Deep Learning
Feed-Forward Neural Networks
Backpropagation

Razvan C. Bunescu
Department of Computer Science @ CCI

razvan.bunescu@uncc.edu
Neuron Function

- Algebraic interpretation:
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic activation function.
Activation Functions

unit step $f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases}$

Perceptron

logistic $f(z) = \frac{1}{1 + e^{-z}}$

Logistic Neuron

ReLU $f(z) = \begin{cases}
0 & \text{if } z < 0 \\
z & \text{if } z \geq 0
\end{cases}$

Rectified Linear Unit

$f(z) = \text{ramp}(z) = \max(0, z)$
Perceptron vs. Logistic Neuron

• **Logistic neuron = Logistic regression:**
 – At inference time, same decision function as **perceptron**, for binary classification with equal misclassification costs (prove it):
 \[
 \hat{y}(x) = \begin{cases}
 1 & \text{if } w^T x > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 – **Perceptron** cannot represent the XOR function:
 • **Logistic neuron, ReLU, Tanh** have the same limitation.

• How can we use (**logistic** **neurons**) to achieve better representational power?
Universal Approximation Theorem

- Let σ be a nonconstant, bounded, and monotonically-increasing continuous function;
- Let I_m denote the m-dimensional unit hypercube $[0,1]^m$;
- Let $C(I_m)$ denote the space of continuous functions on I_m;

Theorem: Given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exist an integer N and real constants $\alpha_i, b_i \in \mathbb{R}$, $w_i \in \mathbb{R}^m$, where $i = 1, \ldots, N$, such that:

$$|F(x) - f(x)| < \varepsilon, \quad \forall x \in I_m$$

where

$$F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i)$$
Universal Approximation Theorem

\[
F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i)
\]

\[|F(x) - f(x)| < \varepsilon, \forall x \in I_m\]

\[m = 3, N = 3\]
\[x = [x_1, x_2, x_3]\]
\[w_i = [w_{i1}, w_{i2}, w_{i3}]\]
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron on layer \(l \) can be the input of another neuron on layer \(l + 1 \):

![Diagram of a neural network model](image-url)
1. For each neuron in hidden layer 1, we need $10 + 1 = 11$ params. For the 10 neurons on hidden layer 1, we need in total $10 \times 11 = 110$ params.

2. For the 5 neurons on hidden layer 2, we need $5 \times 11 = 55$ params.

3. For the output neurons, we need $5 + 1 = 6$ params.
The Importance of Representation

http://www.deeplearningbook.org
From Cartesian to Polar Coordinates

- **Manually engineered:**

 \[r = \sqrt{x^2 + y^2} \]
 \[\theta = \tan^{-1}\left(\frac{y}{x}\right) \text{ (first quadrant)} \]

- **Learned from data:**

 Diagram:

 - Fully connected layers: linear transformation \(W \) + element-wise nonlinearity \(f \Rightarrow f(Wx) \)
 - Logistic neuron
 - Input layers: \(x \) and \(y \) are fixed to 1
 - Output layer: \(p(\text{blue}|x,y) \)
Representation Learning: Images

https://www.datarobot.com/blog/a-primer-on-deep-learning/
A Rapidly Evolving Field

• Used to think that training deep networks requires **greedy layer-wise pretraining:**

• Better random **weight initialization** schemes now allow training deep networks from scratch.

• **Batch normalization** allows for training even deeper models (2014).
 – Sometimes replaced by the simpler **Layer Normalization** (2016).

• **Residual learning** allows training arbitrarily deep networks (2015).

• Attention-based **Transformers** replace RNNs and CNNs in NLP (2018):
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron can be the input of another:
- $n_l = 3$ is the number of layers.
 - L_1 is the input layer, L_3 is the output layer
- $(W, b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ are the parameters:
 - $W^{(l)}_{ij}$ is the weight of the connection between unit j in layer l and unit i in layer $l+1$.
 - $b^{(l)}_i$ is the bias associated unit i in layer $l+1$.
- $a^{(l)}_i$ is the activation of unit i in layer l, e.g. $a^{(1)}_i = x_i$ and $a^{(3)}_1 = h_{W,b}(x)$.
Inference: Forward Propagation

• The activations in the hidden layer are:

$$a_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})$$
$$a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)})$$
$$a_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})$$

• The activations in the output layer are:

$$h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})$$

• Compressed notation:

$$a_i^{(l)} = f(z_i^{(l)}) \text{ where } z_i^{(2)} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)}$$
Forward Propagation

- Forward propagation (unrolled):

\[
\begin{align*}
 a_1^{(2)} &= f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
 a_2^{(2)} &= f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
 a_3^{(2)} &= f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \\
 h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\end{align*}
\]

- Forward propagation (compressed):

\[
\begin{align*}
 z^{(2)} &= W^{(1)} x + b^{(1)} \\
 a^{(2)} &= f(z^{(2)}) \\
 z^{(3)} &= W^{(2)} a^{(2)} + b^{(2)} \\
 h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

- Element-wise application:

\[
f(z) = [f(z_1), f(z_2), f(z_3)]
\]
Forward Propagation

• Forward propagation (compressed):

 \[
 z^{(2)} = W^{(1)}x + b^{(1)} \\
 a^{(2)} = f(z^{(2)}) \\
 z^{(3)} = W^{(2)}a^{(2)} + b^{(2)} \\
 h_{W,b}(x) = a^{(3)} = f(z^{(3)})
 \]

• Composed of two *forward propagation steps*:

 \[
 z^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)} \\
 a^{(l+1)} = f(z^{(l+1)})
 \]
Forward Propagation for FCNs: Regression

1. Input activations are \[a^{(1)} = x \]

2. For each layer \(l = 1, 2, \ldots, n_l - 1 \) compute \[a^{(l+1)} \]
 \[z^{(l+1)} = W^{(l)} a^{(l)} + b^{(l)} \] matrix multiply and add
 \[a^{(l+1)} = f(z^{(l)}) \] apply element-wise non-linear function \(f \)

3. For last layer \(n_l + 1 \) compute regression output \[a^{(n_l+1)} \]
 \[z^{(n_l+1)} = W^{(n_l)} a^{(n_l)} + b^{(n_l)} \]
 \[a^{(n_l+1)} = z^{(n_l+1)} \] output (regression)
Forward Propagation for FCNs: Classification

1. Input activations are
\[\mathbf{a}^{(1)} = \mathbf{x} \]

2. For each layer \(l = 1, 2, \ldots, n_l - 1 \) compute
\[\mathbf{z}^{(l+1)} = \mathbf{W}^{(l)} \mathbf{a}^{(l)} + \mathbf{b}^{(l)} \] matrix multiply and add
\[\mathbf{a}^{(l+1)} = f(\mathbf{z}^{(l)}) \] apply element-wise non-linear function \(f \)

3. For last layer \(n_l + 1 \) compute probability output
\[\mathbf{z}^{(n_l+1)} = \mathbf{W}^{(n_l)} \mathbf{a}^{(n_l)} + \mathbf{b}^{(n_l)} \]
\[\mathbf{a}^{(n_l+1)} = \text{softmax}(\mathbf{z}^{(n_l+1)}) \] softmax output (classification)
Backpropagation for FCNs for Regression:
1 example

- Feedforward to compute activations $a^{(l)} = f(z^{(l)})$ at layers l

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]
 \[\text{true label} \]

2. For $l = n_l, n_l-2, n_l-3, \ldots, 2$ compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]

3. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}
 \]
Backpropagation for FCNs for Regression:
\(m \) examples

1. For softmax layer, compute:
\[
\delta^{(n_l+1)} = (a^{(n_l+1)} - y)
\]

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:
\[
\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \bullet f'(z^{(l)})
\]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
\[
\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T / m \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}.\text{col_avg}()
\]
Multiple Hidden Units, Multiple Outputs

- Write down the forward propagation steps for:
ReLU and Generalizations

- It has become more common to use piecewise linear activation functions for hidden units:
 - **ReLU**: the rectifier activation $g(z) = \max\{0, z\}$.
 - **Absolute value ReLU**: $g(z) = |z|$.
 - **Maxout**: $g(a_1, \ldots, a_k) = \max\{a_1, \ldots, a_k\}$.
 - needs k weight vectors instead of 1.
 - **Leaky ReLU**: $g(a) = \max\{0, a\} + \alpha \min(0, a)$.

\Rightarrow the network computes a *piecewise linear function* (up to the output activation function).
ReLU vs. Sigmoid and Tanh

• Sigmoid and Tanh saturate for values not close to 0:
 – “kill” gradients, bad behavior for gradient-based learning.
• ReLU does not saturate for values > 0:
 – greatly accelerates learning, fast implementation.
 – fragile during training and can “die”, due to 0 gradient:
 • initialize all b’s to a small, positive value, e.g. 0.1.
ReLU vs. Softplus

- Softplus \(g(z) = \ln(1+e^z) \) is a smooth version of the rectifier.
 - Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

![Nonlinearities Graph](image)
Backpropagation for FCNs for Regression: 1 example

1. For softmax layer, compute:

\[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]

true label

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:

\[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)

\[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \]

\[\nabla_{b^{(l)}} J = \delta^{(l+1)} \]

Feedforward to compute activations \(a^{(l)} = f(z^{(l)}) \) at layers \(l \)
Learning: Backpropagation for Regression

- Regularized sum of squares error:

\[J(W, b, x, y) = \frac{1}{2} \| h_{w,b}(x) - y \|^2 \]

\[J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (W^{(l)}_{ij})^2 \]

- Gradient:

\[\frac{\partial J(W, b)}{\partial W^{(l)}_{ij}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W^{(l)}_{ij}} + \lambda W^{(l)}_{ij} \]

\[\frac{\partial J(W, b)}{\partial b^{(l)}_i} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b^{(l)}_i} \]

Squared Frobenius norm of \(W^{(l)} \)
Backpropagation for Regression

- Need to compute the gradient of the squared error with respect to a single training example \((x, y)\):

\[
J(W, b, x, y) = \frac{1}{2} \| h_{w,b}(x) - y \|^2 = \frac{1}{2} \| a^{(n_l)} - y \|^2
\]

\[
\frac{\partial J}{\partial W_{ij}^{(l)}} = ? \quad \frac{\partial J}{\partial b_i^{(l)}} = ?
\]
Learning: Regression vs. Classification

- **Regression** => $loss = \text{squared error}$:

 $$J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2$$

- **Classification** => $loss = \text{negative log-likelihood}$:

 $$J(W, b, x, y) = -\ln p(y|W, b, x)$$

- Need to compute the gradient of the loss with respect to parameters W, b:

 $$\frac{\partial J}{\partial W_{ij}^{(l)}} = ?$$

 $$\frac{\partial J}{\partial b_i^{(l)}} = ?$$
Learning: Backpropagation

- Regularized sum of squares error:
 \[
 J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2
 \]
 \[
 J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ij}^{(l)})^2
 \]

- Gradient:
 \[
 \frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W_{ij}^{(l)}} + \lambda W_{ij}^{(l)}
 \]
 \[
 \frac{\partial J(W, b)}{\partial b_i^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b_i^{(l)}}
 \]
Univariate Chain Rule for Differentiation

- **Univariate Chain Rule:**
 \[f = f \circ g \circ h = f(g(h(x))) \]
 \[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x} \]

- **Example:**
 \[f(g(x)) = 2g(x)^2 - 3g(x) + 1 \]
 \[g(x) = x^3 + 2x \]
Multivariate Chain Rule for Differentiation

- Multivariate Chain Rule:

 \[f = f(g_1(x), g_2(x), \ldots, g_n(x)) \]

 \[\frac{\partial f}{\partial x} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial x} \]

- Example:

 \[f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1 \]

 \[g_1(x) = 3x \]

 \[g_2(x) = x^2 + 2x \]
Backpropagation: $W_{ij}^{(l)}$

- J depends on $W_{ij}^{(l)}$ only through $a_i^{(l+1)}$, which depends on $W_{ij}^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \|a_1^{(n)} - y\|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
Backpropagation: $b_i^{(l)}$

- J depends on $b_i^{(l)}$ only through $a_i^{(l+1)}$, which depends on $b_i^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \left\| a^{(n_l)} - y \right\|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
Backpropagation: $W_{ij}^{(l)}$ and $b_i^{(l)}$

\[
\frac{\partial J}{\partial W_{ij}^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)}
\]

\[
\delta_i^{(l+1)} = a_j^{(l)} \frac{\partial J}{\partial a_i^{(l+1)}}
\]

\[
\frac{\partial J}{\partial b_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial b_i^{(l)}} = \delta_i^{(l+1)}
\]

How to compute $\delta_i^{(l)}$ for all layers l?
Backpropagation: $\delta_i^{(l)}$

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)})
\]

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}$, $a_2^{(l+1)}$, ...

![Diagram of a neural network](image)
Backpropagation: $\delta_i^{(l)}$

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}, a_2^{(l+1)}, ...$

\[
\frac{\partial J}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial z_j^{(l+1)}} \times \frac{\partial z_j^{(l+1)}}{\partial a_i^{(l)}} \delta_j^{(l+1)} W_{ji}^{(l)}
\]

- Therefore, $\delta_i^{(l)}$ can be computed as:

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)}) = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) \times f'(z_i^{(l)})
\]
Backpropagation: $\delta_i^{(l)}$

- Start computing δ’s for the output layer:

$$\delta_i^{(n_l)} = \frac{\partial J}{\partial a_i^{(n_l)}} \times \frac{\partial a_i^{(n_l)}}{\partial z_i^{(n_l)}} = \frac{\partial J}{\partial a_i^{(n_l)}} \times f'(z_i^{(n_l)})$$

$$J = \frac{1}{2} \|a^{(n_l)} - y\|^2 \Rightarrow \frac{\partial J}{\partial a_i^{(n_l)}} = \left(a_i^{(n_l)} - y_i\right)$$

$$\delta_i^{(n_l)} = \left(a_i^{(n_l)} - y_i\right) \times f'(z_i^{(n_l)})$$
Backpropagation Algorithm

1. Feedforward pass on x to compute activations $a_i^{(l)}$

2. For each output unit i compute:
 \[\delta_i^{(n_l)} = (a_i^{(n_l)} - y_i) \times f'(z_i^{(n_l)}) \]

3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:
 \[\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)}) \]

4. Compute the partial derivatives of the cost $J(W,b,x,y)$
 \[\frac{\partial J}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)} \]
 \[\frac{\partial J}{\partial b_i^{(l)}} = \delta_i^{(l+1)} \]
Backpropagation Algorithm: Vectorization for 1 Example

1. Feedforward pass on x to compute activations $a_i^{(l)}$

2. For last layer compute:
 \[
 \delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)})
 \]

3. For $l = n_l - 1, n_l - 2, n_l - 3, \ldots, 2$ compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]

4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T \\
 \nabla_{b^{(l)}} J = \delta^{(l+1)}
 \]
Backpropagation Algorithm: Vectorization for Dataset of m Examples

1. Feedforward pass on X to compute activations $a_i^{(l)}$

2. For last layer compute:

 $$\delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)})$$

3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:

 $$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})$$

4. Compute the partial derivatives of the cost $J(W, b, x, y)$

 $$\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T / m$$
 $$\nabla_{b^{(l)}} J = \delta^{(l+1)}.\text{col_avg()}$$
Backpropagation: Softmax Regression

- Consider layer n_l to be the input to the softmax layer i.e. softmax output layer is n_l+1.

- Softmax weights stored in matrix $W^{(n_l)}$.

- K classes \Rightarrow $W^{(n_l)} = \begin{bmatrix} -w_1^T & - \\ -w_2^T & - \\ \vdots & \\ -w_K^T & - \end{bmatrix}$
Backpropagation: Softmax Regression

- Softmax output is $a^{(n_l+1)} = \text{softmax}(z^{(n_l+1)})$
Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on \mathbf{x} to compute activations $\mathbf{a}^{(l)}$ for layers $l = 1, 2, \ldots, n_l$.

2. Compute softmax outputs $\mathbf{a}^{(n_l+1)}$ and objective $J(\mathbf{a}^{(n_l+1)}, \mathbf{y})$.

3. Let $\mathbf{y} = [\delta_1(y), \delta_2(y), \ldots, \delta_K(y)]^T$ be the one-hot vector representation for label y.

4. Compute gradient with respect to softmax weights:

$$\frac{\partial J}{\partial W^{(n_l)}} = (\mathbf{a}^{(n_l+1)} - \mathbf{y})\mathbf{a}^{(n_l)T}$$
Backpropagation Algorithm: Softmax (2)

5. Compute gradient with respect to softmax inputs:
\[\delta^{(n_l)} = \left(W^{(n_l)} \right)^T (a^{(n_l+1)} - y) \cdot f'(z^{(n_l)}) \]

6. For \(l = n_l-1, n_l-2, n_l-3, \ldots, 2 \) compute:
\[\delta^{(l)} = \left(\left(W^{(l)} \right)^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

7. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
\[\nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Softmax for 1 Example

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \]
 \[\nabla_{b^{(l)}} J = \delta^{(l+1)} \]

one-hot label vector
Backpropagation Algorithm: Softmax for Dataset of m Examples

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]

2. For $l = n_l, n_l-1, n_l-2, \ldots, 2$ compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)}\right) \cdot f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost $J(W, b, x, y)$

 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T / m \]

 \[\nabla_{b^{(l)}} J = \delta^{(l+1)} \text{.col_avg()} \]

 \[\quad + \alpha W^{(l)} \]

 if using L_2 regularization

- ground-truth label matrix
Backpropagation Algorithm: Softmax for Dataset of \(m \) Examples

1. For softmax layer, compute:
 \[
 \delta^{(n_l+1)} = (a^{(n_l+1)} - y)
 \]

2. For \(l = n_l, n_l-1, n_l-2, \ldots, 2 \) compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)}\right) \cdot f'(z^{(l)})
 \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T / m \\
 + \alpha W^{(l)} \\
 S_{l+1} \times m, \text{ where } s_l \text{ is the } \# \text{ neurons on layer } l
 \\
 \nabla_{b^{(l)}} J = \delta^{(l+1)} \text{.col_avg()} \\
 S_{l+1} \times 1, \text{ where } s_{l+1} \text{ is the } \# \text{ neurons on layer } l+1
 \]
Softmax Regression Cost:
From 1 to m examples

• Ground truth vector y is a one-hot vector where:
 - $y_k = 1$ if the true class label t is k, otherwise $y_k = 0$.

• The negative log-likelihood (NLL) part of the cost is:
 - $J(W, b, x, t) = -\ln p(t | W, b, x) = -\sum_{k=1}^{K} \delta_k(t) \ln p(C_k | x)$

• Using our NN notation, $y_k = \delta_k(t)$ and $a_k^{(n_l+1)} = p(C_k | x)$
 - Therefore, we can write the NLL part of the cost as a dot-product between
 the one-hot ground truth vector y and the log of $a^{(n_l+1)}$
 - $J(W, b, x, t) = J(a^{(n_l+1)}, y) = -y^T \ln a^{(n_l+1)} = -\text{sum}(y \circ \ln a^{(n_l+1)})$

• When vectorized for m examples + regularization, when y is the ground-truth
 matrix and a is the matrix of softmax probabilities of all m examples:
 - $J(W, b) = J(a^{(n_l+1)}, y) = -\frac{1}{m} \text{sum}(y \circ \ln a^{(n_l+1)}) + \frac{\alpha}{2} \|W\|^2$
Backpropagation: Logistic Regression

Bonus points
Readings

- Chapter 6 on Deep Feedforward Networks in DL textbook.