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Max-Margin Classifiers: Separable Case

• Linear model for binary classification:

• Training examples:
(x1,t1), (x2,t2), … (xN,tN), where tnÎ{+1,-1}

• Assume training data is linearly separable:

Þ perceptron solution depends on:
– initial values of w and b.
– order of processing of data points.
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Maximum Margin Classifiers

• Which hyperplane has the smallest generalization error?
– The one that maximizes the margin [Computational Learning Theory]

• margin = the distance between the decision boundary and the 
closest sample.
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Geometric Interpretation
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Maximum Margin Classifiers

• The distance between a point xn and a hyperplane y(x) = 0 is:
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Maximum Margin Classifiers

• Margin = the distance between hyperplane y(x) = 0 and closest sample:

• Find parameters w and b that maximize the margin:

• Rescaling w and b does not change distances to the hyperplane:

Þ for the closest point(s), set 

Þ this  means  
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Max-Margin: Quadratic Optimization

• Constrained optimization problem:

• Solved using the technique of Lagrange Multipliers.
– [derivation shown at the end of slides, mandatory for 8156].
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Max-Margin: Quadratic Optimization

• Equivalent dual representation:

– k(xn,xm) = j(xn)Tj(xn) is the kernel function.

– where and 
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Exactly like in the Kernel Perceptron!



KKT conditions

1. primal constraints:

1. dual constraints:

2. complementary slackness:

Þ for any data point, either an = 0 or tn y(xn) = 1

S = {n | tn y(xn) = 1} is the set of 
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Max-Margin Solution

• After solving the dual problem Þ know an, for n = 1… N

• Linear discriminant function becomes:

Þ In both training and testing, examples are used only through 
the kernel function!
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An SVM with Gaussian kernel
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Max-Margin Classifiers: Non-Separable Case

• Allow data points to be on the wrong side of the margin boundary.
– Penalty that increases with the distance from the boundary.
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Max-Margin: Quadratic Optimization

• Optimization problem:

• Solve it using the technique of Lagrange Multipliers.
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Max-Margin: Quadratic Optimization

• Dual representation:

• k(xn,xm)=j(xn)Tj(xn) is the kernel function.
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(Some of the) KKT conditions

1. primal constraints:

1. dual constraints:

2. complementary slackness:

Þ for any data point, either an = 0 or tn y(xn) = 1-xn

S  = {n | tn y(xn) = 1-xn} is the set of                             (an > 0) 

M ={n | 0 < an< C} is the set of SVs that lie on the margin.
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Max-Margin Solution

• After solving the dual problem Þ know an, for n = 1… N

• Linear discriminant function becomes:

Þ In both training and testing, examples are used only through 
the kernel function!
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Support Vector Machines

• Optimization problem:

– Implemented in sklearn:
• https://scikit-learn.org/stable/modules/svm.html
• https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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error on the training data.

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


SVMs for Regression

• Use an e-insensitive error function (e > 0) to obtain sparse solutions.
– Penalty that increases with the distance from the e-insensitive “tube”.
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SVMs for Regression: Quadratic Optimization

• Optimization problem:

• Solve it using the technique of Lagrange Multipliers.
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SVMs for Regression: Sparse Solution

• After solving the dual problem Þ know an,     for n = 1… N

• S is the set of support vectors:
i.e. points for which either an ¹ 0 or 
Þpoints that lie on the boundary of the e-insensitive tube or outside 

the tube

Þ In both training and testing, examples are used only through 
the kernel function!
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SVMs for Regression: Sparse Solution
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SVMs for Ranking

• Problem:
– For a query q, a search engine returns a set of documents D.
– Want to rank di higher than dj if di is more relevant to q than dj.

• Solution:
– Learn a ranking function f(q,d) = wTj(q,d)
– Rank di higher than dj if f(q,di) ³ f(q,dj) Û wTj(q,di) ³ wTj(q,dj)
– Training data:

• Set {(qk, di, dj) | di ranked higher than dj for query qk}.
• Relative rankings obtained from clicktrough data.
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SVMs for Ranking

• Optimization problem:
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SVMs for Ranking

• After solving the quadratic problem:

Þ In both training and testing, examples are used only 
through the kernel function!
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Learning Scenarios for SVMs

• Classification.
• Ranking.
• Regression.
• Ordinal Regression.
• One Class Learning.
• Learning with Positive and Unlabeled examples.
• Transductive Learning.
• Semi-Supervised Learning.
• Multiple Instance Learning.
• Structured Outputs.
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Practical Issues

• Data Scaling:
– Between [-1,+1] or [0, 1].
– Use same scaling factors in training and testing!

• Parameter Tuning:
– Most SVM packages specify reasonable default values.

• Tuning helps, especially with kernels that tend to overfit.
– Grid search is simple and effective:

• For RBF kernels, need to tune C and γ:
– C Î {2-5, 2-3, ..., 215}, γ Î {2-15, 2-13, ..., 23}

• Read LibSVM’s “A practical guide to SVM classification”.
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Conclusion

• SVMs were originally proposed by Boser, Guyon, and Vapnik in 1992.
• Good performance on a number of classification tasks ranging from 

text to genomic data.
• SVMs can be applied to complex data types, e.g. graphs, trees, 

sequences, by designing kernel functions for such data.
– Also to probability distributions – “Learning from Distributions via Support 

Measure Machines” [Muandet et al., NIPS 2012]

• Kernel trick has been extended to other methods such as Perceptron, 
PCA, kNN, etc.

• Popular optimization algorithms for SVMs use decomposition to hill-
climb over a subset of an’s at a time, e.g. SMO [Platt ‘99].

– But training and testing with linear SVMs are much faster.

• Read Lin’s “Machine Learning Software: Design and Practical Use”
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Supplementary Readings 
(mandatory for 8156)

• PRML, Chapter 7:
– Most of Section 7.1 on Maximum Margin Classifiers.

• PRML, Appendix E on Langange Multipliers.
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Convex Optimization

• Convex optimization problem in standard form (primal):

– fi : Rn®R are all convex functions, for i = 0, …, m
– hi : Rn®R are all afine functions , for i = 0, …, p (e.g. hi(x)=Ax+b) 
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Lagrange Multipliers

• Define Lagrangian function LP : Rn ´ Rm ´ Rp ® R:

• li ³ 0, and ni are the Lagrange multipliers.

• Define Lagrange dual function LD : Rm ´ Rp ® R:
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Convex Optimization

• Lagrange Dual Problem:
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Strong Duality

• Optimum for primal problem = optimum for dual problem:
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Karush–Kuhn–Tucker (KKT) conditions

Assume (x, l, n) are the primal & dual solutions. Then (x, l, n)
satisfy the following constraints:

1. primal constraints:

2. dual constraints:

3. complementary slackness:

4. gradient of Lagrangian with respect to x vanishes:
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Max-Margin: Quadratic Optimization

• Constrained optimization problem:

• Let’s solve it using the technique of Lagrange Multipliers.
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Max-Margin: Quadratic Optimization

• Lagrangian function:

• an ³ 0 are the Lagrangian multipliers.

• Lagrangian dual function:

• Solve:
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