
Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@uncc.edu

Machine Learning: ITCS 6156/8156

1

Clustering: k-Means and HAC

mailto:rbunescu@uncc.edu

Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
– Examples in the same cluster are very similar.
– Examples in different clusters are very different.

2

Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
– Examples in the same cluster are very similar.
– Examples in different clusters are very different.

3

Divisive Clustering with k-Means

• The goal is to produce k clusters C ={C1, C2, …, Ck} such
that instances are close to the cluster centroids:
– The cluster centroid mi is the mean of all instances in the cluster Ci.

• Optimization problem:

4

åå
= Î

-=
k

i C
i

i

CJ
1

2||||)(
x

mx

)(minargˆ CJC
C

=

The k-Means Algorithm

1. start with some seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x:
5. set

6. set

7. set

8. set t ¬ t + 1

5

)0()0(
2

)0(
1 ,...,, kmmm

)()(
)(

minarg)(t
i

t
t
i

mxxm
m

-¬

{ })()()1()(| t
i

tt
iC mxmx =¬+

å
+Î

+
+ ¬

)1(
)1(

)1(1
t
iC

t
i

t
i C x

xm

[E] step

[M] step

The k-Means Algorithm (k = 2)

6

Pick seeds
Reassign clusters
Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!

The k-Means Algorithm (k = 2)

7

The k-Means Algorithm (k = 2)

8

The k-Means Algorithm (k = 2)

9

The k-Means Algorithm (k = 2)

10

The k-Means Algorithm (k = 2)

11

The k-Means Algorithm (k = 2)

12

The k-Means Algorithm (k = 2)

13

The k-Means Algorithm (k = 2)

14

The k-Means Algorithm (k = 2)

15

The k-Means Algorithm

• The objective function monotonically decreases at every
iteration:

16

)1()(+³ tt JJ

[E] step

[M] step

The k-Means Algorithm

• Optimization problem is NP-hard:
– Results depend on seed selection.
– Improve performance by providing must-link and/or cannot-link

constraints Þ semi-supervised clustering.

• Time complexity for each iteration is O(knm):
– number of clusters is k.
– feature vectors have dimensionality m.
– total number of instances is n.

17

The k-Means Algorithm

1. start with some seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x:
5. set

6. set

7. set

8. set t ¬ t + 1

18

)0()0(
2

)0(
1 ,...,, kmmm

)()(
)(

minarg)(t
i

t
t
i

mxxm
m

-¬

{ })()()1()(| t
i

tt
iC mxmx =¬+

å
+Î

+
+ ¬

)1(
)1(

)1(1
t
iC

t
i

t
i C x

xm

[E] step

[M] step

The k-Medoids Algorithm

1. start with some random seed centroids
2. set t ¬ 0.
3. while not converged:
4. for each x:
5. set

6. set

7. set

8. set t ¬ t + 1

19

)0()0(
2

)0(
1 ,...,, kmmm

m(t) (x)← argmin
mi
(t)
d x−mi

(t)()
{ })()()1()(| t

i
tt

iC mxmx =¬+

mi
(t+1) ← arg min

x∈Ci
(t+1)

d(x, y)
y∈Ci

(t+1)
∑

[E] step

[M] step

Soft Clustering

• Clustering typically assumes that each instance is given a
“hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or for an
instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance belongs
to each of a set of clusters.

• Each instance is assigned a probability distribution across a
set of discovered categories.

20

Soft Clustering with EM

• Soft version of k-means.
• Assumes a probabilistic model of categories that allows

computing P(ci | x) for each category, ci, for a given
example x.
– For text, typically assume a naïve-Bayes category model.

• Parameters q = {P(ci), P(wj | ci) | iÎ{1,…k}, j Î{1,…,|V|}}

21

Soft Clustering with EM

• Iterative method for learning probabilistic categorization
model from unsupervised data.

• Initially assume random assignment of examples to
categories.

• Learn an initial probabilistic model by estimating model
parameters q from this randomly labeled data.

• Iterate following two steps until convergence:
– Expectation (E-step): Compute P(ci | x) for each example given the

current model, and probabilistically re-label the examples based on
these posterior probability estimates.

– Maximization (M-step): Re-estimate the model parameters, q, from
the probabilistically re-labeled data.

22

Learning with Probabilistic Labels

• Instead of training data labeled with “hard” category
labels, training data is labeled with “soft” probabilistic
category labels.

• When estimating model parameters q from training data,
weight counts by the corresponding probability of the
given category label.

• For example, if P(c1 | x) = 0.8 and P(c2 | x) = 0.2, each
word wj in x contributes only 0.8 towards the counts n1 and
n1j, and 0.2 towards the counts n2 and n2j .

23

Naïve Bayes EM

24

1. Randomly assign examples probabilistic category labels.

2. Use standard naïve-Bayes training to learn a probabilistic

model with parameters q from the labeled data.

3. Until convergence or until maximum number of iterations

reached:
• E-Step: Use the naïve Bayes model q to compute P(ci | x) for each

category and example, and re-label each example using these
probability values as soft category labels.

• M-Step: Use standard naïve-Bayes training to re-estimate the
parameters q using these new probabilistic category labels.

Hierarchical Agglomerative Clustering (HAC)

• Start out with n clusters, one example per cluster.
• At each step merge the nearest two clusters.
• Stop when there is only one cluster left, or:

– there are only k clusters left.
– distance is above a threshold t.

• History of clustering decision can be represented as a
binary tree.

25

The HAC Algorithm

1. let Ci = {xi}, for iÎ1…n

2. let C = {Ci}, for iÎ1…n

3. while |C| > 1:

4. set

5. replace Ci , Cj in C with Ci È Cj

Q: How do we compute the distance d between two clusters?

26

),(minarg, lkCCji CCdCC
lk ¹

=ñá

Distance Measures

• Assume a distance function between any two instances:
– Euclidean distance ||x-y||

• Single Link:

• Complete Link:

• Group Average:

• Centroid Distance:

27

yx
yx

-=
ÎÎ ji CCji CCd
,
min),(

yx
yx

-=
ÎÎ ji CCji CCd
,
max),(

å
ÎÎ

-
*

=
ji CCji

ji CC
CCd

yx
yx

,||||
1),(

jiji CCd mm -=),(

Single Link (Nearest Neighbor)

• Distance function

• It favors elongated clusters.

• Equivalent with Kruskal’s MST algorithm.

28

yx
yx

-=
ÎÎ ji CCji CCd
,
min),(

Single Link

29

Complete Link (Farthest Neighbor)

• Distance function

• It favors tight, spherical clusters.

• d(Ci,Cj) is the diameter of the cluster Ci È Cj.

30

yx
yx

-=
ÎÎ ji CCji CCd
,
max),(

Complete Link

31

