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Principal Component Analysis (PCA)

* A technique widely used for:
— dimensionality reduction.
— data compression.

— feature extraction.
— data visualization. maxzmum variance

 Two equivalent definitions of PCA: 4

1) Project the data onto a lower dimensional space such that the
variance of the projected data is maximized.

2) Project the data onto a lower dimensional space such that the
mean squared distance between data points and their projections
(average projection cost) is minimized.
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PCA (Maximum Variance)

Let X = {x,}<,«n b€ a set of observations:

— Each x,eR” (D is the dimensionality of x,,).

Project X onto an M dimensional space (M < D) such that
the variance of the projected X 1s maximized.

— Minimum error formulation leads to the same solution [PRML
1. 1.21:

* shows how PCA can be used for compression.

Work out solution for M = 1, then generalize to any M < D.




PCA (Maximum Variance, M = 1)

The lower dimensional space is defined by a vector u, eRP”.

— Only direction is important = choose ||u,|[=1.

: . T
Each x,, 1s projected onto a scalar u, x

The (sample) mean of the data 1s:
1 N
X=—)>X
N

The (sample) mean of the projected data is u; X




PCA (Maximum Variance, M = 1)

The (sample) variance of the projected data:
N
%E(ufxn—ufi)z =u, 2u,
n=1

where X is the data covariance matrix:

1 i
Z=NZ(X,1—X)(X”

Optimization problem is:

_i)T

minimize:
—u, Zu,
subject to:
uu =1




PCA (Maximum Variance, M = 1)

=

* Lagrangian function:
L.(u,A)=-u Zu, +A(uu -1)

where A, is the Lagrangian multiplier for constraint ulT u, =1

* Solve:
ol . 3 u; is an eigenvector of X
ou, el A is an eigenvalue of X

. _uszul D _)LlulTul =-A

—> A, 1s the largest eigenvalue of X.




PCA (Maximum Variance, M = 1)

(=

e A, 1s the largest eigenvalue of X.

* u, 1s the eigenvector corresponding to A;:

— also called the first principal component.

e For M < D dimensions:

— u; u, ... u,, are the eigenvectors corresponding to the largest
eigenvalues A; A, ... A;, of X.

— proof by induction.




PCA on Normalized Data

« Preprocess data X ={x®},_.__ such that:
— features have the same mean (0).

— features have the same variance (1).

1. Let p=2L5"" 2@,
2. Replace each 2 with z® — 4.

3. Let 02 = L Zz(azgz))Q

4. Replace each xy) with xg-i) /o;.




PCA on Natural Images

(s

« Stationarity: the statistics in one part of the image should
be the same as any other.

— no need for variance normalization.

—> do mean normalization by subtracting from each 1mage its mean

intensity.
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PCA on Normalized Data

The covariance matrix is:

S lzx(i) (X(i))T
Y Hies
The eigenvectors are:

Zuj == Aﬂju]‘ where A’I = A’Z R A’D and l/t;l/lj — I
Equivalent with:

2U =UA
U=[u,u,..ul AdAzA=z=.2rAandU'U=1I

A =diag(A,A,,...,A,)




PCA on Normalized Data

U 1s an orthogonal (rotation) matrix, 1.€. L

The full transformation (rotation) of x() through PCA is:
Y = T x®
— 1@ = gy
The k-dimensional projection of x() through PCA is:
e S ST
=3 )’e(l) (]1 k)’}(l)

How many components & should be used?




How many components & should be used?

Compute percentage of variance retained by Y = {0}, for
each value of k:

5 5
y(’)=[u1,...,uk] x®

Var(k) = iVar[yj] — EVar[ufx]

HW: Prove it is ZJ-




How many components & should be used?

[

« Compute percentage of variance retained by Y = {y®}, for
each value of k:

— Variance retained:

Var(k) = E

— Total variance:
Var(D) = E

— Percentage of variance retained: P(k) =

=

ik




How many components & should be used?

=

« Compute percentage of variance retained by Y = {y®}, for
each value of k:

E]l J

.

Y

P(k) =

j=1

e (Choose smallest k£ as to retain 99% of variance:

k = argmin[ P(k)=0.99]

1<k<D




PCA on Normalized Data: [x®,x"]"




Rotation through PCA: [u x®,ul x”1"




1-Dimensional PCA Projection: 1 x*,07
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I-Dimensional PCA Approximation: wu, x




PCA as a Linear Auto-Encoder

The full transformation (rotation) of x() through PCA is:

y=U"x= x=Uy

The k-dimensional projection of x( through PCA is:

A

T T A A T
Vi= Ul,kx =u,...,.u, ] x=>x= Ulaky = Ul,kUl,kx

The minimum error formulation of PCA:

— 2
R 2 e (i) (1)
Uy, =argmin Y |U, U/, x?” - x

Ot =1

a linear auto-encoder
with tied weights!

21




PCA as a Linear Auto-Encoder
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PCA and Decorrelation

 The full transformation (rotation) of x through PCA is:
= R — Y =X

 What is the covariance matrix of the rotated data Y?

dyyr _ l(UTX)(UTX)T L urxxtu
m m m
= UT(iXXT)U = e
m

= diag(A,A,,...,A;) => the features 1n y
are decorrelated!
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PCA Whitening (Sphering)

* The goal of whitening 1s to make the input less redundant,

1.e. the learning algorithm sees a training input where:
1. The features are not correlated with each other.

2. The features all have the same variance.

1. PCA already results in uncorrelated features:

YW=Ux"Y<Y=U"X iYYT=diag()L],)L2,...,)LD)

m
2. Transform to i1dentity covariance (PCA Whitening) :
T (i)

D AT <Y = ATUTX

Y; <y
] \/)TJ 24




PCA on Normalized Data: [x®,x"]"




Rotation through PCA: [u x®,ul x”1"




T30 ot iy
u, X" U, x

PCA Whitening:

Xoc awhite2

Xbc Awhite,1




Z.CA Whitening (Sphering)

=

* Observation: If Y has identity covariance and R is an
orthogonal matrix, then RY has identity covariance.

1. PCA Whitening:

Y. = APUTX

PCA

2. ZCA Whitening:

Yyy = U, =UA 20X

Out of all rotations, U makes Y ,-, closest to original X.




ZCA Whitening: Y, = UNUTX

T T T T T T T
X
0.3 N
X
X
0.2 * -
x X
><>< X %

0.1 .
8 . X S
g X X X
5} X

XN or X . X .
X
X X
X
X X
X
0.1 X x « « X ~ » 7
X
X
-0.21 n
s X
-0.31 ]
| ! ] | ! ! ] 1 !
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

ZCAwhite,1




Smoothing

=

» When eigenvalues 4, are very close to 0, dividing by 4,12 is
numerically unstable.

 Smoothing: add a small € to eigenvalues before scaling for
PCA/ZCA whitening:

()
® % SR

) 1/)Lj+e

« ZCA whitening 1s a rough model of how the biological eye

e=~10"

(the retina) processes images (through retinal neurons).




