Machine Learning
ITCS 6156/8156

Logistic Regression

Razvan C. Bunescu
Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

mailto:rbunescu@uncc.edu

Supervised Learning

=

Training

Training Examples MI:{) Leamlng I__:> Model A
(X, 1) Algorithm

4

Testing

@H — [Model / } — Generalization
(x, t) Performance

Supervised Learning

Task = learn an (unkown) function 7 : X — T that maps mput
instances X € X to output targets #x) € T:
— Classification:
* The output #(x) € T is one of a finite set of discrete categories.
— Regression:
» The output #x) e T is continuous, or has a continuous component.

Target function #x) 1s known (only) through (noisy) set of
training examples:

(Xlatl)a (X29t2)9 oS (Xnatn)

Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> }1 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose £ from a “nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(Xx) = h(w,X)

— what classes of functions are “nice”?

Three Parametric Approaches to
Classification

1) Discriminant Functions: scoring function /- X — T that
directly assigns a vector x to a specific class C,.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

 Perceptron
* Support Vector Machines

e Fisher ‘s Linear Discriminant

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(C, | x).

— Inference and decision are separate.
— Less data needed to estimate p(C, | xX) than p(x |C)).
— Can accommodate many overlapping features.

* Logistic Regression

e (Conditional Random Fields

Three Parametric Approaches to
Classification

=

3) Probabilistic Generative Models:

— Model class-conditional p(x |C;) as well as the priors
p(C,), then use Bayes’s theorem to find p(C, | x).

« or model p(x,C)) directly, then marginalize to obtain the
posterior probabilities p(C,, | X).

— Inference and decision are separate.

— Can use p(x) for outlier or novelty detection.

— Need to model dependencies between features.
* Naive Bayes.
e Hidden Markov Models.

Neurons

Soma is the central part of the neuron:
* where the input signals are combined.

Dendrites are cellular extensions:
* where majority of the input occurs.

Axon i1s a fine, long projection:
* carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
* where the communication takes place.

McCulloch-Pitts Neuron Function

X0 1 Wo activation | output
function
xl‘ it
W 2 _wa= f @ hy(x) =f2)
X2‘ ws Z A f(Z)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
* summation corresponds to combination of signals in the soma.

— It is often transformed through an activation / output function.

Activation / Output Functions

A

: |

' 088iiz<0 8

unit ste 7) =
™ { 1 ifz=0
Perceptron
£ 1
logistic f(z) =
l+e*

identity f(z2)=z

Logistic Regression

Linear Regression

Linear Regression

activation / output
function

L f -®
Ewi'xt]’l (X) o E by
f(@)=z i s

* Polynomial curve fitting 1s Linear Regression:
X = () MBS 2, "]

h(x) =w'x

Perceptron

X0 Wo activation
function
X1 . wWq 2 N
%) 3 — ;‘
wW.X. .
xz‘ i 2 i7vi _ h (X)= 1 lfWTX>O
3 . w .
—1 ifz<0 —1 otherwise
f()= .
1 ifz=0

* Assume classes'T = {c;, ¢} = {1, —1}.
g Tfaining set iS (Xla tl): (X29 t2)9 B (Xna tn) ‘
X% [laxla X2y eees xk]T ‘

h(x) = sgn(w'x) =sgn(w, + w; x; + ... + w, x,)

N

a linear discriminant function 12 |

Linear Discriminant Functions

Use a linear function of the input vector:
h(x) = w' o (x) + wg

weight vector bias = —threshold

Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

Properties:
— w 1s orthogonal to vectors lying within the decision surface.

— w, controls the location of the decision hyperplane.

13
e

Geometric Interpretation

h >0 T
h =0

From Perceptron to Logistic Regression

[—

* Features x = [1, x{, x5, X3, X4].

% Welghts W — [Wo, Wi, Wy, W3, W4]

Discriminant function model Probabilistic discriminative model
Perceptron Logistic Regression

Training: Find w to fit training data. Training: Find w to fit training data.
Inference. Compute h(x) = w’x Inference. Compute z = w’x
Decision: Decision:

« if h(x) = 0 output label +1 » if z = 0 output label +1

* else output label -1 * else output label 0

1
1+exp(—2z)

Take logit z, compute probabilistic output p(+1|x) = 6(z) =

9

Logistic Regression for Binary Classification

X0(1 . activation
0

function

x1 g—"" a

%) 2 : / ;‘
2 wW.X. N

@, 2 o () = ———

f(z2)= 1 +exp(-w x)
1+exp(-2z)
X3

« Used for binary classification:
e LabelsT={C,C,}=1{1, 0}
e Output C, iff 4(x) = o(Ww'x) > 0.5

e Training set 1s (X;,t;), (X5,5), ... (Xpt,)-
X= [17 X1s X2y oeny xk]T

163
D —————

Activation / Output Functions f

unit step f(z)= {

Perceptron

0 1fz<0 l

1 1fz=0

1 f2)

1
l+¢°¢

logistic f(z) =

Logistic Regression

>
25 Ewl.xi

Logistic Regression for Binary Classification

=

« Model output can be interpreted as posterior class
probabilities:

1
1+exp(-w' X))

p(C Ix)=0(w'x)=

p(C,1X)=1-0(W'x) = exp(-w'X)

1+exp(-w'X)

Linear decision boundary
o SInfcrcrce: /

— Output Cif p(C,[x) > 0.5, else output C,.

« assuming uniform misclassification costs ...

Logistic Regression Learning

=

* Learning = finding the “right” parameters w™ = [wy, w;, ..., w;]

— Find w that minimizes an error function E(w) which measures the
misfit between A(x,,w) and #,.

— Expect that #(x,w) performing well on training examples x, =
h(x,w) will perform well on arbitrary test examples x € X.

« Least Squares error function?
1% ;
E(w)=— h(x ,w)—t
(W) ZZ{ (X,,W)=1,}

— Differentiable => can use gradient descent v

— Non-convex => not guaranteed to find the global optimum X

Maximum Likelihood

Traming*sctgls D —9¢X,, 1. Fe {01 10 < 1. AN}
Let h =p(C,1x)< h =p(t, =11x)=0(W'x)

Maximum Likelihood (ML) principle: find parameters that
maximize the likelithood of the labels.

N
+ The likelihood function is: p(t|w,X) = l_[p(tn|w,xn)

n=1

* The negative log-likelihood (cross entropy) error function:

N
Ew) = —Inp(tlw) = = > Inp(taltn)
n=1

20

Maximum Likelihood

=

Traming*sctgls D —9¢X,, 1. Fe {01 10 < 1. AN}
Let h =p(C,1x)< h =p(t, =11x)=0(W'x)

Maximum Likelihood (ML) principle: find parameters that
maximize the likelithood of the labels.

N
» The likelihood function is p(tiw)=] [Ar-h,)"
n=1

* The negative log-likelihood (cross entropy) error function:
N

E(w)=-Inp(tIx)= —E{tn Inf, +(1-1,)In(1-h,)}

n=1

Maximum Likelihood Learning
for Logistic Regression

[

e The ML solution is:

-1 convex in w

w,, =argmax p(t|w)=argmin|E(W) il

e ML solution 1s given by VE(w) = 0.

— Cannot solve analytically => solve numerically with gradient
based methods: (stochastic) gradient descent, conjugate gradient,
L-BFGS, etc.

— QGradient 1s (prove it):
N
VE(W)= Y (h,~1,)X,
n=1

— If we separate bias b from w, what 1s VE(b)?

Regularized Logistic Regression

e Use a Gaussian prior over the parameters:

L [W07 Wiy oov s WM]T

(M~+1)/2
p(w)=N(@0,a'T) = (ﬂj exp{— oA WTW}
270 %

* Bayes’ Theorem:
p(t{w)p(w)
p(t)

« MAP solution:

p(w|t)= oc p(t|w)p(w)

W, » =argmax p(w|t)

Regularized Logistic Regression

MAP solution:
W, » =argmax p(w|t) =argmax p(t|w)p(w)
= argmin—In p(t | w) p(w)
= argmin—In p(t|w)—1In p(w)

=argmin £ ,(w) —In p(w)

=argmin £, (W) + %WTW =argminE,(w)+ E_(w)

N
Ey(W)=-{t,Iny, +(1-1,)In(1— y,)}x ¢
n=l T e | data term
E (w)= a wiw_ (we also average)
w 2T > regularization term

Regularized Logistic Regression

e MAP solution:

W, ., =argmmk, (w)+E, (W)

2 still convex in w

-
-
-
-
-
-
-
-
-
-
-
-

« ML solution is given by VE(w) = 0. 2 a0 coliet sy

3

VE(W)= VE,(wW)+ VE_ (W) = %E(hn —1)X, +aW

where h, = o(W'x)
e Cannot solve analytically => solve numerically:

— (stochastic) gradient descent [PRML 3.1.3], Newton Raphson
iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

Implementation: Vectorization of LR

e Version 1: Compute gradient component-wise.

N
VE(w)= ¥ (h, ~1,)x, x%
n=1

— Assume example x,, 1s stored in column X[:,n] in data matrix X.

grad = np.zeros(K)

for n in range(N):
h = sigmoid(w.dot(X[:,n])
temp = h — t[n]
for k in range(K):

def sigmoid(x):
return 1 / (1 + np.exp(—x))

grad[k] = grad[k] + temp * X[k,n] / N

Implementation: Vectorization of LR

(=

* Version 2: Compute gradient, partially vectorized.
N 1
VE(W) = El(h —1,)Xo

grad = np.zeros(K)
for n in range(N):
grad = grad + (sigmoid(w.dot(X[:,n])) — t[n]) * X[:,;n] / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Implementation: Vectorization of LR

* Version 3: Compute gradient, vectorized.
§ 1
VE(w)= Y (h -t 43
(W) ;:1(n 0 Xy X

grad = X.dot(sigmoid(w.dot(X)) — t) / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Vectorization of LR with Separate Bias

* Separate the bias b from the weight vector w.

« Compute gradient separately with respect to w and b:

— @Gradient with respect to w is:
N
1
VE(w) = E(hn -t)X, X - h, = oc(wW'x,, + b)
n=1

grad = X.dot(sigmoid(w.dot(X) + b)) —t) / N

— Gradient with respect to bias b 1s:

def sigmoid(x):
return 1 / (1 + np.exp(—x))

29

Vectorization of LR with Regularization

* Only the gradient with respect to w changes:

— never use L2 regularization on bias.

N
VEW) = 2 (h, ~1,)%, 1+ aw
=il

grad = X.dot(sigmoid(w.dot(X) +) —t) / N + aw

Softmax Regression = Logistic Regression
for Multiclass Classification

[

e Multiclass classification:
T=4{@7, Co.8, Crhi=41..2;/ K},

e Training set 1s (X;,t;), (X5,1), ... (Xp.t,).
X =[1, x1, X9, «eep Xpql
tl) tz, tn = {1, 2, coey K}

e One weight vector per class [PRML 4.3.4]:

exp(W, X)) exp(Wy Xn + bi)
: Ej Pl) W eXp(wJ'TX" + b))

exp(WX)

S

bias parameter inside each w; separate bias parameter b; 31

Softmax Regression (K > 2)

Inference:

C.=arg max p(C, |x)

T
= arg max)

G |y exp(wx)

————
-
-
-
—
-
-
-

= arg max exp(W, X)
C

k

T
= argmax w, X
Ck

Training using:

Maximum Likelihood (ML)

Z(Xx) a normalization
constant

Maximum A Posteriori (MAP) with a Gaussian prior on w.

Softmax Regression

The negative log-likelihood error function is:

El exp(w Xy 2

=71 convex in' w

1 N
E (w)=——1In b A=
p(W)=-—];[pu 3

The Maximum Likelihood solution is:

w,, =argminE,(w)

The gradient 1s (prove it):
1 N
V., E, (W)= —Nz(ék(tn) - p(C, 1x,))X,
n=1

X =l

1
where J,(x) = {O 1s the Kronecker delta function.
X #i 33

Regularized Softmax Regression

=

e The new cost function is:

Ew)=E,(W)+E_(W)

N
P 1 : exp(W{ x) f &
— /W N 7(x) 2

IWI|?

 The new gradient 1s (prove it):

N

1 |
grad= V, E(W)= —NE(ék(rn) -p(C, 1x,))x, +aw,

n=1

Softmax Regression

ML solution 1s given by VE,(w) =0 .
— Cannot solve analytically.

— Solve numerically, by pluging [cost, gradient] = [E(w), VE(W)]
values into general convex solvers:

L-BFGS
Newton methods

conjugate gradient

(stochastic / minibatch) gradient-based methods.
— gradient descent (with / without momentum).
— AdaGrad, AdaDelta
— RMSProp
— ADAM, ...

35
e

Implementation

=

* Need to compute [cost, grad]:

N K

K

1 a
= cost === ¥ 8,,)Inp(C,Ix,)+ =Y Wiw,

n=1 k=1
N

k=1

" grad, =—% (6k(tn)—p(Ckan))xn+(xwk

n=1

=> need to compute, for k=1, ..., K:

= output p(C,1x)=

exp(W, X,))

2 .exp(WJT.xn)
J

Overflow when w,'x,
are too large.

Implementation: Preventing Overflows

=

 Subtract from each product w,'x, the maximum product:

T
C=Maxw, X
L 1<k<K R

When using separate bias b;, replace wi X,, everywhere
with WL X,, + by,.

Vectorization of Softmax with Separate Bias

e Separate the bias b, from the weight vector w,.

« Compute gradient separately with respect to w, and b, :
— Gradient with respect to w;, 1s:

1 N
grad,=-— ¥ (3,(t,)- p(C,1X,))x, +aw,
n=1

Gradient matrix 1s [grad, | grad, | ... | grady]
""" T, T O | (Culxy = — SXPOWiEXn +by)
— (@Gradient with respect to b, 1s: PitklXn) = =1k eXp(W Xy, + b))
Ab, DN c 1,if tn = k
i _NZ(e(t) = p(Cilxn) 5.t = {O'if b = K
n=) n

Gradient vector i1s Ab =[Ab; | Ab, | ... | Abg]

Vectorization of Softmax

exp(w,fxn + by)

* Need to compute [cost, grad, Ab]: p(cix,) = 5

j=1.K exp(ijxn + bj)

1 N K a K
e St) InpC, 1x)+= VY ww
NEE k(n) p(k n) 2; & v

n=1 k=1

" grad, = %2(5 (t,)-p(C,1x,))X, +aw,

n=1

=> compute ground truth matrix G such that G[k,n] = §,(z,)

56y < [tn=T
from scipy.sparse import coo_matrix 0, if th # K
groundTruth = coo _matrix((np.ones(N, dtype = np.uint§),
(labels, np.arange(N)))).toarray()
39

Vectorization of Softmax

=

 Compute cost———zzé (t)Inp(C, 1x,)+— Ewkwk

nlkl

— Compute matrix of w,7; et 1 exp(WLx,, + by)
kn

Zj=1,_1(exp(WjTXn + bj)

p(Cklxn) =

— Compute matrix of wan 4, = &
C(1,ift, =k
Bre(tn) = {O,if t, #k

— Compute matrix of exp(W. X, + by — cp).

¢ = max W, X, +by
— Compute matrix of In p(Cr |X,,). lsk<K

— Compute log-likelihood cost using all the above.

Inp(CylX,) = Wix, + b, — In(z exp(ijxn 550
j=1.K 40

Vectorization of Softmax

=

N
« Compute grad, = —%E(ék(tn)—p((fk X,))X, +aw,

n=1

= Gradient matrix = [grad, | grad, | ... | grady]
oy = CPOWERn + By
— Compute matrix of p(Cr[Xy,). PP = 6 j=1.x EXp(W/ X, + b))
sy [Lifta=k
— Compute matrix of gradient of data term. k() =10 Jif tg £ k

— Compute matrix of gradient of regularization term.

— Compute ground truth matrix G such that G[k,n] = §,(¢,)

Vectorization of Softmax

e Useful Numpy functions:
— np.dot()
— np.amax()
— np.argmax()
— np.exp()

— np.sum()

— np.log()
— np.mean()

Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

J(9' 1 g) = J(OE=te)
2&

d :
g/ (9) = 1im

Numerical approximation of derivative:

ij(@)z JO+e)-J(O-¢)
do 2¢€

where € = 0.0001

Implementation: Gradient Checking

=

* If 0 1s a vector of parameters 0,
— Compute numerical derivative with respect to each 6,.
* Create a vector v that is € in position i and 0 everywhere else:
— How do you do this without a for loop in NumPy?
e Compute G,,,(6,) =0 +v) —J(0 —vVv))/2¢

— Aggregate all derivatives G,,,(6;) into numerical gradient G,,(0).

e Compare numerical gradient G,,,,(0) with implementation
of gradient Gy;,,(0):

G (8)-G,, (0)] _
0)+G,,,(0)

<10°

|6

num

