Machine Learning ITCS 6156/8156

Support Vector Machines

Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

Max-Margin Classifiers: Separable Case

- Linear model for binary classification:

$$
y(\mathbf{x})=\mathbf{w}^{T} \varphi(\mathbf{x})+b
$$

- Training examples:

$$
\left(\mathbf{x}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, t_{2}\right), \ldots\left(\mathbf{x}_{N}, t_{N}\right) \text {, where } t_{n} \in\{+1,-1\}
$$

- Assume training data is linearly separable:

$$
t_{n} y\left(x_{n}\right)>0, \text { for all } 1 \leq n \leq N
$$

\Rightarrow perceptron solution depends on:

- initial values of \mathbf{w} and b.
- order of processing of data points.

Maximum Margin Classifiers

- Which hyperplane has the smallest generalization error?
- The one that maximizes the margin [Computational Learning Theory]
- margin $=$ the distance between the decision boundary and the closest sample.

Geometric Interpretation
 $$
h(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}
$$

Maximum Margin Classifiers

- The distance between a point \mathbf{x}_{n} and a hyperplane $y(\mathbf{x})=0$ is:

$$
\frac{\left|y\left(\mathbf{x}_{n}\right)\right|}{\|\mathbf{w}\|}=\frac{t_{n} y\left(\mathbf{x}_{n}\right)}{\|\mathbf{w}\|}=\frac{t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}
$$

Maximum Margin Classifiers

- Margin $=$ the distance between hyperplane $y(\mathbf{x})=0$ and closest sample:

$$
\min _{n}\left[\frac{t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}\right]
$$

- Find parameters \mathbf{w} and b that maximize the margin:

$$
\underset{\mathbf{w}, b}{\arg \max }\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)\right]\right\}
$$

- Rescaling \mathbf{w} and b does not change distances to the hyperplane:
\Rightarrow for the closest point(s), set $t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)=1$
\Rightarrow this means $t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) \geq 1, \quad \forall n \in\{1, \ldots, N\}$

Max-Margin: Quadratic Optimization

- Constrained optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to:

$$
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) \geq 1, \quad \forall n \in\{1, \ldots, N\}
$$

- Solved using the technique of Lagrange Multipliers.
- [derivation shown at the end of slides, mandatory for 8156].

Max-Margin: Quadratic Optimization

- Equivalent dual representation:
maximize:

$$
L_{D}(\boldsymbol{\alpha})=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

subject to:

$$
\begin{aligned}
& \alpha_{n} \geq 0, \quad n=1, \ldots, N \\
& \sum_{n=1}^{N} \alpha_{n} t_{n}=0
\end{aligned}
$$

$-\mathrm{k}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)=\varphi\left(\mathbf{x}_{\mathrm{n}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right)$ is the kernel function.

- where $\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)$ and $\sum_{n=1}^{N} \alpha_{n} t_{n}=0$

KKT conditions

1. primal constraints: $t_{n} y\left(x_{n}\right)-1 \geq 0$
2. dual constraints: $\alpha_{n} \geq 0$
3. complementary slackness: $\alpha_{n}\left\{t_{n} y\left(x_{n}\right)-1\right\}=0$
\Rightarrow for any data point, either $\alpha_{n}=0$ or $t_{n} y\left(x_{n}\right)=1$
$\mathrm{S}=\left\{n \mid t_{n} y\left(x_{n}\right)=1\right\}$ is the set of support vectors

Max-Margin Solution

- After solving the dual problem \Rightarrow know α_{n}, for $n=1 \ldots N$

$$
\begin{aligned}
& \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)=\sum_{m \in S} \alpha_{m} t_{m} \varphi\left(x_{m}\right) \\
& b=\frac{1}{|S|} \sum_{n \in S}\left(t_{n}-\sum_{m \in S} \alpha_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)
\end{aligned}
$$

- Linear discriminant function becomes:

$$
y(x)=\sum_{m \in S} \alpha_{m} t_{m} k\left(x, x_{m}\right)+b
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

An SVM with Gaussian kernel

Max-Margin Classifiers: Non-Separable Case

- Allow data points to be on the wrong side of the margin boundary.
- Penalty that increases with the distance from the boundary.

Max-Margin: Quadratic Optimization

- Optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

subject to:

$$
\begin{aligned}
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) & \geq 1-\xi_{n}, \quad \forall n \in\{1, \ldots, N\} \\
\xi_{n} & \geq 0
\end{aligned}
$$

- Solve it using the technique of Lagrange Multipliers.

Max-Margin: Quadratic Optimization

- Dual representation:
maximize:

$$
L_{D}(\boldsymbol{\alpha})=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

subject to:

$$
\begin{aligned}
& 0 \leq \alpha_{n} \leq C, \quad n=1, \ldots, N \\
& \sum_{n=1}^{N} \alpha_{n} t_{n}=0
\end{aligned}
$$

- $\mathrm{k}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)=\varphi\left(\mathbf{x}_{\mathrm{n}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right)$ is the kernel function.

(Some of the) KKT conditions

1. primal constraints: $t_{n} y\left(x_{n}\right)-1+\xi_{n} \geq 0$
2. dual constraints: $0 \leq \alpha_{n} \leq C$
3. complementary slackness: $\alpha_{n}\left\{t_{n} y\left(x_{n}\right)-1+\xi_{n}\right\}=0$
\Rightarrow for any data point, either $\alpha_{n}=0$ or $t_{n} y\left(x_{n}\right)=1-\xi_{n}$
$S=\left\{n \mid t_{n} y\left(x_{n}\right)=1-\xi_{n}\right\}$ is the set of support vectors $\left(\alpha_{n}>0\right)$
$M=\left\{n \mid 0<\alpha_{n}<\mathrm{C}\right\}$ is the set of SVs that lie on the margin.

Max-Margin Solution

- After solving the dual problem \Rightarrow know α_{n}, for $n=1 \ldots N$

$$
\begin{aligned}
& \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)=\sum_{m \in S} \alpha_{m} t_{m} \varphi\left(x_{m}\right) \\
& b=\frac{1}{|M|} \sum_{n \in M}\left(t_{n}-\sum_{m \in S} \alpha_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)
\end{aligned}
$$

- Linear discriminant function becomes:

$$
y(x)=\sum_{m \in S} \alpha_{m} t_{m} k\left(x, x_{m}\right)+b
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

Support Vector Machines

- Optimization problem:
upper bound on the misclassification error on the training data.
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

subject to:

$$
\begin{aligned}
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) & \geq 1-\xi_{n}, \quad \forall n \in\{1, \ldots, N\} \\
\xi_{n} & \geq 0
\end{aligned}
$$

- Implemented in sklearn:
- https://scikit-learn.org/stable/modules/svm.html
- https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

SVMs for Regression

- Use an ε-insensitive error function $(\varepsilon>0)$ to obtain sparse solutions.
- Penalty that increases with the distance from the ε-insensitive "tube".

SVMs for Regression: Quadratic Optimization

- Optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N}\left(\xi_{n}+\hat{\xi}_{n}\right)
$$

subject to:

$$
\begin{aligned}
& t_{n} \leq \mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b+\varepsilon+\xi_{n} \\
& t_{n} \geq \mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b-\varepsilon-\hat{\xi}_{n} \\
& \xi_{n}, \hat{\xi}_{n} \geq 0, \quad \forall n \in\{1, \ldots, N\}
\end{aligned}
$$

- Solve it using the technique of Lagrange Multipliers.

SVMs for Regression: Sparse Solution

- After solving the dual problem \Rightarrow know $\alpha_{n}, \hat{\alpha}_{n}$ for $n=1 \ldots N$

$$
\mathbf{w}=\sum_{n=1}^{N}\left(\alpha_{n}-\hat{\alpha}_{n}\right) \varphi\left(x_{n}\right)=\sum_{m \in S}\left(\alpha_{m}-\hat{\alpha}_{m}\right) \varphi\left(x_{m}\right)
$$

- S is the set of support vectors:
i.e. points for which either $\alpha_{n} \neq 0$ or $\hat{\alpha}_{n} \neq 0$
\Rightarrow points that lie on the boundary of the ε-insensitive tube or outside the tube

$$
y(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=\sum_{m \in S}\left(\alpha_{m}-\hat{\alpha}_{m}\right) k\left(x, x_{m}\right)+b
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

SVMs for Regression: Sparse Solution

SVMs for Ranking

[Joachims, KDD'02]

- Problem:
- For a query q, a search engine returns a set of documents D.
- Want to rank d_{i} higher than d_{j} if d_{i} is more relevant to q than d_{j}.
- Solution:
- Learn a ranking function $f(q, d)=\mathbf{w}^{\mathrm{T}} \varphi(q, d)$
- Rank d_{i} higher than d_{j} if $f\left(q, d_{\mathrm{i}}\right) \geq f\left(q, d_{\mathrm{j}}\right) \Leftrightarrow \mathbf{w}^{\mathrm{T}} \varphi\left(q, d_{\mathrm{i}}\right) \geq \mathbf{w}^{\mathrm{T}} \varphi\left(q, d_{\mathrm{j}}\right)$
- Training data:
- Set $\left\{\left(q_{\mathrm{k}}, d_{\mathrm{i}}, d_{\mathrm{j}}\right) \mid d_{\mathrm{i}}\right.$ ranked higher than d_{j} for query $\left.q_{\mathrm{k}}\right\}$.
- Relative rankings obtained from clicktrough data.

SVMs for Ranking

[Joachims, KDD'02]

- Optimization problem:
minimize:

$$
J(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum \xi_{k, i, j}
$$

subject to:

$$
\frac{\sqrt[\mathbf{w}^{T} \varphi\left(q_{k}, d_{i}\right) \geq \mathbf{w}^{T} \varphi\left(q_{k}, d_{j}\right)+1-\xi_{k, i, j}]{\xi_{k, i, j} \geq 0}}{\frac{1}{}}
$$

$\mathbf{w}^{T}\left(\varphi\left(q_{k}, d_{i}\right)-\varphi\left(q_{k}, d_{j}\right)\right) \geq 1-\xi_{k, i, j} \Rightarrow$ equivalent with a classification problem

SVMs for Ranking

[Joachims, KDD'02]

- After solving the quadratic problem:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k, l} \alpha_{k, l} \varphi\left(q_{k}, d_{l}\right) \\
& \Rightarrow f(q, d)=\mathbf{w}^{T} \varphi(q, d) \\
&=\sum_{k, l} \alpha_{k, l} \varphi^{T}\left(q_{k}, d_{l}\right) \varphi(q, d) \\
&=\sum_{k, l} \alpha_{k, l} K\left(q_{k}, d_{l}, q, d\right)
\end{aligned}
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

Learning Scenarios for SVMs

- Classification.
- Ranking.
- Regression.
- Ordinal Regression.
- One Class Learning.
- Learning with Positive and Unlabeled examples.
- Transductive Learning.
- Semi-Supervised Learning.
- Multiple Instance Learning.
- Structured Outputs.

Practical Issues

- Data Scaling:
- Between [-1,+1] or [0, 1].
- Use same scaling factors in training and testing!
- Parameter Tuning:
- Most SVM packages specify reasonable default values.
- Tuning helps, especially with kernels that tend to overfit.
- Grid search is simple and effective:
- For RBF kernels, need to tune C and γ :
$-\mathrm{C} \in\left\{2^{-5}, 2^{-3}, \ldots, 2^{15}\right\}, \gamma \in\left\{2^{-15}, 2^{-13}, \ldots, 2^{3}\right\}$
- Read LibSVM's "A practical guide to SVM classification".

Conclusion

- SVMs were originally proposed by Boser, Guyon, and Vapnik in 1992.
- Good performance on a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types, e.g. graphs, trees, sequences, by designing kernel functions for such data.
- Also to probability distributions - "Learning from Distributions via Support Measure Machines" [Muandet et al., NIPS 2012]
- Kernel trick has been extended to other methods such as Perceptron, PCA, kNN, etc.
- Popular optimization algorithms for SVMs use decomposition to hillclimb over a subset of α_{n} 's at a time, e.g. SMO [Platt '99].
- But training and testing with linear SVMs are much faster.
- Read Lin's "Machine Learning Software: Design and Practical Use"

Supplementary Readings (mandatory for 8156)

- PRML, Chapter 7:
- Most of Section 7.1 on Maximum Margin Classifiers.
- PRML, Appendix E on Langange Multipliers.

Convex Optimization

- Convex optimization problem in standard form (primal):
minimize:

$$
f_{0}(\mathbf{x})
$$

subject to:

$$
\begin{array}{ll}
f_{i}(\mathbf{x}) \leq 0, & i=1, \ldots, m \\
h_{i}(\mathbf{x})=0, & i=1, \ldots, p
\end{array}
$$

$-f_{i}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$ are all convex functions, for $i=0, \ldots, m$
$-h_{i}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$ are all afine functions, for $i=0, \ldots, p\left(\right.$ e.g. $\left.h_{\mathrm{i}}(\mathbf{x})=\mathbf{A x}+\mathbf{b}\right)$

Lagrange Multipliers

- Define Lagrangian function $L_{P}: \mathrm{R}^{\mathrm{n}} \times \mathrm{R}^{\mathrm{m}} \times \mathrm{R}^{\mathrm{p}} \rightarrow \mathrm{R}$:

$$
L_{P}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{v})=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

- $\lambda_{i} \geq 0$, and v_{i} are the Lagrange multipliers.
- Define Lagrange dual function $L_{D}: \mathrm{R}^{\mathrm{m}} \times \mathrm{R}^{\mathrm{p}} \rightarrow \mathrm{R}$:

$$
L_{D}(\boldsymbol{\lambda}, \mathbf{v})=\inf _{\mathbf{x}} L_{P}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{v})
$$

Convex Optimization

- Lagrange Dual Problem:
maximize:

$$
L_{D}(\lambda, \boldsymbol{v})
$$

subject to:

$$
\lambda_{i} \geq 0, \quad i=1, \ldots, m
$$

$$
L_{D}(\boldsymbol{\lambda}, \mathbf{v})=\inf _{\mathbf{x}} L_{P}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{v})
$$

Strong Duality

- Optimum for primal problem = optimum for dual problem:

$$
f_{0}\left(\mathbf{x}^{*}\right)=L_{D}\left(\lambda^{*}, \mathbf{v}^{*}\right)
$$

Karush-Kuhn-Tucker (KKT) conditions

Assume $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{v})$ are the primal \& dual solutions. Then $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{v})$ satisfy the following constraints:

1. primal constraints: $\left\{\begin{array}{c}f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\ h_{i}(\mathbf{x})=0, i=1, \ldots, p\end{array}\right.$
2. dual constraints: $\lambda_{i} \geq 0, i=1, \ldots, m$
3. complementary slackness: $\lambda_{i} f_{i}(\mathbf{x})=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to \mathbf{x} vanishes:

$$
\nabla L_{P}(\mathbf{x})=\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} v_{i} \nabla h_{i}(x)=0
$$

Max-Margin: Quadratic Optimization

- Constrained optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to:

$$
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) \geq 1, \quad \forall n \in\{1, \ldots, N\}
$$

- Let's solve it using the technique of Lagrange Multipliers.

Max-Margin: Quadratic Optimization

- Lagrangian function:

$$
L_{P}(\mathbf{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \alpha_{n}\left\{t_{n}\left(\mathbf{w}^{T} \varphi\left(x_{n}\right)+b\right)-1\right\}
$$

- $\alpha_{n} \geq 0$ are the Lagrangian multipliers.
- Lagrangian dual function:

$$
L_{D}(\boldsymbol{\alpha})=\inf _{\mathbf{w}, b} L_{P}(\mathbf{w}, b, \boldsymbol{\alpha})
$$

- Solve: $\left.\begin{array}{l}\frac{\partial L_{p}}{\partial \mathbf{w}}=0 \\ \frac{\partial L_{p}}{\partial b}=0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right) \\ \sum_{n=1}^{N} \alpha_{n} t_{n}=0\end{array}\right.$

