Machine Learning ITCS 6156/8156

Logistic Regression

Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

Supervised Learning

Supervised Learning

- **Task** = learn an (unkown) function $t : X \rightarrow T$ that maps input instances $\mathbf{x} \in X$ to output targets $t(\mathbf{x}) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t(\mathbf{x}) \in T$ is continuous, or has a continuous component.
- Target function t(x) is known (only) through (noisy) set of training examples:

 $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$

Parametric Approaches to Supervised Learning

- **Task** = build a function $h(\mathbf{x})$ such that:
 - -h matches t well on the training data:
 - =>h is able to fit data that it has seen.
 - -h also matches t well on test data:
 - =>h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters w:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w},\mathbf{x})$
 - what classes of functions are "nice"?

Three Parametric Approaches to Classification

- 1) Discriminant Functions: scoring function $f: X \to T$ that directly assigns a vector **x** to a specific class C_k .
 - Inference and decision combined into a single learning problem.
 - *Linear Discriminant*: the decision surface is a hyperplane in X:
 - Perceptron
 - Support Vector Machines
 - Fisher 's Linear Discriminant

Three Parametric Approaches to Classification

- 2) Probabilistic Discriminative Models: directly model the posterior class probabilities $p(C_k | \mathbf{x})$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k | \mathbf{x})$ than $p(\mathbf{x} | C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields

Three Parametric Approaches to Classification

- 3) Probabilistic Generative Models:
 - Model class-conditional $p(\mathbf{x} | C_k)$ as well as the priors $p(C_k)$, then use Bayes's theorem to find $p(C_k | \mathbf{x})$.
 - or model $p(\mathbf{x}, C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k | \mathbf{x})$.
 - Inference and decision are separate.
 - Can use $p(\mathbf{x})$ for outlier or novelty detection.
 - Need to model dependencies between features.
 - Naïve Bayes.
 - Hidden Markov Models.

Neurons

Soma is the central part of the neuron:

• where the input signals are combined.

Dendrites are cellular extensions:

• where majority of the input occurs.

Axon is a fine, long projection:

• carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:

• where the communication takes place.

McCulloch-Pitts Neuron Function

- Algebraic interpretation:
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through an **activation** / **output function**.

Activation / Output Functions

unit step
$$f(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Perceptron
logistic $f(z) = \frac{1}{1 + e^{-z}}$
Logistic Regression
0

Linear Regression

Polynomial curve fitting is Linear Regression:
 x = φ(x) = [1, x, x², ..., x^M]^T
 h(x) = w^Tx

Perceptron

- Assume classes $T = \{c_1, c_2\} = \{1, -1\}.$
- Training set is $(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots (\mathbf{x}_n, \mathbf{t}_n).$ $\mathbf{x} = [1, x_1, x_2, \dots, x_k]^T$ $h(\mathbf{x}) = sgn(\mathbf{w}^T \mathbf{x}) = sgn(w_0 + w_1 x_1 + \dots + w_k x_k)$

a linear discriminant function

Linear Discriminant Functions

• Use a linear function of the input vector:

• Decision:

 $\mathbf{x} \in C_1$ if $h(\mathbf{x}) \ge 0$, otherwise $\mathbf{x} \in C_2$.

 \Rightarrow decision boundary is hyperplane $h(\mathbf{x}) = 0$.

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - w_0 controls the location of the decision hyperplane.

Geometric Interpretation

From Perceptron to Logistic Regression

- Features $\mathbf{x} = [1, x_1, x_2, x_3, x_4]$.
- Weights $\mathbf{w} = [w_0, w_1, w_2, w_3, w_4]$

Discriminant function model
<u>Perceptron</u>

Training: Find **w** to fit training data. **Inference**: Compute $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ **Decision**:

- if $h(\mathbf{x}) \ge 0$ output label +1
- else output label -1

Probabilistic discriminative model

Logistic Regression

Training: Find **w** to fit training data. **Inference**: Compute $z = \mathbf{w}^T \mathbf{x}$ **Decision**:

- if $z \ge 0$ output label +1
- else output label 0

Take logit z, compute probabilistic output $p(+1|\mathbf{x}) = \sigma(z) = \frac{1}{1 + \exp(-z)}$

Logistic Regression for Binary Classification

- Used for binary classification:
 - Labels $T = \{C_1, C_2\} = \{1, 0\}$
 - Output C_1 iff $h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) > 0.5$
- Training set is $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n).$ $\mathbf{x} = [1, x_1, x_2, \dots, x_k]^T$

Logistic Regression for Binary Classification

Model output can be interpreted as posterior class probabilities:

$$p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}))}$$

$$p(C_2 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}) = \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Linear decision boundary

- Inference:
 - Output C_1 if $p(C_1|x) \ge 0.5$, else output C_2 .
 - assuming uniform misclassification costs ...

Logistic Regression Learning

- Learning = finding the "right" parameters $\mathbf{w}^{\mathrm{T}} = [w_0, w_1, \dots, w_k]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_n \Rightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathbf{X}$.
- Least Squares error function?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$

- Differentiable => can use gradient descent \checkmark
- Non-convex => not guaranteed to find the global optimum X

Maximum Likelihood

Training set is $D = \{ \langle \mathbf{x}_n, t_n \rangle \mid t_n \in \{0,1\}, n \in 1...N \}$

Let
$$h_n = p(C_1 | \mathbf{x}_n) \Leftrightarrow h_n = p(t_n = 1 | \mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of the labels.

- The likelihood function is: $p(\mathbf{t}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n)$
- The negative log-likelihood (cross entropy) error function: $E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \ln p(t_n|x_n)$

Maximum Likelihood

Training set is $D = \{ \langle \mathbf{x}_n, t_n \rangle \mid t_n \in \{0,1\}, n \in 1...N \}$

Let
$$h_n = p(C_1 | \mathbf{x}_n) \Leftrightarrow h_n = p(t_n = 1 | \mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of the labels.

- The likelihood function is $p(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^{N} h_n^{t_n} (1 h_n)^{(1 t_n)}$
- The negative log-likelihood (cross entropy) error function: $E(\mathbf{w}) = -\ln p(\mathbf{t} | \mathbf{x}) = -\sum_{n=1}^{N} \left\{ t_n \ln h_n + (1 - t_n) \ln(1 - h_n) \right\}$

Maximum Likelihood Learning for Logistic Regression

• The ML solution is:

convex in **w**

 $\mathbf{w}_{ML} = \arg \max_{\mathbf{w}} p(\mathbf{t} | \mathbf{w}) = \arg \min_{\mathbf{w}} E(\mathbf{w})$

- ML solution is given by $\nabla E(\mathbf{w}) = 0$.
 - Cannot solve analytically => solve numerically with gradient based methods: (stochastic) gradient descent, conjugate gradient, L-BFGS, etc.
 - Gradient is (prove it):

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n$$

- If we separate bias b from w, what is $\nabla E(b)$?

Regularized Logistic Regression

• Use a Gaussian prior over the parameters:

 $\mathbf{w} = [w_0, w_1, \dots, w_M]^{\mathrm{T}}$

$$p(\mathbf{w}) = N(\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

• Bayes' Theorem:

$$p(\mathbf{w} | \mathbf{t}) = \frac{p(\mathbf{t} | \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t})} \propto p(\mathbf{t} | \mathbf{w}) p(\mathbf{w})$$

• MAP solution:

$$\mathbf{w}_{MAP} = \arg\max_{\mathbf{w}} p(\mathbf{w} \,|\, \mathbf{t})$$

Regularized Logistic Regression

• MAP solution:

$$\mathbf{w}_{MAP} = \arg \max_{\mathbf{w}} p(\mathbf{w} | \mathbf{t}) = \arg \max_{\mathbf{w}} p(\mathbf{t} | \mathbf{w}) p(\mathbf{w})$$

= $\arg \min_{\mathbf{w}} - \ln p(\mathbf{t} | \mathbf{w}) p(\mathbf{w})$
= $\arg \min_{\mathbf{w}} - \ln p(\mathbf{t} | \mathbf{w}) - \ln p(\mathbf{w})$
= $\arg \min_{\mathbf{w}} E_D(\mathbf{w}) - \ln p(\mathbf{w})$
= $\arg \min_{\mathbf{w}} E_D(\mathbf{w}) + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} = \arg \min_{\mathbf{w}} E_D(\mathbf{w}) + E_{\mathbf{w}}(\mathbf{w})$

$$E_{D}(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_{n} \ln y_{n} + (1 - t_{n}) \ln(1 - y_{n}) \right\} \times \frac{1}{N}$$

$$data \ term$$

$$(we \ also \ average)$$

$$E_{\mathbf{w}}(\mathbf{w}) = \frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w} \longrightarrow regularization \ term$$

Regularized Logistic Regression

• MAP solution:

 $\mathbf{w}_{MAP} = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) + E_{\mathbf{w}}(\mathbf{w}) - --$

• ML solution is given by $\nabla E(\mathbf{w}) = 0$.

 α is also called **decay**

still convex in **w**

$$\nabla E(\mathbf{w}) = \nabla E_D(\mathbf{w}) + \nabla E_{\mathbf{w}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n + \alpha \mathbf{w}$$

where $h_n = \sigma(\mathbf{w}^T \mathbf{x}_n)$

- Cannot solve analytically => solve numerically:
 - (stochastic) gradient descent [PRML 3.1.3], Newton Raphson iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n \times \frac{1}{N}$$

- Assume example \mathbf{x}_n is stored in column X[:,n] in data matrix X.

```
grad = np.zeros(K)
for n in range(N):
h = sigmoid(w.dot(X[:,n]))def sigmoid(x):return 1 / (1 + np.exp(-x)))for k in range(K):
grad[k] = grad[k] + temp * X[k,n] / N
```

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n \times \frac{1}{N}$$

grad = np.zeros(K)
for n in range(N):
 grad = grad + (sigmoid(w.dot(X[:,n])) - t[n]) * X[:,n] / N

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n \times \frac{1}{N}$$

grad = X.dot(sigmoid(w.dot(X)) - t) / N

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Vectorization of LR with Separate Bias

- Separate the bias b from the weight vector w.
- Compute gradient separately with respect to w and b:
 - Gradient with respect to w is:

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n \times \frac{1}{N} \qquad \qquad h_n = \sigma(\mathbf{w}^T \mathbf{x}_n + b)$$

grad = X.dot(sigmoid(\mathbf{w}.dot(X) + b) - \mathbf{t}) / N

Gradient with respect to bias b is:

$$\Delta b = -\frac{1}{N} \sum_{n=1}^{N} (h_n - t_n)$$

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Vectorization of LR with Regularization

- Only the gradient with respect to w changes:
 - never use L2 regularization on bias.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n \times \frac{1}{N} + \alpha \mathbf{w}$$

 $grad = X.dot(sigmoid(w.dot(X) + b) - t) / N + \alpha w$

Softmax Regression = Logistic Regression for Multiclass Classification

• Multiclass classification:

 $T = \{C_1, C_2, ..., C_K\} = \{1, 2, ..., K\}.$

- Training set is $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$. $\mathbf{x} = [1, x_1, x_2, \dots, x_M]$ $t_1, t_2, \dots, t_n \in \{1, 2, \dots, K\}$
- One weight vector per class [PRML 4.3.4]:

 $p(C_k \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}))}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x})}$

bias parameter inside each \mathbf{w}_i

$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n + b_k)}{\sum_{j=1..K} \exp(\mathbf{w}_j^T \mathbf{x}_n + b_j)}$$

separate bias parameter b_i

Softmax Regression ($K \ge 2$)

• Inference:

$$C_* = \arg \max_{C_k} p(C_k | \mathbf{x})$$

$$= \arg \max_{C_k} \underbrace{\exp(\mathbf{w}_k^T \mathbf{x})}_{\sum_j \exp(\mathbf{w}_j^T \mathbf{x})} \xrightarrow{Z(\mathbf{x}) a nc}_{constant}$$

$$= \arg \max_{C_k} \exp(\mathbf{w}_k^T \mathbf{x})$$

$$= \arg \max_{C_k} \mathbf{w}_k^T \mathbf{x}$$

- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP) with a Gaussian prior on w.

normalization

Softmax Regression

• The negative log-likelihood error function is:

$$E_D(\mathbf{w}) = -\frac{1}{N} \ln \prod_{n=1}^N p(t_n | \mathbf{x}_n) = -\frac{1}{N} \sum_{n=1}^N \ln \frac{\exp(\mathbf{w}_{t_n}^T \mathbf{x}_n)}{Z(\mathbf{x}_n)}$$

- The Maximum Likelihood solution is: $\mathbf{w}_{ML} = \arg\min_{\mathbf{w}} E_D(\mathbf{w})$
- The gradient is (prove it):

$$\nabla_{\mathbf{w}_k} E_D(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^N \left(\delta_k(t_n) - p(C_k \mid \mathbf{x}_n) \right) \mathbf{x}_n$$

where $\delta_t(x) = \begin{cases} 1 & x = t \\ 0 & x \neq t \end{cases}$ is the *Kronecker delta* function.

convex in w

33

Regularized Softmax Regression

• The new **cost** function is:

 $E(\mathbf{w}) = E_D(\mathbf{w}) + E_{\mathbf{w}}(\mathbf{w})$

$$= -\frac{1}{N} \sum_{n=1}^{N} \ln \frac{\exp(\mathbf{w}_{t_n}^T \mathbf{x}_n)}{Z(\mathbf{x}_n)} + \frac{\alpha}{2} \|\mathbf{W}\|^2$$

• The new gradient is (prove it):

$$grad_{k} = \nabla_{\mathbf{w}_{k}} E(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - p(C_{k} | \mathbf{x}_{n}) \right) \mathbf{x}_{n} + \alpha \mathbf{w}_{k}$$

Softmax Regression

- ML solution is given by $\nabla E_D(\mathbf{w}) = 0$.
 - Cannot solve analytically.
 - Solve numerically, by pluging $[cost, gradient] = [E(\mathbf{w}), \nabla E(\mathbf{w})]$ values into general convex solvers:
 - L-BFGS
 - Newton methods
 - conjugate gradient
 - (stochastic / minibatch) gradient-based methods.
 - gradient descent (with / without momentum).
 - AdaGrad, AdaDelta
 - RMSProp
 - ADAM, ...

Implementation

• Need to compute [cost, grad]:

•
$$cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• $grad_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n + \alpha \mathbf{w}_k$

=> need to compute, for k = 1, ..., K:

• output
$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n)}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x}_n)}$$
 Ove

Overflow when $\mathbf{w}_k^T \mathbf{x}_n$ are too large.

Implementation: Preventing Overflows

• Subtract from each product $\mathbf{w}_k^T \mathbf{x}_n$ the maximum product:

$$C_n = \max_{1 \le k \le K} \mathbf{w}_k^T \mathbf{X}_n$$

$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n - c_n)}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x}_n - c_n)}$$

• When using separate bias b_k , replace $\mathbf{w}_k^T \mathbf{x}_n$ everywhere with $\mathbf{w}_k^T \mathbf{x}_n + b_k$.

Vectorization of Softmax with Separate Bias

- Separate the bias b_k from the weight vector \mathbf{w}_k .
- Compute gradient separately with respect to \mathbf{w}_k and b_k :
 - Gradient with respect to \mathbf{w}_k is:

$$\mathbf{grad}_{k} = -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - p(C_{k} | \mathbf{x}_{n}) \right) \mathbf{x}_{n} + \alpha \mathbf{w}_{k}$$

Gradient matrix is $[\mathbf{grad}_1 | \mathbf{grad}_2 | \dots | \mathbf{grad}_K]$

Gradient with respect to b_k is: $\Delta b_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n))$ $\delta_k(t_n) = \begin{cases} 1, if \ t_n = k \\ 0, if \ t_n \neq k \end{cases}$ Gradient vector is $\Delta \mathbf{b} = [\Delta b_1 | \Delta b_2 | \dots | \Delta b_K]$

• Need to compute [*cost*, *grad*, Δb]: $p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n + b_k)}{\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n + b_i)}$

•
$$cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• $grad_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n + \alpha \mathbf{w}_k$

=> compute ground truth matrix G such that $G[k,n] = \delta_k(t_n)$

from scipy.sparse import coo_matrix groundTruth = coo_matrix((np.ones(N, dtype = np.uint8), (labels, np.arange(N)))).toarray()

• Compute $cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$

- Compute matrix of $\mathbf{w}_k^T \mathbf{x}_n + b_k$.

- Compute matrix of $\mathbf{w}_k^T \mathbf{x}_n + b_k c_n$.
- Compute matrix of $\exp(\mathbf{w}_k^T \mathbf{x}_n + b_k c_n)$.
- $C_{\mathbf{n}} = \max_{1 \le k \le K} \mathbf{w}_{k}^{T} \mathbf{x}_{n} + b_{k}$

 $\delta_k(t_n) = \begin{cases} 1, & \text{if } t_n = k \\ 0, & \text{if } t_n \neq k \end{cases}$

 $p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n + b_k)}{\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n + b_i)}$

- Compute matrix of $\ln p(C_k | \mathbf{x}_n)$.
- Compute log-likelihood cost using all the above. $\ln p(C_k | \mathbf{x}_n) = \mathbf{w}_k^T \mathbf{x}_n + b_k - \ln(\sum_{i=1}^{K} \exp(\mathbf{w}_j^T \mathbf{x}_n + b_j))$

• Compute
$$\operatorname{grad}_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n + \alpha \mathbf{w}_k$$

- Gradient matrix = $[\mathbf{grad}_1 | \mathbf{grad}_2 | \dots | \mathbf{grad}_K]$
- Compute matrix of $p(C_k | \mathbf{x}_n)$.

 $p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n + b_k)}{\sum_{j=1..K} \exp(\mathbf{w}_j^T \mathbf{x}_n + b_j)}$ $\delta_k(t_n) = \begin{cases} 1, if \ t_n = k\\ 0, if \ t_n \neq k \end{cases}$

- Compute matrix of gradient of data term.
- Compute matrix of gradient of regularization term.
- Compute ground truth matrix G such that $G[k,n] = \delta_k(t_n)$

- Useful Numpy functions:
 - np.dot()
 - np.amax()
 - np.argmax()
 - np.exp()
 - np.sum()
 - np.log()
 - np.mean()

Implementation: Gradient Checking

- Want to minimize $J(\theta)$, where θ is a scalar.
- Mathematical definition of derivative:

$$\frac{d}{d\theta}J(\theta) = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon}$$

• Numerical approximation of derivative:

$$\frac{d}{d\theta}J(\theta) \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon} \quad \text{where } \varepsilon = 0.0001$$

Implementation: Gradient Checking

- If $\boldsymbol{\theta}$ is a vector of parameters θ_i ,
 - Compute numerical derivative with respect to each θ_i .
 - Create a vector **v** that is ε in position *i* and 0 everywhere else:
 - How do you do this without a for loop in NumPy?
 - Compute $G_{\text{num}}(\theta_i) = (J(\theta + v) J(\theta v)) / 2\varepsilon$
 - Aggregate all derivatives $G_{num}(\theta_i)$ into numerical gradient $G_{num}(\theta)$.
- Compare numerical gradient G_{num}(θ) with implementation of gradient G_{imp}(θ):

$$\frac{\left\|G_{num}(\boldsymbol{\theta}) - G_{imp}(\boldsymbol{\theta})\right\|}{\left\|G_{num}(\boldsymbol{\theta}) + G_{imp}(\boldsymbol{\theta})\right\|} \le 10^{-6}$$