
ITCS 6156/8156: Machine Learning

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

razvan.bunescu@uncc.edu

Convolutional Neural Networks

Fully Connected Networks

• Problematic when the input is large:
– MNIST: 28x28
– CIFAR-10: 32x32
– STL-10: 64x64 and 96x96
– ImageNet: 224x224

2

Fully Connected Networks

• Consider a network with 3 layers:
1. Input layer: 96x96 pixels
2. Hidden layer: 100 filters (features).
3. Output layer: 10 classes softmax.

• Total number of parameters:
– About 106 parameters.

• 10 times more than MNIST 28x28.
Þ slower feedforward and backpropagation.
Þ harder to train without overfitting.

3

Locally Connected Networks

• Restrict the connections between the hidden units and the
input units:
– For images, each hidden unit will connect to only a small

contiguous (e.g. square) region of pixels in the input.
• Neurons in the visual cortex have localized receptive fields.

– For audio, and time series in general, a hidden unit might be
connected to only the input units corresponding to a certain time
span (e.g. segment).

4

Locally Connected Networks: Images

• Neurons in each layer are arranged in 3D:
– width and height and depth.
– CIFAR-10: Input layer has W = H = 32, D = 3 (color channels).

5
http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Locally Connected Networks: Images

• Each neuron is connected only to a local region in the
input volume spatially, but to the full depth.

6

Terminology & Hyperparameters

• Three hyperparams control the size of the output volume:
– Depth is the number of filters (features) that are computed on the

same region in the input.
– Stride (S) is the step with which we slide the receptive field

window over the input.
• When the stride is 1, we move the filters one pixel at a time.
• When the stride is 2, we move the filters two pixels at a time.

– Zero-padding (P) refers to the number of zeros used to pad
around the border of the input volume.

• Allows to control the spatial size of the output volumes.
– Common is to preserve the width and height of the input.

7

Locally Connected Networks: Audio

• Neurons in each layer are arranged in 2D:

8

stride S = 1
padding P = 1
receptive field F = 3
depth = 1

stride S = 2
padding P = 1
receptive field F = 3
depth = 1

Locally Connected Networks: Images

• Neurons in each layer are arranged in 3D:
– Example: field F = 3, depth = 1, stride S = 1, and padding P=0

9

Locally Connected Networks:
Still too many parameters

• AlexNet architecture (won ImageNet challenge in 2012):
– Images of size 227 x 227 x 3 (W = 227).
– First hidden layer has receptive filed size F = 11, stride S = 4, no

padding is used P = 0.
• (W − F + 2P) / S + 1 = (227 − 11) / 4 + 1 = 55 => output

volume has spatial area of 55 x 55.
• Depth, i.e. # of filters, is = 96.
Þ output volume has size 55 x 55 x 96 = 290,400 neurons.
• Each neuron is connected to a region of size 11 x 11 x 3 in the

input volume => 363 weights + 1 bias.
=> If each neuron had separate params, the first layer would need
290,400 * 364 > 100 million parameters!

10

Locally Connected Networks:
Parameter Sharing in Convolutional Layers

• Natural images have the property of being stationary:
– The statistics in one part of the image are the same as of any other part.
– Thus, we can use the same features at all locations.

• Constrain the neurons in each depth slice to use the same params
=> run the same filter or a kernel over all receptive field windows,
i.e. convolve the filter with the input image.

• AlexNet example:
– Output volume has size 55 x 55 x 96 = 290,400 neurons.

• There are 96 depth slices (96 filters), each with 55 x 55 neurons:
– all 55 x 55 have the same 11 x 11 x 3 + 1 = 364 params.

Þonly 96 * 364 = 34,944 params => a dramatical reduction from 108!

11

Convolution Demo: 1 Channel, 1 Filter

12

http://ufldl.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://ufldl.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolution Demo: 3 Channels, 2 Filters

13
http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Mathematical Convolution

• Convolution 𝑓 ∗ 𝑔 of two functions f and g is:

– Continuous case:

– Discrete case:

14

𝑓 ∗ 𝑔 𝑡 = &
!"

#"

𝑓 𝑡 − 𝜏 𝑔 𝜏 𝑑𝜏

𝑓 ∗ 𝑔 𝑡 =*
!"

#"

𝑓 𝑡 − 𝜏 𝑔 𝜏

The weight / importance of value of f computed at:
• 𝜏 steps in the past (𝜏 ≥ 0)
• 𝜏 steps in the future (𝜏 < 0)

Mathematical Convolution

• Discrete case:

• Examples:

1) Moving average of f over the past K values:

2) Exponential moving average of f :

15

𝑓 ∗ 𝑔 𝑡 =*
!"

#"

𝑓 𝑡 − 𝜏 𝑔 𝜏

𝑔 𝜏 = '
1
𝐾 0 ≤ 𝜏 < 𝐾

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

𝑔 𝜏 = 1𝛼 1 − 𝛼 ! 𝜏 ≥ 0
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

From Mathematical Convolution to CNNs

• Discrete convolution:

• Assume g is non-zero only within −𝐾,𝐾 :

16

𝑓 ∗ 𝑔 𝑡 =7
"#

$#

𝑓 𝑡 − 𝜏 𝑔 𝜏

𝑓 ∗ 𝑔 𝑡 =7
"%

$%

𝑓 𝑡 − 𝜏 𝑔 𝜏

f

𝑓 ∗ 𝑔 g

Downsampling with Pooling

• Pooling layers can be inserted between Convolution layers
in Deep CNNs.
– The most common form is a max-pooling layer with a max filter of

size 2 x 2 (F = 2) applied with a stride of S = 2:
• It downsamples every depth slice in the input by 2 along both

width and height, discarding 75% of the activations.
• The depth dimension remains unchanged.

– Another common pooling F = 3, S = 2 (overlapping).

• Pooling reduces the spatial size of each depth slice in the
output => fewer parameters in higher levels in the network.

17

Pooling Demo: 10x10 Filters and Stride 10

18
http://ufldl.stanford.edu/wiki/index.php/Pooling

Pooling Demo: 2x2 Filters and Stride 2

19
http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Pooling Demo

20http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

LeNet (1998)

• Average pooling • Sigmoid or tanh nonlinearity • Fully connected
layers at the end • Trained on MNIST digit dataset.

21

Backpropagation Algorithm: FCNs

1. For softmax layer, compute:

2. For l = nl, nl−2, nl−3, ..., 2 compute:

3. Compute the partial derivatives of the cost

22

J(W,b, x, y)

𝛿(9!:;) = (𝐚 9!:; − 𝐲) one-hot label vector

+𝛿 = = 𝑊 = >
𝛿 =:; • 𝑓?(𝑧 =

∇@ ! 𝐽 = 𝛿 =:; 𝑎 = >

∇A ! 𝐽 = 𝛿 =:;

CNNs as FCNs
https://arxiv.org/pdf/1603.07285.pdf

23

• Flatten the input as a 16-dim vector and produces a flattened 4-dim output vector.
• Correspondingly, 3x3 convolution kernel is represented as a sparse matrix C

where non-zero elements are the elements 𝑤&,(of the kernel:

• Error is backpropagated by multiplying with CT.

https://arxiv.org/pdf/1603.07285.pdf

Backpropagation Algorithm: CNNs

• The 𝛿 terms (2D) are computed similarly, one for each kernel k:

• When pooling is used, need to also upsample:
– Propagate the error through the pooling layer by calculating the error w.r.t to each

unit incoming to the pooling layer.
• Mean pooling: uniformly distributes the error for a single pooling unit among

the units which feed into it in the previous layer.
• Max pooling: the unit which was chosen as the max receives all the error since

very small changes in input would perturb the result only through that unit.

24

.𝛿$
% = 𝑊 % &

𝛿$
%#' • 𝑓((𝑧$

%

the shape of the feature map for filter k

.𝛿$
% = upsample 𝑊 % &

𝛿$
%#' • 𝑓((𝑧$

%

Backpropagation Algorithm: CNNs

• The gradient for filter k is computed by convolving the previous layer
activations 𝑎 % with the flipped error map 𝛿$:

• Need convolution (sum) because same weight is used on multiple inputs:
– Example: 𝑎 ! is 4 x 4, receptive field is 3 x 3:

• What is the dimensionality of 𝑎 !"# and 𝑊$
!

– What if 𝑎 ! has more than 1 channel?

• Show contribution of 𝑊$
!

#,# 25

∇)&'
𝐽 = 𝑎 % ∗ 𝑓𝑙𝑖𝑝 𝛿$

%#' ∇*&'
𝐽 =*

+,-

𝛿$
%#'

+,-

1 2 3
4 5 6
7 8 9

7 4 1
8 5 2
9 6 3

flip

Batch Normalization: Reducing Internal
Covariate Shift

• Internal Covariate Shift:
– The distribution of each layer’s inputs changes during training:

• because the parameters of the previous layers change.
– This slows down the training:

• requires lower learning rates and careful param initialization.
• notoriously hard to train models with saturating nonlinearities.

• Batch Normalization:
– Normalize the input for each layer, for each training minibatch:

• Allows for much higher learning rates, init. less important.
• Acts as a rgularizer, eliminating the need for Dropout.

26

[Ioffe & Szegedy, ICML’15]

http://proceedings.mlr.press/v37/ioffe15.pdf

Batch Normalization

1. Normalize each activation x using minibatch μ and σ.

2. Train parameters that scale (𝛾) and shift (β) the
normalized value:

– Thus allow the overall transformation to represent the identity
transform.

27

[Ioffe & Szegedy, ICML’15]

http://proceedings.mlr.press/v37/ioffe15.pdf

Batch Normalization

28

[Ioffe & Szegedy, ICML’15]

http://proceedings.mlr.press/v37/ioffe15.pdf

Batch Normalization

29

[Ioffe & Szegedy, ICML’15]

http://proceedings.mlr.press/v37/ioffe15.pdf

Batch Normalization

30

[Ioffe & Szegedy, ICML’15]

http://proceedings.mlr.press/v37/ioffe15.pdf

Layer Normalization

• Batch Normalization:
– The effect of is dependent on the mini-batch size.
– Not obvious how to apply it to recurrent neural networks.

• Layer Normalization: Fix the mean and the variance of the
summed inputs within each layer:
– Compute the mean and variance used for normalization from all of the

summed inputs to the neurons in a layer on a single training example.
– [Like BN] Give each neuron its own adaptive bias and gain which are

applied after the normalization but before the non-linearity.
– [Unlike BN] Layer normalization performs exactly the same

computation at training and test times.

31

[Ba, Kiros & Hinton, 2016]

Layer Normalization

1. Compute layer normalization statistics over all hidden
units in the same layer:

2. Learn an adaptive bias b and gain g for each neuron after
the normalization:

3. BN better than LN for CNNs, LN works well for RNNs.

32

[Ba, Kiros & Hinton, 2016]

CNN Architectures

• CNNs are commonly made up of 3 layer types:
– Convolution.
– [Max/Avg Pooling]

• We find that max-pooling can simply be replaced by a convolutional layer with
increased stride without loss in accuracy … [Striving for Simplicity: The All
Convolutional Net, Springenberg et al., ICLR 2015]

– Fully Connected.

• Common architecture:
1. Stack a few Conv-ReLU layers [followed by a Pool layer].
2. Repeat pattern until image is reduced to a small representation.
3. Transition to one or more FC-ReLU layers.
4. The last FC layer computes the output.

33

Data Augmentation

• Apply a series of (random) distortions to artificially
increase the data set size:
– Randomly flip the image from left to right.
– Randomly distort the image brightness.
– Randomly distort the image contrast.
– Displace each training image by a single pixel, either:

• up one pixel, down one pixel, left one pixel, or right one pixel.

34

ImageNet ILSVRC:
Large-Scale Visual Recognition Challenge

• 1.28M training images, in 1000 object categories.
• Human top-5 error rate in the 5-10% range.

35

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet

http://www.image-net.org/challenges/LSVRC

AlexNet (2012)

• Top 5 error of 16% compared to runner-up with 26% error!
– Sparked current commercial interest in deep learning.

36

[Krizhevsky et al., NIPS’12]

AlexNet Filters (96)

37

ZFNet (2013)

• Fine tuning of the previous AlexNet structure.
• Shows how to visualize the filters using DeconvNet.

38

[Zeiler & Fergus, ECCV’14]

https://arxiv.org/pdf/1311.2901v3.pdf

ZFNet (2013)

39

[Zeiler & Fergus, ECCV’14]

https://arxiv.org/pdf/1311.2901v3.pdf

ZFNet (Layer 4)

40

[Zeiler & Fergus, ECCV’14]

https://arxiv.org/pdf/1311.2901v3.pdf

VGGNet and GoogLeNet (2014)

• VGGNet (7.3%) was runner-up in ImageNet 2014, showed
depth of the network is critical for good performance:
– Best configuration has 16 CONV/FC layers.
– Only 3x3 convolutions and 2x2 pooling in all layers.
– Pretrained model is available in Caffee.

• GoogLeNet (6.7%) was the winner in ImageNet 2014:
– An Inception module dramatically reduced the number of

parameters.
– Used average pooling instead of fully connected layers.
– 22 layers deep!
– Inception-v3 reaches 3.46% top 5 error rate.

41

GoogLeNet

• Use a diverse set of convolutions:
– Filters capture invariances at different scales.

42

[Szegedy et al., CVPR’15]

https://arxiv.org/pdf/1409.4842.pdf

Inception Module

• Even a modest number of 5×5 convolutions can be prohibitively
expensive on top of a convolutional layer with a large number of filters.

43

[Szegedy et al., CVPR’15]

https://arxiv.org/pdf/1409.4842.pdf

Inception Module

• 1×1 convolutions are used to compute reductions before the expensive
3×3 and 5×5 convolutions.

44

[Szegedy et al., CVPR’15]

https://arxiv.org/pdf/1409.4842.pdf

Inception Network

• Inception network is a network consisting of (9) Inception
modules stacked upon each other:
– Occasional max-pooling layers with stride 2 to halve the resolution

of the grid.
– For memory efficiency during training, use Inception modules only

at higher layers, keeping the lower layers traditional convolutional.

45

[Szegedy et al., CVPR’15]

https://arxiv.org/pdf/1409.4842.pdf

Inception Network

• Softmax outputs in the
middle, same labels as
at the top:
– Encourage the network

to learn features that are
useful for classification.

46

[Szegedy et al., CVPR’15]

https://arxiv.org/pdf/1409.4842.pdf

Microsoft ResNet (2015)

• The winner in ImageNet 2015:
– Ultra-deep: from 34 to 152 layers.
– Batch normalization after each convolution, before activation.
– First layer is (7x7 conv, 64 kernels, S=2), and (3x3 pool, S=2).
– A shortcut connection is added for every block of:

• Two (3x3,64;relu) layers (34 deep).
• Three (1x1,64;relu, 3x3,64;relu, 1x1,256;relu) layers (152 deep).

47

[He at al, CVPR 2016]

https://arxiv.org/pdf/1512.03385v1.pdf

Training/Testing Error Increases with Very
Large Depth

48

[He at al, CVPR 2016]

https://arxiv.org/pdf/1512.03385v1.pdf

Residual Connections

• Make it easier for the network to learn identity mappings.
• Shortcut connections:

– Make identity mappings trivial (all weights 0).
– Addition operation distributes the gradient.

49

[He at al, CVPR 2016]

https://arxiv.org/pdf/1512.03385v1.pdf

Microsoft ResNet

50

• SGD with minibatch of 256, momentum of 0.9, decay of 0.0001.
• Learning rate = 0.1 divided by 10 when error plateaus, 6x105 epochs.
• Depth vs. error rate on validation:

– 34 depth: top5 = 7.4%, top1 = 24.2%.
– 152 depth: top5 = 5.7%, top1 = 21.4%

[He at al, CVPR 2016]

https://arxiv.org/pdf/1512.03385v1.pdf

51

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Textbook Readings

• Chapter 9 in the DL textbook.
• Chapter 7 in the Amazon textbook.

– Also shows PyTorch code.

52

https://www.deeplearningbook.org/contents/convnets.html
http://d2l.ai/chapter_convolutional-neural-networks/index.html

Visualization of CNNs

• Activation Maximization [Erhan et al., 2009]:
– Works well for first layer (see Homework 2).
– For higher layers => non-convex optimization problem:

• Use gradient ascent, need careful initialization.
• Does not give info about unit’s invariances (translation, scaling, etc.)

• Data Gradient [Symonian et al., 2014]:
– Same idea as activation maximization, but applied to ImageNet.
– Deep Inside Convolutional Networks: Visualising Image Classification Models and

Saliency Maps

• DeconvNet [Zeiler & Fergus, 2013]:
– Visualizing and Understanding Convolutional Networks

• Guided Backpropagation [Springenberg et al., 2015]:
– Striving for Simplicity: The All Convolutional Net

53

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1412.6806

Data Gradient: Deep Inside CNNs
https://arxiv.org/pdf/1312.6034.pdf

• Class model visualization:
– Find the L2-regularized image I such that its score SC(I) for class C is

maximized:

– Use Backpropagation and the logit scores for SC:
• Because maximizing P(C|I) could be achieved by minimizing the logit scores

of the other classes.

• Image-specific class saliency visualization:
– Given image I0 and class C, rank the input pixels based on their influence

on the score SC(I).
• Linearize SC(I) around I0 using 1st order Taylor approximation:

54

argmax
)
𝑆* 𝐼 − 𝜆 𝐼 +

+

𝑆* 𝐼 ≈
𝛿𝑆*
𝛿𝐼

𝐼,

-

𝐼 + 𝑏

Use Backpropagation, this is the pixel-level ranking score.

https://arxiv.org/pdf/1312.6034.pdf

Data Gradient: Deep Inside CNNs
https://arxiv.org/pdf/1312.6034.pdf

55

https://arxiv.org/pdf/1312.6034.pdf

Data Gradient: Deep Inside CNNs
https://arxiv.org/pdf/1312.6034.pdf

56

https://arxiv.org/pdf/1312.6034.pdf

Data Gradient: Deep Inside CNNs
https://arxiv.org/pdf/1312.6034.pdf

57

https://arxiv.org/pdf/1312.6034.pdf

DeconvNet: Visualizing and Understanding CNNs

58

DeconvNet: Visualizing and Understanding
CNNs

• A “deconvnet” layer is attached to each convnet layer.
– It will reconstruct an approximate version of the convnet features

from the previous layer.
• FF to compute features.
• Record the locations of each maxima in a pooling region using

switches.
• For each activation in a feature map:

1. Unpooling: use switches to place the reconstructions
from the layer above into appropriate locations.

2. Rectification: Pass reconstructed signal through ramp.
3. Filtering: Apply the “transposed” filter:

» actually, the flipped filter (rotate right 90° twice).

59

DeconvNet: Feature Visualization
https://arxiv.org/pdf/1311.2901.pdf

• Trained and evaluated using AlexNet architecture.
• For layers 2 to 5, show top 9 activations in a random subset of feature

maps (figure 2, page 4):
– For each layer, also show the corresponding image patches.
1. Strong grouping within each reconstructed feature map.
2. Greater invariance at higher layers:

• Translation and Scaling, but not Rotation / Viewpoint:
– Capsule Networks are more robust to affine transforms.

» https://arxiv.org/pdf/1710.09829.pdf
3. Exageration of discriminative parts of images:

• Image patches have greater variation.
– Reconstructed features focus on discriminative structure.

60

https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/pdf/1710.09829.pdf

DeconvNet: Occlusion Sensitivity
https://arxiv.org/pdf/1311.2901.pdf

• Is the model truly identifying the location of the object in the image, or
just using the surrounding context?

• Occlude different portions of the input image with a grey square, and
monitor the output of the classifier (figure 7, page 7):
– Build heat maps to show:

• How the probability of the correct class changes as the occlusion box
moves over the input image.

• Strongest feature map in layer 5 (strongest over the unoccluded
image).

– Also show projection of strongest feature map.

61

https://arxiv.org/pdf/1311.2901.pdf

DeconvNet vs. Data Gradient
https://arxiv.org/pdf/1312.6034.pdf

• Apart from the ReLU layer, computing the approximate feature map
reconstruction Rn using a DeconvNet is equivalent to computing the
Data Gradient ∂f /∂Xn using Backpropagation:

62

https://arxiv.org/pdf/1312.6034.pdf

The All Convolutional Net
https://arxiv.org/pdf/1412.6806.pdf

• DeconvNet and Backprop differ only in how they treat the ReLU.
• Combine the two methods:

– Rather than masking out values corresponding to negative entries of the top
gradient (’deconvnet’) or bottom data (backprop), mask out the values for which at
least one of these values is negative.

63

https://arxiv.org/pdf/1412.6806.pdf

The All Convolutional Net
https://arxiv.org/pdf/1412.6806.pdf

64

https://arxiv.org/pdf/1412.6806.pdf

The All Convolutional Net
https://arxiv.org/pdf/1412.6806.pdf

65

https://arxiv.org/pdf/1412.6806.pdf

Self-Normalizing Neural Nets

• Use Scaled Exponential Linear Units (SELU) to make an FNN self-normalizing:

• Use 0 and 1 as the first and second order moment for distribution to initialize
weights in higher layer.

66

[Klambauer et al., NIPS 2017]

Self-Normalizing Neural Nets

67

[Ba, Kiros & Hinton, 2016]

Local Response Normalization

• Lateral inhibition (neurobiology):
– Capacity of an excited neuron to subdue its neighbors.

• Create contrast (significant peak), increase sensory perception.
• Let ai

x,y be the activity of a neuron:
– Computed by applying kernel i at position (x, y) and then ReLU.

• Compute the response-normalized activity:
– Sum runs over n adjacent kernel maps at the same spatial position:

68

[Krizhevsky et al., NIPS’12]

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

