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Unsupervised Learning: Clustering

 Partition unlabeled examples into disjoint clusters such that:
— Examples in the same cluster are very similar.

— Examples in different clusters are very different.
A
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Divisive Clustering with A-Means

e The goal 1s to produce k clusters C ={C,, C,, ..., C;} such
that instances are close to the cluster centroids:

— The cluster centroid m, is the mean of all instances in the cluster C..

e Optimization problem:

C =arg min J(C)

J(C)=2 D lIx—m,|f

i=1 xeC;




The k~-Means Algorithm
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start with some seed centroids m!”, m{”,..., m!”
set < 0.
while not converged:

for each x:
set m"(x) < arg min/x — m'”| < [E] step
m;

set Ci(t+1) 2 {X | m(t)(x) b - ml(t)}
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set m!"*" « D DX < [M] step

i xeCl-(Hl)

setr«r+1




The A~~-Means Algorithm (k = 2)

Pick seeds
Reassign clusters
Compute centroids
Reasssign clusters
S X Compute centroids

5 Reassign clusters

k Converged!




The k~-Means Algorithm (k = 2)




The ki-Means Algorithm (k = 2)
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The A~-Means Algorithm

« The objective function monotonically decreases at every

iteration:

|E] step

|[M] step

J(f) > J(t+1)




The k~-Means Algorithm

e Optimization problem is NP-hard:
— Results depend on seed selection.

— Improve performance by providing must-link and/or cannot-link
constraints = semi-supervised clustering.

* Time complexity for each iteration 1s O(knm):
— number of clusters i1s k.

— feature vectors have dimensionality m.
— total number of instances is 7.




The k~-Means Algorithm

Sh R R

Sk

start with some seed centroids m!”, m{”,..., m!”
set < 0.
while not converged:

for each x:
set m"(x) < arg min/x — m'”| < [E] step
m;

set Ci(t+1) 2 {X | m(t)(x) b - ml(t)}

1
(t+1) i

set m!"*" « D DX < [M] step

i xeCl-(Hl)

setr«r+1




The k~~-Medoids Algorithm
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start with some random seed centroids m{”, m{”,.... m

set 1 < 0.
while not converged:

for each x:

(0)
k

set m(”(x)eargmmd(x m(’))

set CU*) {x|m(”(x) m(’)}

|E] step

set m"" < arg mm E d(X,y) <

yEC(t g

setr«r+1

[M] step




Soft Clustering

Clustering typically assumes that each instance 1s given a
“hard” assignment to exactly one cluster.

Does not allow uncertainty in class membership or for an
instance to belong to more than one cluster.

Soft clustering gives probabilities that an instance belongs
to each of a set of clusters.

Each 1nstance 1s assigned a probability distribution across a
set of discovered categories.




Soft Clustering with EM

Soft version of k-means.

Assumes a probabilistic model of categories that allows
computing P(c; | x) for each category, c;, for a given
example X.
— For text, typically assume a naive-Bayes category model.
s farametersto = {R@P v, e ey, @a¥ j edilne., (V5




Soft Clustering with EM

[terative method for learning probabilistic categorization
model from unsupervised data.

Initially assume random assignment of examples to
categories.

Learn an 1nitial probabilistic model by estimating model
parameters 0 from this randomly labeled data.

[terate following two steps until convergence:

— Expectation (E-step): Compute P(c; | x) for each example given the
current model, and probabilistically re-label the examples based on
these posterior probability estimates.

— Maximization (M-step): Re-estimate the model parameters, 0, from
the probabilistically re-labeled data.




Learning with Probabilistic Labels

Instead of training data labeled with “hard” category
labels, training data 1s labeled with “soft” probabilistic
category labels.

When estimating model parameters 0 from training data,
weight counts by the corresponding probability of the
given category label.

For example, if P(c, | x) = 0.8 and P(¢, | x) = 0.2, each
word w; In X contributes only 0.8 towards the counts n; and
ny;, and 0.2 towards the counts 7, and n,;




Naive Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naive-Bayes training to learn a probabilistic
model with parameters 0 from the labeled data.

Until convergence or until maximum number of iterations

reached:

*  E-Step: Use the naive Bayes model 6 to compute P(c; | x) for each
category and example, and re-label each example using these
probability values as soft category labels.

*  M-Step: Use standard naive-Bayes training to re-estimate the
parameters 0 using these new probabilistic category labels.




Hierarchical Agglomerative Clustering (HAC)

 Start out with » clusters, one example per cluster.
» At each step merge the nearest two clusters.
e Stop when there 1s only one cluster left, or:

— there are only £ clusters left.

— distance is above a threshold .

» History of clustering decision can be represented as a
binary tree.




The HAC Algorithm

1. letC,={x;},foriel...n
g et C= (G40t i clli

3. while |C]| > I:

4. set (C,C;)=argmind(C,,C))

C,#C,

3 replace C;, C;in C with C; U C;

Q: How do we compute the distance d between two clusters?




Distance Measures

Assume a distance function between any two instances:

— FEuclidean distance ||x—y]||

Single Link: d(C;,C;)= min

xeC;,yeC;

Xyl

Complete Link: d(C,,C,)= max

xeC;,yeC;

Xyl

G A d(C &
roup Average:d(C,,C,) = |C|*|C| ZH YH

xeC;,yeC;

Centroid Distance: d(C,,C,) = Hmi — mJ.H




Single Link (Nearest Neighbor)

* Distance function d(C,,C;)= min

[t favors elongated clusters.

« Equivalent with Kruskal’s MST algorithm.

x|

xeC;,yeC;







Complete Link (Farthest Neighbor)

* Distance function d(C,,C;)= max

x|

xeC;,yeC;

[t favors tight, spherical clusters.

* d(C,,C) 1s the diameter of the cluster C; U C,.




Complete Link




