




Kernel Perceptron: Equivalent Formulation

1. define [f(x)=wlx= z anij — EajK(x-,x)

J J

Repeat:
a) until convergence.
b) for a number of epochs E.

2. initialize dual parameters «, =0
3. fornp="1... N |

4, h,=sgn f(x,)

D, if 1, # t, then )

6. =" Lt 3

During testing: A(x) = sgn f(X)




The Perceptron vs. Boolean Functions




Perceptron with Quadratic Kernel

 Discriminant function:

f®) =2 atp(x) o(x) =3 ot K(x,,x)
* (Quadratic kernel:
K(x,y)=(x"y)’ = (X, + X%, )’

—> corresponding feature space @(x) = ?

4

conjunctions of two atomic features




Perceptron with Quadratic Kernel
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Linear kernel K(x,y)=x"y

P(x)




Quadratic Kernels

 Circles, hyperbolas, and ellipses as separating surfaces:
K(x,y)=(1+x"y) =0(x) o(»)
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Quadratic Kernels

K(x,y)=(x"y)’ =p(x) o(y)
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Explicit Features vs. Kernels

[

» Explicitly enumerating features can be prohibitive:
— 1,000 basic features for x'y => 500,500 quadratic features for (x'y)?

— Much worse for higher order features.

e Solution:

— Do not compute the feature vectors, compute kernels instead (i.e.
compute dot products between implicit feature vectors).

« (xTy)? takes 1001 multiplications.
* o(x)! ¢(y) in feature space takes 500,500 multiplications.




Kernel Functions

[

e Definition:

A function k£ : X x X — R 1s a kernel function if there
exists a feature mapping ¢ : X — R such that:

k(x,y) = p(x) ' Ay)

e Theorem:

k: X x X — R s avalid kernel < the Gram matrix K
whose elements are given by A(X,,X,,) 1S positive
semidefinite for all possible choices of the set {x,}.




Kernel Examples

Linear kernel: K(x,y)=x'y

Quadratic kernel: K(x,y)=(c+x"y)’

— contains constant, linear terms and terms of order two (¢ > 0).

Polynomial kernel: X(x,y)=(c+x"y)"

- 1 11
— contains all terms up to degree M (c > 0). o eelliedl 7 ey

; 9
Gaussian kernel: K(X,y) = exp(—Hx — yH
— Corresponding feature space has infinite dimensionality.

— Prove using Taylor expansion of exponential.

o(x) = e‘yxz[l,\/Z_yx A2y x?, |




Techniques for Constructing Kernels

Given valid kernels kq(x,x’) and ko (x, x), the following new kernels will also
be valid:

k(x,x") ckq(x,x") (6.13)
k(x,x") = f(x)ki(x,x")f(x) (6.14)
k(x,x") = q(ki(x,x)) (6.15)
k(x,x") = exp(ki(x,x")) (6.16)
k(x,x") = ki(x,x")+ ko(x,x") (6.17)
k(x,x") = ki(x,x")ko(x,x") (6.18)
kox) = ks (S0, B(x)) (619
k(x,x') = xTAx (6.20)
k(x,x") = kq(xa,%x))+ kp(xp,x}) (6.21)
k(x,x") ka(Xas %, )kp(xp, x},) (6.22)

where ¢ > 0is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-
ative coefficients, ¢(x) is a function from x to RM | ks(-,-) is a valid kernel in
RM Aisa symmetric positive semidefinite matrix, x, and x; are variables (not
necessarily disjoint) with x = (x,,x3), and k, and & are valid kernel functions
over their respective spaces.

33




Kernels over Discrete Structures

(=

* Subsequence Kernels [Lodhi et al., IMLR 2002]:
— 2 1s a finite alphabet (set of symbols).
— x,yeX* are two sequences of symbols with lengths |x| and |y|
— k(x,y) 1s defined as the number of common substrings of length #.
— k(x,y) can be computed in O(n|x||y|) time complexity.

e Tree Kernels [Collins and Duffy, NIPS 2001]:
— T, and T, are two trees with N, and N, nodes respectively.
— Kk(T,, T,) 1s defined as the number of common subtrees.
— Kk(T,, T,) can be computed in O(N,N,) time complexity.

— 1n practice, time is linear in the size of the trees.




Supplementary Reading

« PRML Chapter 6:

— Section 6.1 on dual representations for linear regression
models.

— Section 6.2 on techniques for constructing new kernels.







[Linear Discriminant Functions:
Multiple Classes (K > 2)

=

1) Train K or K—1 one-versus-the-rest binary classifiers.

2) Tramn K(K-1)/2 one-versus-one binary classifiers.

3) Train K linear functions:
Ye(X) = W o(X) +w,

e Decision:
x € Cyif yu(x) > y(x), for all j # k.
— decision boundary between classes C; and C; 1s hyperplane defined
by yi(x)=y(x)ie. (w, — wj)T¢(x) + (W —w,;0) =0
—> same geometrical properties as in binary case.




[Linear Discriminant Functions:
Multiple Classes (K > 2)

[

4) More general ranking approach:

y(x) = arg max w p(x,t) where T ={c,c,...,cp}
te

e It subsumes the approach with K separate linear functions.

e Useful when T 1s very large (e.g. exponential in the size
of mput x), assuming inference can be done efficiently.




The Perceptron Algorithm: K classes

[

1. initialize parameters w = (
25 Mowg =L .. W 7
3. yj=argmaxw ¢o(X,,1) Repeat:
3 i< — a) until convergence.
4 ify; # ¢; then b) for a number of epochs E.
5 W =W+t @X;,l) — oX;)5)

During testing:

t =argmaxw ¢(X,t)
teT




Averaged Perceptron: K classes

|

1. initialize parametersw=0,t1=1, w=0

2510 =1 .. % 7

B y; = arg IItlEET{X WT(p(Xl., 1) Repeat:

Lty hen D e
S. W =W+ @(X;,1;) — ¢X;,0;)

6. W=W-+W

Yo: T — Tl

8.

return w/ 7

During testing: ¢ =argmaxw ¢(X,?)
teT




The Perceptron Algorithm: K classes

initialize parameters w = (

forwi =1 .. % 7

vl z5 .
¢j = argmax w o(X;,1) . R)epeat:[.l
e a) until convergence.
if < g e b) for a number of epochs E.

W =W+ (Xp,t) — ¢X;, ;)

AN ok e

Loop invariant: w is a weighted sum of training vectors:

W= Y o ($(X,, 1) = (X))
= W) = Dt (B0x,. 1) .0~ p(x,.c,) Px.0)




Kernel Perceptron: K classes

I define f(x.0)= ¥, (9(x,. 1) p(x.0) - p(x,.c;) P(x.1))

Repeat:

a) until convergence.
b) for a number of epochs E.

2. initialize dual pafameters a;=0
5. foxge=rl". .. 1 3

4. C; = argntlee}xf(xi,t) g

S, if y; # ¢; then

0. a;=a;+ 1 A
During testing:

t =argmax f(x,?)

=5




Kernel Perceptron: K classes

[

 Discriminant function:

Fx0) =Y a, ($(x,, 1) (X1 = p(X.¢,) P(X,1))

= EGU(K(XZ, tl,X,t)_K(Xlac]’XSt))
i.j
where:

K(x,,1,,%,0) = @' (X,,1,)p(X,1)

K(Xi’yi’x’t) & ¢T(Xi’yi)¢(xat)







