Machine Learning
ITCS 6156/8156

The Perceptron Algorithm

The Kernel Trick

Razvan C. Bunescu
Department of Computer Science @ CCI

razvan.bunescu@uncc.edu
Linear Discriminants Classification

- Use a linear function of the input vector:
 \[h(x) = w^T \varphi(x) + w_0 \]

- Decision:
 \[x \in C_1 \text{ if } h(x) \geq 0, \text{ otherwise } x \in C_2. \]
 \[\Rightarrow \text{ decision boundary is hyperplane } h(x) = 0. \]

- Properties:
 - \(w \) is orthogonal to vectors lying within the decision surface.
 - \(w_0 \) controls the location of the decision hyperplane.
Geometric Interpretation

\[h > 0 \]
\[h = 0 \]
\[h < 0 \]

\[\mathcal{R}_1 \]
\[\mathcal{R}_2 \]

\[\mathbf{x} \]
\[\mathbf{w} \]
\[\mathbf{x}_{\perp} \]

\[\frac{h(x)}{||\mathbf{w}||} \]

\[-\frac{w_0}{||\mathbf{w}||} \]
Linear Discriminant Classification: Two Classes (K = 2)

- What algorithms can be used to learn \(y(x) = w^T \varphi(x) + w_0 \)?
 Assume a training dataset of \(N = N_1 + N_2 \) examples in \(C_1 \) and \(C_2 \).

 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron
 - Support Vector Machines:
 - Linear
 - Kernel
 - Fisher’s Linear Discriminant
Linear Discriminant Classification

- Assume classes \(T = \{c_1, c_2\} = \{1, -1\} \).
- Training set is \((x_1, t_1), (x_2, t_2), \ldots (x_n, t_n)\).
\[
x = [1, x_1, x_2, \ldots, x_k]^T
\]
\[
\hat{t}(x) = sgn(w^Tx) = sgn(w_0 + w_1 x_1 + \ldots + w_k x_k)
\]

A linear discriminant function
Linear Discriminant Classification: Objective Function

- Learning = finding the “right” parameters \(\mathbf{w}^T = [w_0, w_1, \ldots, w_k] \)
 - Find \(\mathbf{w} \) that minimizes an error function \(E(\mathbf{w}) \) which measures the misfit between \(h(x_n, \mathbf{w}) \) and \(t_n \).
 - Expect that \(h(x, \mathbf{w}) \) performing well on training examples \(x_n \Rightarrow h(x, \mathbf{w}) \) will perform well on arbitrary test examples \(x \in X \).

- **Least Squares** error function?

\[
E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(x_n, \mathbf{w}) - t_n\}^2
\]

2 x # of mistakes
Least Squares vs. Perceptron Criterion

- **Least Squares** => cost is # of misclassified patterns:
 - Piecewise constant function of \(\mathbf{w} \) with discontinuities.
 - Cannot find closed form solution for \(\mathbf{w} \) that minimizes cost.
 - Cannot use gradient methods (gradient zero almost everywhere).

- **Perceptron Criterion**:
 - Set labels to be +1 and \(-1\). Want \(\mathbf{w}^T \mathbf{x}_n > 0 \) for \(t_n = 1 \), and \(\mathbf{w}^T \mathbf{x}_n < 0 \) for \(t_n = -1 \).
 \[\Rightarrow \] would like to have \(\mathbf{w}^T \mathbf{x}_n t_n > 0 \) for all patterns.
 \[\Rightarrow \] want to minimize \(-\mathbf{w}^T \mathbf{x}_n t_n\) for all misclassified patterns \(M \).

\[\Rightarrow \text{minimize } E_p(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n t_n \]
Stochastic Gradient Descent

- **Perceptron Criterion:**
 \[
 \text{minimize } E_P(w) = -\sum_{n\in M} w^T x_n t_n
 \]

- Update parameters \(w \) sequentially after each mistake:
 \[
 w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E_P(w^{(\tau)}, x_n)
 = w^{(\tau)} + \eta x_n t_n
 \]

- The magnitude of \(w \) is inconsequential \(\Rightarrow \) set \(\eta = 1 \).
 \[
 w^{(\tau+1)} = w^{(\tau)} + x_n t_n
 \]
The Perceptron Algorithm: Two Classes

1. **initialize** parameters $\mathbf{w} = 0$
2. **for** $n = 1 \ldots N$
3. \[h_n = \text{sgn}(\mathbf{w}^T \mathbf{x}_n) \]
4. **if** $h_n \neq t_n$ **then**
5. \[\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n \]

Repeat:
 a) until convergence.
 b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

$\text{sgn}(z) = +1$ if $z > 0$,
 0 if $z = 0$,
 -1 if $z < 0$
The Perceptron Algorithm: Two Classes

1. initialize parameters $w = 0$
2. for $n = 1 \ldots N$
3. $h_n = w^T x_n$
4. if $h_n t_n \leq 0$ then
5. $w = w + t_n x_n$

Repeat:
- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].
The Perceptron Algorithm: Two Classes

1. **initialize** parameters $w = 0$
2. **for** $n = 1 \ldots N$

 3. $h_n = w^T x_n$
 4. if $h_n \geq 0$ and $t_n = -1$
 5. $w = w - x_n$
 6. if $h_n \leq 0$ and $t_n = +1$
 7. $w = w + x_n$

Repeat:

a) until convergence.
b) for a number of epochs E.

$s_{gn}(z) = +1$ if $z > 0$,
 0 if $z = 0$,
 -1 if $z < 0$

What is the impact of the perceptron update on the score $w^T x_n$ of the misclassified example x_n?
Linear vs. Non-linear Decision Boundaries

And

Or

Xor

\[\varphi(x) = [1, x_1, x_2]^T \]
\[w = [w_0, w_1, w_2]^T \] \[\Rightarrow w^T \varphi(x) = [w_1, w_2]^T [x_1, x_2] + w_0 \]
How to Find Non-linear Decision Boundaries

1) Perceptron with manually engineered features:
 – Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
 – Quadratic kernels, Gaussian kernels.

3) Self-supervised feature learning (e.g. auto-encoders):
 – Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
 – Automatically learned features.
Non-Linear Classification: XOR Dataset

\[x = [x_1, x_2] \]
1) Manually Engineered Features: Add $x_1 x_2$

$x = [x_1, x_2, x_1 x_2]$
Logistic Regression with Manually Engineered Features

\[\mathbf{x} = [x_1, x_2, x_1x_2] \]
Perceptron with Manually Engineered Features

Project $\mathbf{x} = [x_1, x_2, x_1 x_2]$ and decision hyperplane back to $\mathbf{x} = [x_1, x_2]$
Averaged Perceptron: Two Classes

1. **initialize** parameters $\mathbf{w} = 0$, $\tau = 1$, $\overline{\mathbf{w}} = 0$
2. **for** $n = 1 \ldots N$
3. $h_n = \text{sgn} (\mathbf{w}^T \mathbf{x}_n)$
4. **if** $h_n \neq t_n$ **then**
5. $\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$
6. $\overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$
7. $\tau = \tau + 1$
8. **return** $\overline{\mathbf{w}} / \tau$

During testing: $h(\mathbf{x}) = \text{sgn}(\overline{\mathbf{w}}^T \mathbf{x})$

$s\text{gn}(z) = +1$ if $z > 0$,
0 if $z = 0$,
-1 if $z < 0$

Repeat:
- a) until convergence.
- b) for a number of epochs E.
2) Kernel Methods with Non-Linear Kernels

- Perceptrons, SVMs can be ‘kernelized’:
 1. Re-write the algorithm such that during training and testing feature vectors \(x, y \) appear only in dot-products \(x^T y \).
 2. Replace dot-products \(x^T y \) with non-linear kernels \(K(x, y) \):
 - \(K \) is a kernel if and only if \(\exists \phi \) such that \(K(x, y) = \phi(x)^T \phi(y) \)
 - \(\phi \) can be in a much higher dimensional space.
 » e.g. combinations of up to \(k \) original features
 - \(\phi(x)^T \phi(y) \) can be computed efficiently without enumerating \(\phi(x) \) or \(\phi(y) \).
The Perceptron Representer Theorem

1. **initialize** parameters $w = 0$
2. for $n = 1 \ldots N$
3. $h_n = sgn(w^T x_n)$
4. if $h_n \neq t_n$ then
5. $w = w + t_n x_n$

Repeat:
- a) until convergence.
- b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$w = \sum_{n=1..N} \alpha_n t_n x_n \Rightarrow w^T x = \sum_{n=1..N} \alpha_n t_n x_n x^T$$
Kernel Perceptron: Two Classes

1. define \(f(x) = \mathbf{w}^T \mathbf{x} = \sum_{j=1..N} \alpha_j t_j \mathbf{x}_j^T \mathbf{x} = \sum_{j=1..N} \alpha_j t_j K(\mathbf{x}_j, \mathbf{x}) \)

2. initialize dual parameters \(\alpha_n = 0 \)

3. for \(n = 1 \ldots N \)

4. \(h_n = \text{sgn} \, f(\mathbf{x}_n) \)

5. if \(h_n \neq t_n \) then

6. \(\alpha_n = \alpha_n + 1 \)

Repeat:
- a) until convergence.
- b) for a number of epochs \(E \).

During testing: \(h(\mathbf{x}) = \text{sgn} \, f(\mathbf{x}) \)
Kernel Perceptron: Two Classes

1. define \(f(x) = w^T x = \sum_{j=1}^{N} \alpha_j t_j x_j^T x = \sum_{j=1}^{N} \alpha_j t_j K(x_j, x) \)
2. initialize dual parameters \(\alpha_n = 0 \)
3. for \(n = 1 \ldots N \)
4. \(h_n = sgn f(x_n) \)
5. if \(h_n \neq t_n \) then
6. \(\alpha_n = \alpha_n + 1 \)

Let \(S = \{ j | \alpha_j \neq 0 \} \) be the set of support vectors. Then \(f(x) = \sum_{j \in S} \alpha_j t_j K(x_j, x) \)

During testing: \(h(x) = sgn f(x) \)
Kernel Perceptron: Equivalent Formulation

1. define \(f(x) = w^T x = \sum_j \alpha_j x_j^T x = \sum_j \alpha_j K(x_j, x) \)
2. initialize dual parameters \(\alpha_n = 0 \)
3. for \(n = 1 \ldots N \)
4. \(h_n = \text{sgn} f(x_n) \)
5. if \(h_n \neq t_n \) then
6. \(\alpha_n = \alpha_n + t_n \)

Repeat:
- a) until convergence.
- b) for a number of epochs E.

During testing: \(h(x) = \text{sgn} f(x) \)
The Perceptron vs. Boolean Functions

\[\varphi(x) = [1, x_1, x_2]^T \]
\[w = [w_0, w_1, w_2]^T \]
\[\Rightarrow w^T \varphi(x) = [w_1, w_2]^T [x_1, x_2] + w_0 \]
Perceptron with Quadratic Kernel

• Discriminant function:

\[f(x) = \sum_{i} \alpha_i t_i \varphi(x_i)^T \varphi(x) = \sum_{i} \alpha_i t_i K(x_i, x) \]

• Quadratic kernel:

\[K(x, y) = (x^T y)^2 = (x_1 y_1 + x_2 y_2)^2 \]

\[\Rightarrow \] corresponding feature space \(\varphi(x) = ? \)

conjunctions of two atomic features
Perceptron with Quadratic Kernel

Linear kernel \(K(x, y) = x^T y \)

Quadratic kernel \(K(x, y) = (x^T y)^2 \)
Quadratic Kernels

- Circles, hyperbolas, and ellipses as separating surfaces:

\[K(x, y) = (1 + x^T y)^2 = \varphi(x)^T \varphi(y) \]

\[\varphi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2]^T \]
Quadratic Kernels

\[K(x, y) = (x^T y)^2 = \varphi(x)^T \varphi(y) \]
Explicit Features vs. Kernels

- Explicitly enumerating features can be prohibitive:
 - 1,000 basic features for $\mathbf{x}^T\mathbf{y} \Rightarrow 500,500$ quadratic features for $(\mathbf{x}^T\mathbf{y})^2$
 - Much worse for higher order features.

- **Solution:**
 - Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
 - $(\mathbf{x}^T\mathbf{y})^2$ takes 1001 multiplications.
 - $\varphi(\mathbf{x})^T \varphi(\mathbf{y})$ in feature space takes 500,500 multiplications.
Kernel Functions

• **Definition:**

 A function \(k : X \times X \to \mathbb{R} \) is a kernel function if there exists a feature mapping \(\varphi : X \to \mathbb{R}^n \) such that:

 \[
 k(x, y) = \varphi(x)^T \varphi(y)
 \]

• **Theorem:**

 \(k : X \times X \to \mathbb{R} \) is a valid kernel \(\iff \) the Gram matrix \(K \) whose elements are given by \(k(x_n, x_m) \) is positive semidefinite for all possible choices of the set \(\{x_n\} \).
Kernel Examples

- **Linear kernel**: $K(x, y) = x^T y$

- **Quadratic kernel**: $K(x, y) = (c + x^T y)^2$
 - contains constant, linear terms and terms of order two ($c > 0$).

- **Polynomial kernel**: $K(x, y) = (c + x^T y)^M$
 - contains all terms up to degree M ($c > 0$).

- **Gaussian kernel**: $K(x, y) = \exp(-\|x - y\|^2 / 2\sigma^2)$
 - Corresponding feature space has infinite dimensionality.
 - Prove using Taylor expansion of exponential.

 $\phi(x) = e^{-\gamma x^2} [1, \sqrt{2\gamma x}, \sqrt{2\gamma x^2}, ...]$
Techniques for Constructing Kernels

Given valid kernels $k_1(x, x')$ and $k_2(x, x')$, the following new kernels will also be valid:

\[
\begin{align*}
 k(x, x') & = c k_1(x, x') \\
 k(x, x') & = f(x) k_1(x, x') f(x') \\
 k(x, x') & = q(k_1(x, x')) \\
 k(x, x') & = \exp(k_1(x, x')) \\
 k(x, x') & = k_1(x, x') + k_2(x, x') \\
 k(x, x') & = k_1(x, x') k_2(x, x') \\
 k(x, x') & = k_3(\phi(x), \phi(x')) \\
 k(x, x') & = x^T A x' \\
 k(x, x') & = k_a(x, x') + k_b(x, x') \\
 k(x, x') & = k_a(x, x') k_b(x, x')
\end{align*}
\]

where $c > 0$ is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(x)$ is a function from x to \mathbb{R}^M, $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M, A is a symmetric positive semidefinite matrix, x_a and x_b are variables (not necessarily disjoint) with $x = (x_a, x_b)$, and k_a and k_b are valid kernel functions over their respective spaces.
Kernels over Discrete Structures

- **Subsequence Kernels** [Lodhi et al., JMLR 2002]:
 - \(\Sigma \) is a finite alphabet (set of symbols).
 - \(x, y \in \Sigma^* \) are two sequences of symbols with lengths \(|x| \) and \(|y| \).
 - \(k(x, y) \) is defined as the number of common substrings of length \(n \).
 - \(k(x, y) \) can be computed in \(O(n|x||y|) \) time complexity.

- **Tree Kernels** [Collins and Duffy, NIPS 2001]:
 - \(T_1 \) and \(T_2 \) are two trees with \(N_1 \) and \(N_2 \) nodes respectively.
 - \(k(T_1, T_2) \) is defined as the number of common subtrees.
 - \(k(T_1, T_2) \) can be computed in \(O(N_1N_2) \) time complexity.
 - in practice, time is linear in the size of the trees.
Supplementary Reading

• PRML Chapter 6:
 – Section 6.1 on dual representations for linear regression models.
 – Section 6.2 on techniques for constructing new kernels.
Linear Discriminant Functions:
Multiple Classes (K > 2)

1) Train K or K−1 one-versus-the-rest binary classifiers.
2) Train K(K−1)/2 one-versus-one binary classifiers.

3) Train K linear functions:
\[y_k(x) = w_k^T \varphi(x) + w_{k0} \]

• Decision:
\[x \in C_k \text{ if } y_k(x) > y_j(x), \text{ for all } j \neq k. \]
⇒ decision boundary between classes \(C_k \) and \(C_j \) is hyperplane defined by \(y_k(x) = y_j(x) \) i.e. \((w_k - w_j)^T \varphi(x) + (w_{k0} - w_{j0}) = 0 \)
⇒ same geometrical properties as in binary case.
Linear Discriminant Functions: Multiple Classes (K > 2)

4) More general ranking approach:

\[y(x) = \arg \max_{t \in T} w^T \varphi(x, t) \quad \text{where} \quad T = \{c_1, c_2, \ldots, c_K\} \]

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input x), assuming inference can be done efficiently.
The Perceptron Algorithm: K classes

1. **initialize** parameters $w = 0$
2. **for** $i = 1 \ldots n$
3. $y_i = \arg \max_{t \in T} w^T \varphi(x_i, t)$
4. **if** $y_i \neq t_i$ **then**
5. $w = w + \varphi(x_i, t_i) - \varphi(x_i, y_i)$

During testing:
\[t^* = \arg \max_{t \in T} w^T \varphi(x, t) \]
Averaged Perceptron: K classes

1. **initialize** parameters $\mathbf{w} = 0, \tau = 1, \overline{\mathbf{w}} = 0$
2. **for** $i = 1 \ldots n$
3. \quad $y_i = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$
4. \quad **if** $y_i \neq t_i$ **then**
5. \quad \quad $\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, y_i)$
6. \quad $\overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$
7. \quad $\tau = \tau + 1$
8. **return** $\overline{\mathbf{w}} / \tau$

Repeat:
\[
\text{a) until convergence.} \\
\text{b) for a number of epochs E.}
\]

During testing: \(t^* = \arg \max_{t \in T} \overline{\mathbf{w}}^T \varphi(\mathbf{x}, t) \)
The Perceptron Algorithm: K classes

1. **initialize** parameters $w = 0$
2. for $i = 1 \ldots n$
3. \[c_j = \arg \max_{t \in T} w^T \phi(x_i, t) \]
4. if $c_j \neq t_i$ then
5. \[w = w + \phi(x_i, t_i) - \phi(x_i, c_j) \]

Repeat:
- a) until convergence.
- b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:
\[
\begin{align*}
 w &= \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i) - \phi(x_i, c_j)) \\
 \Rightarrow w^T \phi(x, t) &= \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i)^T \phi(x, t) - \phi(x_i, c_j)^T \phi(x, t))
\end{align*}
\]
Kernel Perceptron: K classes

1. define \(f(x, t) = \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i)^T \phi(x, t) - \phi(x_i, c_j)^T \phi(x, t)) \)
2. initialize dual parameters \(\alpha_{ij} = 0 \)
3. for \(i = 1 \ldots n \)
4. \(c_j = \text{arg max}_{t \in T} f(x_i, t) \)
5. if \(y_i \neq t_i \) then
6. \(\alpha_{ij} = \alpha_{ij} + 1 \)

Repeat:
- a) until convergence.
- b) for a number of epochs \(E \).

During testing:
\[t^* = \text{arg max}_{t \in T} f(x, t) \]
Kernel Perceptron: K classes

- Discriminant function:

\[f(x,t) = \sum_{i,j} \alpha_{i,j} (\phi(x_i, t_i)^T \phi(x,t) - \phi(x_i, c_j)^T \phi(x,t)) \]

\[= \sum_{i,j} \alpha_{ij} (K(x_i, t_i, x, t) - K(x_i, c_j, x, t)) \]

where:

\[K(x_i, t_i, x, t) = \varphi^T(x_i, t_i) \varphi(x, t) \]

\[K(x_i, y_i, x, t) = \varphi^T(x_i, y_i) \varphi(x, t) \]