
Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

Logistic Regression

Machine Learning
ITCS 6156/8156

1

mailto:rbunescu@uncc.edu

Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning
Algorithm Model h

Model h

Training

Testing

Generalization
Performance

2

Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

3

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

4

Three Parametric Approaches to
Classification

1) Discriminant Functions: scoring function f : X ® T that
directly assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning

problem.
– Linear Discriminant: the decision surface is a

hyperplane in X:
• Perceptron
• Support Vector Machines
• Fisher ‘s Linear Discriminant

5

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields

6

Three Parametric Approaches to
Classification

3) Probabilistic Generative Models:
– Model class-conditional p(x |Ck) as well as the priors

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.

7

Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
• where the communication takes place.

8

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑
hw(x)

activation / output
function

w0
w1

w2
w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.

9

z = f(z)
= f(z)

Activation / Output Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

10

Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T

h(x) = wTx

Σ f

1x0

x1

x2

x3

wixi∑ hw(x) =

activation / output
function

w0
w1

w2
w3 f (z) = z wixi∑

11

Perceptron

• Assume classes T = {c1, c2} = {1, −1}.
• Training set is (x1, t1), (x2, t2), … (xn, tn).

x = [1, x1, x2, ..., xk]T

h(x) = sgn(wTx) = sgn(w0 + w1 x1 + … + wk xk)

Σ

1x0

x1

x2

x3

wixi∑
hw(x)

activation
function f

w0
w1

w2
w3 = 1 if wTx > 0

0 otherwise

!
"
#

$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$

12

−1 −1

a linear discriminant function

• Use a linear function of the input vector:

• Decision:
x Î C1 if h(x) ³ 0, otherwise x Î C2.
Þ decision boundary is hyperplane h(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.

13

Linear Discriminant Functions

weight vector bias = - threshold

ℎ 𝐱 = 𝐰!𝜑 𝐱 + 𝑤"

Geometric Interpretation

14

h
h

hhh

hh

From Perceptron to Logistic Regression

• Features x = [1, x1, x2, x3, x4].
• Weights w = [w0, w1, w2, w3, w4]

15

Perceptron

Training:	Find	w to	fit	training	data.
Inference:	Compute ℎ 𝐱 = 𝐰!𝐱
Decision:
• if ℎ 𝐱 ≥ 0 output label +1
• else output label -1

Logistic	Regression

Training:	Find	w to	fit	training	data.
Inference:	Compute z = 𝐰!𝐱
Decision:
• if 𝑧 ≥ 0 output label +1
• else output label 0

Discriminant function model Probabilistic discriminative model

Take logit z, compute probabilistic output p(+1|x) = σ(z) = #
#$%&'()*)

Logistic Regression for Binary Classification

• Used for binary classification:
• Labels T = {C1, C2} = {1, 0}
• Output C1 iff h(x) = σ(wTx) > 0.5

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xk]T

Σ

1x0

x1

x2

x3

wixi∑ hw(x)

activation
function f

w0
w1

w2
w3 =

1
1+ exp(−wTx)f (z) = 1

1+ exp(−z)

z﹦

16

Activation / Output Functions f

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

Perceptron

Logistic Regression

17

f(z)

wixi∑z =

Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class
probabilities:

• Inference:
– Output C1if p(C1|x) ≥ 0.5, else output C2.

• assuming uniform misclassification costs …

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

18

Linear decision boundary

Logistic Regression Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk]
– Find w that minimizes an error function E(w) which measures the

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xnÞ

h(x,w) will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑

– Differentiable => can use gradient descent ✓
– Non-convex => not guaranteed to find the global optimum ✗

19

Maximum Likelihood

Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that
maximize the likelihood of the labels.

• The likelihood function is:

• The negative log-likelihood (cross entropy) error function:

hn = p(C1 | xn)⇔ hn = p(tn =1| xn) =σ (w
Txn)

𝑝 𝐭 𝐰, X = '
!"#

$

𝑝(𝑡!|𝐰, 𝑥!)

𝐸 𝐰 = − ln 𝑝 𝐭 𝐰 = −1
!"#

$

ln 𝑝(𝑡!|𝑥!)
20

Maximum Likelihood

Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that
maximize the likelihood of the labels.

• The likelihood function is

• The negative log-likelihood (cross entropy) error function:

p(t |w) = hn
tn (1− hn)

(1−tn)

n=1

N

∏

hn = p(C1 | xn)⇔ hn = p(tn =1| xn) =σ (w
Txn)

E(w) = − ln p(t | x) = − tn lnhn + (1− tn)ln(1− hn){ }
n=1

N

∑
21

Maximum Likelihood Learning
for Logistic Regression

• The ML solution is:

• ML solution is given by ÑE(w) = 0.
– Cannot solve analytically => solve numerically with gradient

based methods: (stochastic) gradient descent, conjugate gradient,
L-BFGS, etc.

– Gradient is (prove it):

– If we separate bias b from w, what is ∇E(b)?

∇E(w) = (hn − tn)xn
T

n=1

N

∑

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w

22

Regularized Logistic Regression

• Use a Gaussian prior over the parameters:
w = [w0, w1, … , wM]T

• Bayes’ Theorem:

• MAP solution:

þ
ý
ü

î
í
ì-÷

ø
ö

ç
è
æ==

+
- wwI0w T

M

Νp
2

exp
2

),()(
2/)1(

1 a
p
aa

)()|(
)(

)()|()|(wwt
t
wwttw pp

p
ppp µ=

)|(maxarg tww
w
pMAP =

23

Regularized Logistic Regression

• MAP solution:
)|(maxarg tww

w
pMAP =)()|(maxarg wwt

w
pp=

)()|(lnminarg wwt
w

pp-=

)(ln)|(lnminarg wwt
w

pp --=

)(ln)(minarg ww
w

pED -=

www
w

T
DE 2

)(minarg a
+=)()(minarg ww ww

EED +=

{ }å
=

--+-=
N

n
nnnnD ytytE

1
)1ln()1(ln)(w

wwww
TE

2
)(a
=

data term
(we also average)

regularization term

×
1
𝑁

24

Regularized Logistic Regression

• MAP solution:

• ML solution is given by ÑE(w) = 0.

ÑE(w) = ÑED(w) + ÑEw(w) =

• Cannot solve analytically => solve numerically:
– (stochastic) gradient descent [PRML 3.1.3], Newton Raphson

iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

)()(minarg www ww
EEDMAP +=

= (hn − tn)xn
T +αwT

n=1

N

∑

still convex in w

where hn =σ (w
Txn)

1
𝑁

25

⍺ is also called decay

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

– Assume example xn is stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n] / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

26

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[:,n])) − t[n]) * X[:,n] / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

27

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.dot(sigmoid(w.dot(X)) − t) / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

28

Vectorization of LR with Separate Bias

• Separate the bias b from the weight vector w.
• Compute gradient separately with respect to w and b:

– Gradient with respect to w is:

grad = X.dot(sigmoid(w.dot(X) + b) − t) / N

– Gradient with respect to bias b is:

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

Δ𝑏 = −
1
𝑁)
!"#

$

ℎ! − 𝑡!

×
1
𝑁

29

ℎ, = 𝜎(𝐰!𝐱, + 𝑏)

Vectorization of LR with Regularization

• Only the gradient with respect to w changes:
– never use L2 regularization on bias.

grad = X.dot(sigmoid(w.dot(X) + b) − t) / N + ⍺w

30

∇E(w) = (hn − tn)xn
T

n=1

N

∑ ×
1
𝑁
+ 𝛼𝐰

Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑

31

𝑝 𝐶% 𝐱! =
exp(𝐰%

&𝐱! + 𝑏%)
∑'"#..) exp(𝐰'&𝐱! + 𝑏')

bias parameter inside each wj separate bias parameter bj

Softmax Regression (K ³ 2)

• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

)|(maxarg* xkC
CpC

k

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) a normalization
constant

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx

32

Softmax Regression

• The negative log-likelihood error function is:

• The Maximum Likelihood solution is:

• The gradient is (prove it):

ED (w) = −
1
N
ln p(tn | xn)

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn)
Z(xn)n=1

N

∑

î
í
ì

¹
=

=
tx
tx

xt 0
1

)(dwhere is the Kronecker delta function.

)(minarg ww
w DML E=

∇wk
ED (w) = −

1
N

δk (tn)− p(Ck | xn)()
n=1

N

∑ xn

33

Regularized Softmax Regression

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn)− p(Ck | xn)()xnT

n=1

N

∑ +αwk
T

= −
1
𝑁
K
,-#

.

ln
exp 𝐰/!

! 𝐱,
𝑍 𝐱,

+
𝛼
2
𝐖 0

gradk=

34

Softmax Regression

• ML solution is given by ÑED(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)]
values into general convex solvers:

• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...

35

Implementation

• Need to compute [cost, grad]:

§ cost

§ gradk

=> need to compute, for k = 1, ..., K:

§ output

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

p(Ck | xn) =
exp(wk

Txn))
exp(w j

Txn)j∑ Overflow when wk
Txn

are too large.

36

Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

• When using separate bias bk, replace 𝐰89𝐱: everywhere
with 𝐰89𝐱: + 𝑏8.

c =max
1≤k≤K

wk
Txn

p(Ck | xn) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

n

n

n

37

Vectorization of Softmax with Separate Bias

• Separate the bias bk from the weight vector wk.
• Compute gradient separately with respect to wk and bk :

– Gradient with respect to wk is:

– Gradient with respect to bk is:

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
Tgradk

Δ𝑏% = −
1
𝑁)
!"#

$

𝛿% 𝑡! − 𝑝(𝐶%|𝐱!)

Gradient matrix is [grad1 | grad2 | … | gradK]

Gradient vector is Δb =[Δ𝑏# | Δ𝑏0 | … | Δ𝑏1]

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

𝛿" 𝑡# = 41 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

38

Vectorization of Softmax

• Need to compute [cost, grad, Δb]:

§ cost

§ gradk

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

39

𝛿" 𝑡# = 41 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

Vectorization of Softmax

• Compute cost

– Compute matrix of 𝐰2!𝐱, + 𝑏2.

– Compute matrix of 𝐰2!𝐱, + 𝑏2 − 𝑐,.

– Compute matrix of exp(𝐰2!𝐱, + 𝑏2 − 𝑐,).

– Compute matrix of ln 𝑝(𝐶2|𝐱,).

– Compute log-likelihood cost using all the above.

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

40

𝛿" 𝑡# = 41 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

c =max
1≤k≤K

wk
Txn+𝑏%n

ln 𝑝 𝐶% 𝐱! = 𝐰%
&𝐱! + 𝑏% − ln()

'"#..)

exp(𝐰'&𝐱! + 𝑏'))

Vectorization of Softmax

• Compute gradk

§ Gradient matrix = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶2|𝐱,).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

– Compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

41

𝛿" 𝑡# = 41 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()

42

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

𝑑
𝑑𝜃 𝐽 𝜃 = lim

<→>

𝐽 𝜃 + 𝜀 − 𝐽(𝜃 − 𝜀)
2𝜀

43

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.

• Create a vector v that is ε in position i and 0 everywhere else:
– How do you do this without a for loop in NumPy?

• Compute Gnum(θi) = (J(θ +v) − J(θ − v)) / 2ε
– Aggregate all derivatives Gnum(θi) into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

44

