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Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
– Examples in the same cluster are very similar.
– Examples in different clusters are very different.
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Divisive Clustering with k-Means

• The goal is to produce k clusters C ={C1, C2, …, Ck} such 
that instances are close to the cluster centroids:
– The cluster centroid mi is the mean of all instances in the cluster Ci.

• Optimization problem:
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The k-Means Algorithm

1. start with some seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x: 
5. set

6. set

7. set

8. set t ¬ t + 1 
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)

8



The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm (k = 2)
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The k-Means Algorithm

• The objective function monotonically decreases at every 
iteration:
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The k-Means Algorithm

• Optimization problem is NP-hard:
– Results depend on seed selection.
– Improve performance by providing  must-link and/or cannot-link

constraints Þ semi-supervised clustering.

• Time complexity for each iteration is O(knm):
– number of clusters is k.
– feature vectors have dimensionality m.
– total number of instances is n.
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The k-Means Algorithm

1. start with some seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x: 
5. set

6. set

7. set

8. set t ¬ t + 1 
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The k-Medoids Algorithm

1. start with some random seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x: 
5. set

6. set

7. set

8. set t ¬ t + 1 
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Soft Clustering

• Clustering typically assumes that each instance is given a 
“hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or for an 
instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance belongs 
to each of a set of clusters.

• Each instance is assigned a probability distribution across a 
set of discovered categories.
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Soft Clustering with EM

• Soft version of k-means.
• Assumes a probabilistic model of categories that allows 

computing P(ci | x) for each category, ci, for a given 
example x.
– For text, typically assume a naïve-Bayes category model.

• Parameters q = {P(ci), P(wj | ci) | iÎ{1,…k}, j Î{1,…,|V|}}

21



Soft Clustering with EM

• Iterative method for learning probabilistic categorization 
model from unsupervised data.

• Initially assume random assignment of examples to 
categories.

• Learn an initial probabilistic model by estimating model 
parameters q from this randomly labeled data.

• Iterate following two steps until convergence:
– Expectation (E-step): Compute P(ci | x) for each example given the 

current model, and probabilistically re-label the examples based on 
these posterior probability estimates.

– Maximization (M-step): Re-estimate the model parameters, q, from 
the probabilistically re-labeled data.
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Learning with Probabilistic Labels

• Instead of training data labeled with “hard” category 
labels, training data is labeled with “soft” probabilistic 
category labels.

• When estimating model parameters q from training data, 
weight counts by the corresponding probability of the 
given category label.

• For example, if P(c1 | x) = 0.8 and P(c2 | x) = 0.2, each 
word wj in x contributes only 0.8 towards the counts n1 and 
n1j, and 0.2 towards the counts n2 and n2j .
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Naïve Bayes EM
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1. Randomly assign examples probabilistic category labels.

2. Use standard naïve-Bayes training to learn a probabilistic 

model with parameters q from the labeled data.

3. Until convergence or until maximum number of iterations 

reached:
• E-Step: Use the naïve Bayes model q to compute P(ci | x) for each 

category and example, and re-label each example using these 
probability values as soft category labels.

• M-Step: Use standard naïve-Bayes training to re-estimate the 
parameters q using these new probabilistic category labels.



Hierarchical Agglomerative Clustering (HAC)

• Start out with n clusters, one example per cluster.
• At each step merge the nearest two clusters.
• Stop when there is only one cluster left, or:

– there are only k clusters left.
– distance is above a threshold t.

• History of clustering decision can be represented as a 
binary tree. 
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The HAC Algorithm

1. let Ci = {xi}, for iÎ1…n

2. let C = {Ci}, for iÎ1…n

3. while |C| > 1:

4. set  

5. replace Ci , Cj in C with Ci È Cj

Q: How do we compute the distance d between two clusters?
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Distance Measures

• Assume a distance function between any two instances:
– Euclidean distance ||x-y||

• Single Link:

• Complete Link:

• Group Average:

• Centroid Distance:
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Single Link (Nearest Neighbor)

• Distance function

• It favors elongated clusters.

• Equivalent with Kruskal’s MST algorithm.
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Single Link
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Complete Link (Farthest Neighbor)

• Distance function

• It favors tight, spherical clusters.

• d(Ci,Cj) is the diameter of the cluster Ci È Cj.
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Complete Link

31


