
Word Embeddings

ITCS 6156/8156: Machine Learning

Razvan C. Bunescu

Department of Computer Science @ CCI

Razvan.bunescu@uncc.edu

mailto:rbunescu@uncc.edu

One-Hot Vector Representations

• Sparse vector representation:
– V is the vocabulary
– Each word w is mapped to a unique id(w) between 1 and |V|.

• i.e. the position of the word in the vocabulary.
– Represent a word w using a “one-hot” vector w of length |V|:

• w[i] = 1, if i = id(w).
• w[i] = 0, otherwise

• Example:
– Suppose id(ocean) = 2 and id(water) = 4. Then:

• w(ocean) = [0, 1, 0, 0, 0, ..., 0]
• w(water) = [0, 0, 0, 1, 0, ..., 0]

2

Sparse Representations of Words are
Problematic for Machine Learning in NLP

1. Document classification:
– Bag-of-words representation: each document is the sum of the

vectors of all the words in the document, normalized to unit length.
– Suppose we use softmax regression to classify into classes in C.

• A parameter is needed for each (word, class) pair:
– => |V| × |C| parameters => 100K × 10 => 1M parameters.
– The number of labeled documents needed to train these many

parameters may be unfeasible to obtain.
• If voleyball does not appear in the training documents, but is

mentioned in the test document, it will be completely ignored:
– Even though voleyball is semantically close to basketball, which

appeared many times in training documents from the Sports
category.

3

Language Modeling

2. (Neural) Language Modeling:
– Predict the next word in a sequence:

• AI systems use deep (dish? learning? about?, ...)
• Need to compute P(w | w-1, w-2, ...):

– want P(learning | deep, use) > P(about | deep, use).
– Predict the most likely word in a context:

• AI systems use deep algorithms. (dish? learning? about?, ...)
• Need to compute P(w | w-1, w-2, ..., w1, w2, ...).

– Language modelling is useful for many tasks in NLP:
• spell checking.
• machine translation.
• speech recognition.

4

(Neural) Language Modeling with
Sparse Word Representations

2. (N)LM with (Naive) Softmax Regression:
AI systems use deep algorithms

– Need |W| = 2×|V|×|V| parameters!
5

...

...
w(deep) w(algorithms)

...

P(w | deep, algorithms) <== for each word w in V

W

Sparse vs. Dense Representations of Words

• Sparse representations:
– Each word w is a sparse vector w ∈ {0,1}|V| or ℝ|V|.

• Using words as features leads to large number of parameters!
• sim(ocean, water) = 0 => no meaning => low generalization!

• Dense representations:
– Each word w is a dense vector w ∈ℝk, where k ≪ |V|.
– Can use unsupervised learning:

• Use Harris’ Distributional Hypothesis [Word, 1954]
– words that appear in the same contexts tend to have

similar meanings.
• sim(ocean, water) > sim(ocean, forest) > 0

6

Using Context to Build Word Representations

• Distributional Semantics idea:
– The meaning of a word is determined by the words that

appear nearby, i.e. its context.
• “You shall know a word by the company it keeps” (Firth 1957).
• One of the most successful ideas of modern statistical NLP!

– Given an occurrence of word w, its context = the set of words that
appear within a fixed-size window to the left and to the right.

• Use all the contexts of word w to build its representation:

7

Enculturation is the process by which people learn values and behaviors that are …
Reading directions helps a player learn the patterns that solve the Rubik's …

… some people may be motivated to learn how to play a real instrument …

5 left context words 5 right context words

(Neural) Language Modeling with
Dense Word Representations

• Softmax on top of a hidden layer of size h per word:

8

...

...
w(deep) w(algorithms)

...

P(w | deep, algorithms) <== for each word w in V

W

UU <== shared projection matrix U

#params = |V|×h + 2×h×|V|

Neural Language Modeling with
Dense Word Representations

• Neural Language Modeling:
– Associate each word w with its distributed representation Uw.

• w is the sparse (one-hot) representation of word w.
• Uw is the dense representation of word w:

– i.e. word representation, i.e. word embedding,
i.e. distributed representation.

• U is the projection or embedding matrix:
– its columns are the word embeddings.

– Simultaneously learn the word embeddings (U) and the softmax
parameters (W).

– After training on large text corpus, throw away W, keep only U:
• Can be tied for even better performance [Press & Wolf, ACL’17].

9

https://www.aclweb.org/anthology/E17-2025/

Neural Languange Models
for Learning Word Embeddings

• Softmax training of NLMs is expensive:
– Maximum Likelihood => minimize cross-entropy.

• Need to compute the normalization constant for each training
example i.e. for each word instance in the corpus:

– Use Pairwise Ranking approach instead.

10

ED (W) = − ln p(wt | ht)
t=1

T

∏ = − ln exp(W[wt :]× ht)
Z(wt)t=1

T

∑

Z(wt) = exp(W[v :]× ht)
v∈V
∑

Neural Languange Models
for Learning Word Embeddings

• Pairwise Ranking approach:
– Train such that p(wt | ht) > p(w | ht) i.e. W[wt:]×ht > W[w:]×ht

• w is sampled at random from V.
• give a higher score to the actual word wt than to random words.

11

W,U = argmin max 0,1−W[wt :]×ht +W[w :]×ht{ }
w∈V
∑

t=1

T

∑

J(U,W) = ξt,w
w∈V
∑

t=1

T

∑ +R(U)+R(W)

W[wt :]×ht −W[w :]×ht ≥1−ξt,w

minimize

subject to:

Neural Languange Models
for Learning Word Embeddings

• Pairwise Ranking approach [Collobert et al., JMLR’11]:
– Train using SGD on the ranking criterion.
– Sample “negative” words from V for each wt.

• Evaluation of learned embeddings:
– Word similarity questions:

• given seed word w, find word(s) v with most similar
embedding:

– Analogy questions [Mikolov et al., NIPS’13].

12

argmax
v∈V

cos(Uw,Uv)

Evaluation of Word Embeddings

13

[Collobert et al., JMLR’11]

Word2Vec Framework

• Assign 2 vector representations vw and uw to each word w in
a given vocabulary V:
– Initialize vector representations with random values.

• Go through each position t in the text:
– Word wt is considered the center word c.
– Words in the context are considered outside words o.

• Use the dot-product between the word vectors for vc and uo
to calculate the probability of:
– o given c (Skip-gram model).
– c given o (Cbow model).

• Repeatedly adjust the word vectors to increase probabilities.

14

[Mikolov et al., NIPS’13]

The Skip-gram Model: Naïve Implementation
with Softmax

• To calculate 𝑃 𝑤!"# 𝑤! use softmax with 2 vectors / word:
– vw if w is the center (c) word wt , i.e. the parameters.
– uw if w is a context (o) word wt+k , i.e. the features.

15

… directions help players learn the patterns that …

𝑃(𝑤!"#|𝑤!)

𝑃(𝑤!"$|𝑤!) 𝑃(𝑤!%$|𝑤!)

𝑃(𝑤!%#|𝑤!)

𝑝 𝑜 𝑐 =
exp(𝑣)*𝑢+)

∑,∈. exp(𝑣)*𝑢,)

The Skip-gram Model

• Maximize likelihood over all positions t = 1..T in the text:

where context 𝐶! = {𝑘| − 𝑚 ≤ 𝑘 ≤ 𝑚, 𝑘 ≠ 0}.

• 𝜃 ∈ 𝑅/0|.| is the vector of all parameters:
𝛳 = [vaardvark | … | vzoo | uaardvark | … | uzoo]

16

𝐽 𝜃 = −
1
𝑇
8
!12

*

8
#∈3"

log 𝑝 𝑤!"# 𝑤!

The Skip-gram Model: Gradient Computation

• Training the center and outside embeddings:
– Batch GD on 𝐽 𝜃 will be very slow!
– Instead, run SGD on 𝐽 𝜃, 𝑡 , i.e. update after each position t.

1. Compute the gradient of 𝐽 𝜃, 𝑡 w.r.t. the center word params vc.
2. Compute the gradient of 𝐽 𝜃, 𝑡 w.r.t. the context words features uo.

– Need to create & use hash from words to their word vectors.

17

𝑝 𝑜 𝑐 =
exp(𝑣"#𝑢$)

∑%∈' exp(𝑣"#𝑢%)

𝐽 𝜃, 𝑡 = <
(∈)!

log 𝑝 𝑤!*(𝑤!

The Skip-gram Model: From Softmax to
Binary Logistic Regression

• Partition function in Softmax is too computationally
expensive:

• Instead, word2vec trains Logistic Regression to classify:
– Positive: The true (c, o) pairs.
– Negative: Noisy (c, r) pairs, where r is a word sampled at random.

• Called Negative Sampling (NS):
– A special case of Noise Contrastive Estimation (NCE):

» NS good for learning embeddings, but not for LMs.

• See also Ruder – Approximating the Sofmax.
18

𝑝 𝑜 𝑐 =
exp(𝑣"#𝑢$)

∑%∈' exp(𝑣"#𝑢%)

Chris Dyer – Notes on NCE and NS

http://ruder.io/word-embeddings-softmax/index.html
http://demo.clab.cs.cmu.edu/cdyer/nce_notes.pdf

The word2vec Skip-gram Model:
Logistic Regression with Negative Sampling

• Learn vector representations of words in order to predict
surrounding words:
– Logistic regression with negative sampling and subsampling of

frequent words.

19

The word2vec Skip-gram Model

• Common words provide less information than rare words:
– co-occurrence (France, Paris) more important than (France, the).

• try to counter imbalance between rare and frequent words.

1. Negative sampling:
– Estimate unigram distribution U(w) of words from the training

corpus.
– Sample negatives according to distribution Pn(w) = U(w)3/4 / Z.

2. Subsampling of frequent words:
– Compute discounting distribution Pd(w) = 1 – sqrt(10-5 / f(w)).
– Discard (positive) examples c = wt according to Pd(wt).

20

[Mikolov et al., NIPS’13]

The word2vec Skip-gram Model

21

• Use vector representations both as features and parameters:
– Parameters: vector vc of center word c.
– Features: vector uo of word o to be predicted in context C.

– Features: vector uk of word k to be predicted not in context C.

• For each position t = 1 .. T in a sequence of T words:
– For each not discarded positive (c, o) pair, sample K negative words:

• Use SGD to minimize negative log-likelihood objective:

[Mikolov et al., NIPS’13]

The Skip-gram Model

• Evaluation of learned embeddings:
– Word similarity questions:

• given seed word w, find word(s) v with most similar embedding:

– Analogy questions:
• find word x such that: w (e.g. Paris) is to v (e.g. France) what x

is to u (e.g. Germany).
• want w − v to be similar to x − u <=> w − v + u similar to x.

22

[Mikolov et al., NIPS’13]

The Skip-gram Model

23

[Mikolov et al., ICLR’13]

24

Visualizations of Semantic Relations (GloVe)

25image credit: cs224n at Stanford.

Visualizations of Syntactic Relations (GloVe)

26image credit: cs224n at Stanford.

Readings

• Chapter 14 in Eisenstein’s NLP Textbook.

27

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

GloVe

• Insight: Ratios of co-occurrence probabilities can encode
meaning components.

– Co-occurrences with solid and gas are important for the meaning of
target words ice and steam:

• Large values of the ratio correlate with properties specific to ice.
• Small values of the ratio correlate with properties specific to steam.

– Co-occurrences with water and fashion are not important:
• Values close to 1.

28

[Pennington et al., EMNLP’14]https://nlp.stanford.edu/projects/glove

https://nlp.stanford.edu/projects/glove/

GloVe

• Want to capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space:
– Probabilities are computed as ratios of co-occurrence counts:

– Use a log-bilinear model:

– Log-ratios are then expressed in terms of vector differences:

29

[Pennington et al., EMNLP’14]https://nlp.stanford.edu/projects/glove

probability that word i appears in the context of word k

https://nlp.stanford.edu/projects/glove/

GloVe

• The exchange symmetry between a word and its context words can be
satisfied by estimating log counts as:

• Solve a weighted least squares regression model:

30

[Pennington et al., EMNLP’14]https://nlp.stanford.edu/projects/glove

https://nlp.stanford.edu/projects/glove/

GloVe

• Fast training, scalable to huge corpora:
– Good performance even with small corpus and small vectors

• Hyper-parameters:
– Good dimension is ~300.
– Asymmetric context (only words to the left) not as good.
– Window size of 8 around each center word is sufficient.

• Some ideas from Glove paper have been shown to improve
skip-gram (SG):
– Use sum of both vectors (context + target).

31

[Pennington et al., EMNLP’14]https://nlp.stanford.edu/projects/glove

https://nlp.stanford.edu/projects/glove/

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

• Dataset created by [Mikolov et al., ICLR 2013] and available at
http://download.tensorflow.org/data/questions-words.txt

• Example of semantic relation:
– : family

• boy girl brother sister
• boy girl brothers sisters
• boy girl dad mom
• boy girl father mother
• boy girl grandfather grandmother
• boy girl grandpa grandma
• boy girl grandson granddaughter
• boy girl groom bride
• boy girl he she

32

http://download.tensorflow.org/data/questions-words.txt

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

• Dataset created by [Mikolov et al., ICLR 2013] and available at
http://download.tensorflow.org/data/questions-words.txt

• Example of syntactic relation:
– : gram2-opposite

• acceptable unacceptable aware unaware
• acceptable unacceptable certain uncertain
• acceptable unacceptable clear unclear
• acceptable unacceptable comfortable uncomfortable
• acceptable unacceptable competitive uncompetitive
• acceptable unacceptable consistent inconsistent
• acceptable unacceptable convincing unconvincing
• acceptable unacceptable convenient inconvenient
• acceptable unacceptable decided undecided

33

http://download.tensorflow.org/data/questions-words.txt

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

34

Comparative Evaluation on Correlation with
Human Judgments of Similarity

• WordSimilarity-353 Test Collection:
– http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

35
image credit: cs224n at Stanford.

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Comparative Evaluation on Correlation with
Human Judgments of Similarity

• Spearman rank correlation on word similarity tasks.

* Some ideas from Glove paper have been shown to improve skip-gram (SG):

36

Unkown Words (OOV)

37

Subword Embeddings

• Word embeddings ignore the internal structure of words:

• Limitation for morphologically rich languages:
– In French or Spanish, most verbs have more than 40 different

inflected forms; the Finnish language has 15 cases for nouns.
– These languages contain many word forms that occur rarely (or not

at all) in the training corpus.
• Makes it difficult to learn good word representations.

• Improve vector representations by using character-level
information => subword embeddings.

38

skiing = ski + ing

FastText

• Learn representation for character n-grams, i.e. subwords.
• Each word is represented as the sum of its n-gram vectors:

– Use all the n-grams for 3 ≤ n ≤ 6.

– Short n-grams (n = 4) are good to capture syntactic information.
– Longer n-grams (n = 6) are good to capture semantic information.

39

[Bojanowski et al., FAIR’13]https://fasttext.cc/

skiing = {<sk, <ski, <skii, <skiin,
ski, skii, skiin, skiing,
kii, kiin, kiing, kiing>,
iin, iing, iing>,
ing, ing>,
ng>,
<skiing>}

https://fasttext.cc/

FastText

• Use a hashing function that maps n-grams to integers in 1
to K = 2.1 million:
– A word is represented by its index in the word dictionary and the

set of hashed n-grams it contains.
– About 1.5x slower to train than word2vec Skip-Gram models.

• For OOV words, word vector = sum of subword vectors.

• Instrinsic evaluations:
– Correlation with human judegments on word similarity datasets.
– Word analogy tasks.

40

[Bojanowski et al., FAIR’13]https://fasttext.cc/

https://fasttext.cc/

FastText Evaluation

41

[Bojanowski et al., FAIR’13]https://fasttext.cc/

Semantic similarity

Word Analogy Tasks

Trained all models on Wikipedia. Used null vectors for OOV words in
word2vec Skip-Gram (sg), CBOS, and Subword Information SG (sisg-).

https://fasttext.cc/

Multiple Word Vectors per Word Sense

• “Improving Word Representations via Global Context and
Multiple Word Prototypes” [Huang et al., ACL 2012]

• “Efficient Non-parametric Estimation of Multiple
Embeddings per Word in Vector Space” [Neelakantan et
al., EMNLP’14].

• “Linear Algebraic Structure of Word Senses, with
Applications to Polysemy” [Arora et al., TACL’18].

42

Word Embeddings: Extensions

• “Dependency-Based Word Embeddings” [Levy & Goldberg, ACL’14]
• Combine with co-occurrence/PPMI based word embeddings:

– “Symmetric Pattern Based Word Embeddings for Improved Word Similarity
Prediction” [Schwartz et al., CoNLL’15].

• Bilingual word embeddings:
– “Bilingual Word Embeddings for Phrase-Based Machine Translation” [Zou et al.,

EMNLP’13].
– “Multilingual Models for Compositional Distributed Semantics” [Hermann &

Blunsom, ACL’14].
• Phrase, paragraph, and document embeddings:

– “Distributed Representations of Sentences and Documents” [Le & Mikolov,
ICML’14]

– “Skip-thought vectors” [Kiros et al., NIPS’15]
– “A hierarchical neural autoencoder for paragraphs and documents” [Li et al.,

EMNLP’15]
– ” KATE: K-Competitive Autoencoder for Text” [Chen & Zaki, KDD’17]

43

