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Principal Component Analysis (PCA)

• A technique widely used for:
– dimensionality reduction.
– data compression.
– feature extraction.
– data visualization.

• Two equivalent definitions of PCA:
1) Project the data onto a lower dimensional space such that the 

variance of the projected data is maximized.
2) Project the data onto a lower dimensional space such that the 

mean squared distance between data points and their projections 
(average projection cost) is minimized.

maximum variance

minimum error
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PCA (Maximum Variance)

• Let X = {xn}1£n£N be a set of observations:

– Each xnÎRD (D is the dimensionality of xn).

• Project X onto an M dimensional space (M < D) such that 
the variance of the projected X is maximized.
– Minimum error formulation leads to the same solution [PRML 

12.1.2].
• shows how PCA can be used for compression.

• Work out solution for M = 1, then generalize to any M < D.
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PCA (Maximum Variance, M = 1)

• The lower dimensional space is defined by a vector u1ÎRD.

– Only direction is important Þ choose ||u1||=1.

• Each xn is projected onto a scalar

• The (sample) mean of the data is:

• The (sample) mean of the projected data is
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PCA (Maximum Variance, M = 1)

• The (sample) variance of the projected data:

where Σ is the data covariance matrix:

• Optimization problem is:
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PCA (Maximum Variance, M = 1)

• Lagrangian function:

where l1 is the Lagrangian multiplier for constraint

• Solve:

111 =uuT

LP (u1,λ1) = −u1
TΣu1 +λ1(u1

Tu1 −1)

∂LP
∂u1

= 0⇒ Σu1 = λ1u1⇒
u1 is an eigenvector of Σ
l1 is an eigenvalue of Σ

⇒−u1
TΣu1 = −λ1u1

Tu1 = −λ1
Þ l1 is the largest eigenvalue of Σ.  
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PCA (Maximum Variance, M = 1)

• l1 is the largest eigenvalue of Σ.
• u1 is the eigenvector corresponding to l1:

– also called the first principal component.

• For M < D dimensions:
– u1 u2 … uM are the eigenvectors corresponding to the largest 

eigenvalues l1 l2 … lM of Σ.
– proof by induction.
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PCA on Normalized Data

• Preprocess data X ={x(i)}1£i£m such that:
– features have the same mean (0).

– features have the same variance (1).
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PCA on Natural Images

• Stationarity: the statistics in one part of the image should 
be the same as any other.
Þno need for variance normalization.
Þdo mean normalization by subtracting from each image its mean 

intensity.
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PCA on Normalized Data

• The covariance matrix is:

• The eigenvectors are:

• Equivalent with:

Σ =
1
m
XXT =

1
m

x(i) x(i)( )
T

i=1

m

∑

Σu j = λ ju j

ΣU =UΛ
U = [u1,u2,…,uD ]
Λ = diag(λ1,λ2,…,λD )

where λ1 ≥ λ2 ≥…≥ λD  and uj
Tuj =1

λ1 ≥ λ2 ≥…≥ λD  and UTU = I
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PCA on Normalized Data

• U is an orthogonal (rotation) matrix, i.e. UTU = I.

• The full transformation (rotation) of x(i) through PCA is:

• The k-dimensional projection of x(i) through PCA is:

• How many components k should be used?

y(i) =UT x(i)

ŷ(i) =U1,k
T x(i) = [u1,…,uk ]

T x(i)

⇒ x(i) =Uy(i)

⇒ x̂(i) =U1,k ŷ
(i)

13



How many components k should be used?

• Compute percentage of variance retained by Y = {y(i)}, for 
each value of k: 

ŷ(i) = [u1,…,uk ]
T x(i)

Var(k) = Var ŷj!" #$
j=1
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∑ = Var uj
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∑

HW: Prove it is λj
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How many components k should be used?

• Compute percentage of variance retained by Y = {y(i)}, for 
each value of k:

– Variance retained:

– Total variance:

– Percentage of variance retained: 

Var(k) = λ jj=1

k
∑

P(k) =
λ jj=1

k
∑

λ jj=1

D
∑

Var(D) = λ jj=1

D
∑
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How many components k should be used?

• Compute percentage of variance retained by Y = {y(i)}, for 
each value of k:

• Choose smallest k as to retain 99% of variance:

P(k) =
λ jj=1

k
∑

λ jj=1

D
∑

k̂ = argmin
1≤k≤D

P(k) ≥ 0.99[ ]
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PCA on Normalized Data: [x1(i), x2(i) ]T
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Rotation through PCA: [u1T x(i),u2T x(i) ]T
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1-Dimensional PCA Projection: [u1T x(i), 0]T
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1-Dimensional PCA Approximation: u1u1T x(i)
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PCA as a Linear Auto-Encoder

• The full transformation (rotation) of x(i) through PCA is:

• The k-dimensional projection of x(i) through PCA is:

• The minimum error formulation of PCA:

y =UT x⇒ x =Uy

ŷ =U1,k
T x = [u1,…,uk ]

T x⇒ x̂ =U1,k ŷ =U1,kU1,k
T x

U1,k
* = argmin

U1,k
U1,kU1,k

T x(i) − x(i)
2

i=1

m

∑
a linear auto-encoder 

with tied weights!
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PCA as a Linear Auto-Encoder
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PCA and Decorrelation

• The full transformation (rotation) of x(i) through PCA is:

• What is the covariance matrix of the rotated data Y?

y(i) =UT x(i) ⇒Y =UTX

1
m
YY T =

1
m
UTX( ) UTX( )

T
=
1
m
UTXXTU

=UT 1
m
XXT!

"
#

$

%
&U =UTΣU = Λ

= diag(λ1,λ2,…,λD ) => the features in y
are decorrelated!
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PCA Whitening (Sphering)

• The goal of whitening is to make the input less redundant, 
i.e. the learning algorithm sees a training input where:

1. The features are not correlated with each other.

2. The features all have the same variance.

1. PCA already results in uncorrelated features:

y(i) =UT x(i)⇔Y =UTX 1
m
YY T = diag(λ1,λ2,…,λD )

2. Transform to identity covariance (PCA Whitening) :

yj
(i) =

uj
T x(i)

λ j

⇔ y(i) = Λ−12UT x(i)⇔Y = Λ−12UTX
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PCA on Normalized Data: [x1(i), x2(i) ]T
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Rotation through PCA: [u1T x(i),u2T x(i) ]T
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PCA Whitening:
u1
T x(i)
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ZCA Whitening (Sphering)

• Observation: If Y has identity covariance and R is an 
orthogonal matrix, then RY has identity covariance.

YPCA = Λ
−12UTX

1. PCA Whitening:

YZCA =UYPCA =UΛ
−12UTX

2. ZCA Whitening:

Out of all rotations, U makes YZCA closest to original X. 
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ZCA Whitening: YZCA =UΛ
−12UTX
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Smoothing

• When eigenvalues λj are very close to 0, dividing by λj-1/2 is 
numerically unstable.

• Smoothing: add a small ε to eigenvalues before scaling for 
PCA/ZCA whitening:

• ZCA whitening is a rough model of how the biological eye 
(the retina) processes images (through retinal neurons).

yj
(i) =

uj
T x(i)

λ j +ε
ε ≈10−5
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