Machine Learning ITCS 6156/8156

The Perceptron Algorithm The Kernel Trick

Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

Linear Discriminant Classification

• Use a linear function of the input vector:

Decision:

$$\mathbf{x} \in C_1$$
 if $h(\mathbf{x}) \ge 0$, otherwise $\mathbf{x} \in C_2$.
 \Rightarrow decision boundary is hyperplane $h(\mathbf{x}) = 0$.

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - w_0 controls the location of the decision hyperplane.

Geometric Interpretation

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

Linear Discriminant Classification: Two Classes (K = 2)

- What algorithms can be used to learn $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \varphi(\mathbf{x}) + w_0$? Assume a training dataset of $N = N_1 + N_2$ examples in C_1 and C_2 .
 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron
 - Support Vector Machines:
 - Linear
 - Kernel
 - Fisher's Linear Discriminant

Linear Discriminant Classification

- Assume classes $T = \{c_1, c_2\} = \{1, -1\}.$
- Training set is $(x_1, t_1), (x_2, t_2), ... (x_n, t_n)$.

$$\mathbf{x} = [1, x_1, x_2, ..., x_k]^T$$

$$\hat{t}(\mathbf{x}) = sgn(\mathbf{w}^T \mathbf{x}) = sgn(w_0 + w_1 x_1 + ... + w_k x_k)$$

Linear Discriminant Classification: Objective Function

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, \dots, w_k]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $\hat{t}(\mathbf{x}_n)$ and t_n .
- Least Squares error function?

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\hat{t}(\mathbf{x}_n) - t_n)^2$$

$$\hat{t}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

4 times # of mistakes

Least Squares vs. Perceptron Criterion

- Least Squares => cost is # of misclassified patterns:
 - Piecewise constant function of w with discontinuities.
 - Cannot find closed form solution for w that minimizes cost.
 - Cannot use gradient methods (gradient zero almost everywhere).

Perceptron Criterion:

- Set labels to be +1 and -1. Want $\mathbf{w}^T \mathbf{x}_n > 0$ for $t_n = 1$, and $\mathbf{w}^T \mathbf{x}_n < 0$ for $t_n = -1$.
 - \Rightarrow would like to have $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n}t_{n} > 0$ for all patterns.
 - \Rightarrow want to minimize $-\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n}t_{n}$ for all missclassified patterns M.

$$\Rightarrow$$
 minimize $E_p(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n t_n$

Stochastic Gradient Descent

• Perceptron Criterion:

minimize
$$E_p(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n t_n$$

• Update parameters w sequentially after each mistake:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}^{(\tau)}, \mathbf{x}_n)$$
$$= \mathbf{w}^{(\tau)} + \eta \mathbf{x}_n t_n$$

• The magnitude of w is inconsequential => can set $\eta=1$.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \mathbf{x}_n t_n$$

Prove it.

The Perceptron Algorithm: Two Classes

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = sgn(\mathbf{w}^T \mathbf{x}_n)$$
4.
$$\mathbf{if} \ h_n \neq t_n \ \mathbf{then}$$

4. **if**
$$h_n \neq t_n$$
 then

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

The Perceptron Algorithm: Two Classes

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

3.
$$h_n = \mathbf{w}^T \mathbf{x}_n$$

4. **if** $h_n t_n \le 0$ **then**

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

The Perceptron Algorithm: Two Classes

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

4. **if**
$$h_n \ge 0$$
 and $t_n = -1$

5.
$$\mathbf{w} = \mathbf{w} - \mathbf{x}_n$$

6. **if**
$$h_n \le 0$$
 and $t_n = +1$

7.
$$\mathbf{w} = \mathbf{w} + \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

What is the impact of the perceptron update on the score $\mathbf{w}^{T}\mathbf{x}_{n}$ of the misclassified example \mathbf{x}_{n} ?

Linear vs. Non-linear Decision Boundaries

How to Find Non-linear Decision Boundaries

- 1) Perceptron with manually engineered features:
 - Quadratic features.
- 2) Kernel methods (e.g. SVMs) with non-linear kernels:
 - Quadratic kernels, Gaussian kernels.

Deep Learning

- 3) Self-supervised feature learning (e.g. auto-encoders):
 - Plug learned features in any linear classifier.
- 4) Neural Networks with one or more hidden layers:
 - Automatically learned features.

Non-Linear Classification: XOR Dataset

$$\mathbf{x} = [x_1, x_2]$$

1) Manually Engineered Features: Add x_1x_2

$$\mathbf{x} = [x_1, x_2, x_1 x_2]$$

Logistic Regression with Manually Engineered Features

$$\mathbf{x} = [x_1, x_2, x_1 x_2]$$

Perceptron with Manually Engineered Features

Project $\mathbf{x} = [x_1, x_2, x_1x_2]$ and decision hyperplane back to $\mathbf{x} = [x_1, x_2]$

Classifiers & Margin

- Which classifier has the smallest generalization error?
 - The one that maximizes the margin [Computational Learning Theory]
 - margin = the distance between the decision boundary and the closest sample.

Averaged Perceptron: Two Classes

1. **initialize** parameters
$$\mathbf{w} = 0$$
, $\tau = 1$, $\overline{\mathbf{w}} = 0$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = sgn(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$$

4. if
$$h_n \neq t_n$$
 then

5.
$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

$$6. \quad \overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$$

7.
$$\tau = \tau + 1$$

8. return $\overline{\mathbf{w}}/\tau$

During testing: $h(\mathbf{x}) = sgn(\overline{\mathbf{w}}^T\mathbf{x})$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

2) Kernel Methods with Non-Linear Kernels

- Perceptrons, SVMs can be 'kernelized':
 - 1. Re-write the algorithm such that during training and testing feature vectors \mathbf{x} , \mathbf{y} appear only in dot-products $\mathbf{x}^T\mathbf{y}$.
 - 2. Replace dot-products $\mathbf{x}^{\mathsf{T}}\mathbf{y}$ with non-linear kernels $\mathbf{K}(\mathbf{x},\mathbf{y})$:
 - K is a kernel if and only if $\exists \varphi$ such that $K(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^T \varphi(\mathbf{y})$
 - $-\varphi$ can be in a much higher dimensional space.
 - \gg e.g. combinations of up to k original features
 - $-\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ can be computed efficiently without enumerating $\varphi(\mathbf{x})$ or $\varphi(\mathbf{y})$.

The Perceptron Representer Theorem

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = sgn(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$$

4. if
$$h_n \neq t_n$$
 then

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

Repeat:

- a) until convergence.b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{n=1..N} \alpha_n t_n \mathbf{x}_n \Rightarrow \mathbf{w}^T \mathbf{x} = \sum_{n=1..N} \alpha_n t_n \mathbf{x}_n^T \mathbf{x}$$

Kernel Perceptron: Two Classes

1. **define**
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{j=1...N} \alpha_j t_j \mathbf{x}_j^T \mathbf{x} = \sum_{j=1...N} \alpha_j t_j K(\mathbf{x}_j, \mathbf{x})$$
2. **initialize** dual parameters $\alpha_n = 0$

- for n = 1 ... N
- 4. $h_n = sgn f(\mathbf{x}_n)$
- 5. if $h_n \neq t_n$ then
- $\alpha_n = \alpha_n + 1$ 6.

Repeat:

- a) until convergence.b) for a number of epochs E.

During testing: $h(\mathbf{x}) = sgn f(\mathbf{x})$

Kernel Perceptron: Two Classes

1. define
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{j=1..N} \alpha_j t_j \mathbf{x}_j^T \mathbf{x} = \sum_{j=1..N} \alpha_j t_j K(\mathbf{x}_j, \mathbf{x})$$

- initialize dual parameters $\alpha_n = 0$
- for n = 1 ... N
- 4. $h_n = sgn f(\mathbf{x}_n)$
- 5. if $h_n \neq t_n$ then
- 6. $\alpha_n = \alpha_n + 1$

Repeat:

- a) until convergence.b) for a number of epochs E.

Let
$$S = \{j | \alpha_j \neq 0\}$$
 be the set of *support vectors*. Then $f(\mathbf{x}) = \sum_{j \in S} \alpha_j t_j K(\mathbf{x}_j, \mathbf{x})$

During testing: $h(\mathbf{x}) = sgn f(\mathbf{x})$

Kernel Perceptron: Equivalent Formulation

1. **define**
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_j \alpha_j \mathbf{x}_j^T \mathbf{x} = \sum_j \alpha_j K(\mathbf{x}_j, \mathbf{x})$$

- initialize dual parameters $\alpha_n = 0$
- for n = 1 ... N
- 4. $h_n = sgn f(\mathbf{x}_n)$
- 5. if $h_n \neq t_n$ then
- 6. $\alpha_n = \alpha_n + t_n$

Repeat:

- a) until convergence.b) for a number of epochs E.

During testing: $h(\mathbf{x}) = sgn f(\mathbf{x})$

The Perceptron vs. Boolean Functions

Perceptron with Quadratic Kernel

Discriminant function:

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} t_{i} \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x}) = \sum_{i} \alpha_{i} t_{i} K(\mathbf{x}_{i}, \mathbf{x})$$

Quadratic kernel:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^2 = (x_1 y_1 + x_2 y_2)^2$$

 \Rightarrow corresponding feature space $\varphi(\mathbf{x}) = ?$

conjunctions of two atomic features

Perceptron with Quadratic Kernel

Linear kernel $K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$

Quadratic kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^2$

Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces:

$$K(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^{T} \mathbf{y})^{2} = \varphi(x)^{T} \varphi(y)$$

$$\varphi(x) = [1, \sqrt{2}x_{1}, \sqrt{2}x_{2}, x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2}]^{T}$$

$$\uparrow x_{2}$$

Quadratic Kernels

Explicit Features vs. Kernels

- Explicitly enumerating features can be prohibitive:
 - 1,000 basic features for $x^Ty => 500,500$ quadratic features for $(x^Ty)^2$
 - Much worse for higher order features.

Solution:

- Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
 - $(\mathbf{x}^{\mathrm{T}}\mathbf{y})^2$ takes 1001 multiplications.
 - $\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ in feature space takes 500,500 multiplications.

Kernel Functions

• Definition:

A function $k: X \times X \to R$ is a kernel function if there exists a feature mapping $\varphi: X \to R^n$ such that:

$$k(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$$

• Theorem:

 $k: X \times X \to R$ is a valid kernel \Leftrightarrow the Gram matrix K whose elements are given by $k(\mathbf{x}_n, \mathbf{x}_m)$ is *positive* semidefinite for all possible choices of the set $\{\mathbf{x}_n\}$.

Kernel Examples

- Linear kernel: $K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$
- Quadratic kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^2$
 - contains constant, linear terms and terms of order two (c > 0).
- Polynomial kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^M$
 - contains all terms up to degree M (c > 0).

also called r or γ

- Gaussian kernel: $K(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|^2 (2\sigma^2))$
 - Corresponding feature space has infinite dimensionality.
 - Prove using Taylor expansion of exponential.

$$\varphi(x) = e^{-\gamma x^2} \left[1, \sqrt{2\gamma} x, \sqrt{2\gamma} x^2, \dots \right]$$

Techniques for Constructing Kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
(6.13)

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.19)

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$$
(6.20)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Kernels over Discrete Structures

- Subsequence Kernels [Lodhi et al., JMLR 2002]:
 - $-\Sigma$ is a finite alphabet (set of symbols).
 - x,y∈Σ* are two sequences of symbols with lengths |x| and |y|
 - $-k(\mathbf{x},\mathbf{y})$ is defined as the number of common substrings of length n.
 - $-k(\mathbf{x},\mathbf{y})$ can be computed in $O(n|\mathbf{x}||\mathbf{y}|)$ time complexity.
- Tree Kernels [Collins and Duffy, NIPS 2001]:
 - T_1 and T_2 are two trees with N_1 and N_2 nodes respectively.
 - $-k(T_1, T_2)$ is defined as the number of common subtrees.
 - $-k(T_1, T_2)$ can be computed in $O(N_1N_2)$ time complexity.
 - in practice, time is linear in the size of the trees.

Supplementary Reading

- PRML Chapter 6:
 - Section 6.1 on dual representations for linear regression models.
 - Section 6.2 on techniques for constructing new kernels.

Linear Discriminant Functions: Multiple Classes (K > 2)

- 1) Train K or K-1 *one-versus-the-rest* binary classifiers.
- 2) Train K(K-1)/2 one-versus-one binary classifiers.
- 3) Train K linear functions:

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \varphi(\mathbf{x}) + w_{k0}$$

Decision:

$$\mathbf{x} \in C_k \text{ if } y_k(\mathbf{x}) > y_j(\mathbf{x}), \text{ for all } j \neq k.$$

- \Rightarrow decision boundary between classes C_k and C_j is hyperplane defined by $y_k(\mathbf{x}) = y_j(\mathbf{x})$ i.e. $(\mathbf{w}_k \mathbf{w}_j)^T \varphi(\mathbf{x}) + (w_{k0} w_{j0}) = 0$
- \Rightarrow same geometrical properties as in binary case.

Linear Discriminant Functions: Multiple Classes (K > 2)

4) More general ranking approach:

$$y(\mathbf{x}) = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}, t)$$
 where $T = \{c_1, c_2, ..., c_K\}$

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input x), assuming inference can be done efficiently.

The Perceptron Algorithm: K classes

- initialize parameters $\mathbf{w} = 0$
- **for** i = 1 ... n
- $y_i = \arg\max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$ 3.
- if $y_i \neq t_i$ then
- $\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) \varphi(\mathbf{x}_i, y_i)$ 5.

Repeat:

- until convergence.
- b) for a number of epochs E.

During testing:

$$t^* = \arg\max_{t \in T} \mathbf{w}^T \phi(\mathbf{x}, t)$$

Averaged Perceptron: K classes

1. initialize parameters
$$\mathbf{w} = 0$$
, $\tau = 1$, $\overline{\mathbf{w}} = 0$

2. **for**
$$i = 1 ... n$$

3.
$$y_i = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$$

4. if
$$y_i \neq t_i$$
 then

5.
$$\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, y_i)$$

6.
$$\overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$$

7.
$$\tau = \tau + 1$$

8. return $\overline{\mathbf{w}}/\tau$

During testing:
$$t^* = \arg \max_{t \in T} \overline{\mathbf{w}}^T \varphi(\mathbf{x}, t)$$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

The Perceptron Algorithm: K classes

- initialize parameters $\mathbf{w} = 0$
- **for** i = 1 ... n

3.
$$c_j = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$$

4. **if** $c_j \neq t_i$ **then**

4. if
$$c_i \neq t_i$$
 then

5.
$$\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, c_j)$$

Repeat:

- until convergence.
- b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{i,j} \alpha_{ij}(\phi(\mathbf{x}_i, t_i) - \phi(\mathbf{x}_i, c_j))$$

$$\Rightarrow \mathbf{w}^T \phi(\mathbf{x}, t) = \sum_{i,j} \alpha_{ij}(\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x}, t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x}, t))$$

Kernel Perceptron: K classes

1. **define**
$$f(\mathbf{x},t) = \sum_{i,j} \alpha_{ij} (\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x}, t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x}, t))$$

- initialize dual parameters $\alpha_{ij} = 0$
- **for** i = 1 ... n
- 4. $c_j = \arg \max_{t \in T} f(\mathbf{x}_i, t)$ Repeat: 5. $\mathbf{if} \ y_i \neq t_i \ \mathbf{then}$ a) until b) for
- $\alpha_{ij} = \alpha_{ij} + 1$ 6.

- a) until convergence.b) for a number of epochs E.

During testing:

$$t^* = \arg\max_{t \in T} f(\mathbf{x}, t)$$

Kernel Perceptron: K classes

Discriminant function:

$$f(\mathbf{x},t) = \sum_{i,j} \alpha_{i,j} (\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x}, t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x}, t))$$
$$= \sum_{i,j} \alpha_{ij} (K(\mathbf{x}_i, t_i, \mathbf{x}, t) - K(\mathbf{x}_i, c_j, \mathbf{x}, t))$$

where:

$$K(\mathbf{x}_i, t_i, \mathbf{x}, t) = \varphi^T(\mathbf{x}_i, t_i) \varphi(\mathbf{x}, t)$$

$$K(\mathbf{x}_i, y_i, \mathbf{x}, t) = \phi^T(\mathbf{x}_i, y_i)\phi(\mathbf{x}, t)$$