ITCS 6156/8156: Machine Learning

Word Embeddings

Razvan C. Bunescu
Department of Computer Science @ CCI

Razvan.bunescu@uncc.edu

mailto:rbunescu@uncc.edu

One-Hot Vector Representations

e Sparse vector representation:
— V i1s the vocabulary
— Each word w 1s mapped to a unique 1d(w) between 1 and |V|.
* 1.¢. the position of the word in the vocabulary.
— Represent a word w using a “one-hot” vector w of length |V/|:
e w[i] =1, if 1=1d(w).
e w[i] =0, otherwise
e Example:
— Suppose 1d(ocean) = 2 and id(water) = 4. Then:
siaw (occamis= [0, 15 0, 00588 0]
gow(water) =080 0. 100

Sparse Representations of Words are
Problematic for Machine Learning in NLP

Document classification:

— Bag-of-words representation: each document is the sum of the
vectors of all the words 1n the document, normalized to unit length.

— Suppose we use softmax regression to classify into classes in C.

A parameter i1s needed for each (word, class) pair:
— =>|V| x|C]| parameters => 100K x 10 => 1M parameters.

— The number of labeled documents needed to train these many
parameters may be unfeasible to obtain.

« Ifvoleyball does not appear in the training documents, but is
mentioned in the test document, it will be completely ignored:
— Even though voleyball 1s semantically close to basketball, which

appeared many times in training documents from the Sports
category.

Language Modeling

2. (Neural) Language Modeling:

— Predict the next word in a sequence:
« Al systems use deep (dish? learning? about?, ...)
Need to compute P(w | w_i, Woy, ...):
— want P(learning | deep, use) > P(about | deep, use).
— Predict the most likely word in a context:
« Al systems use deep algorithms. (dish? learning? about?, ...)
Need to compute P(w | w_i, Wy, ..., Wi, Wa, ...).
— Language modelling is useful for many tasks in NLP:
« spell checking.
* machine translation.

* speech recognition.

(Neural) Language Modeling with
Sparse Word Representations

2. (N)LM with (Naive) Softmax Regression:

Al systems use deep algorithms

P(w | deep, algorithms) <== for each word w in V

(000 .- Q]

0Ce .- QO] (@00 -+ Q]
w(deep) w(algorithms)

— Need |W| = 2X|V|x|V| parameters!

Sparse vs. Dense Representations of Words

=

e Sparse representations:
— Each word w is a sparse vector w € {0,1}VI or RV,
» Using words as features leads to large number of parameters!

 sim(ocean, water) = 0 => no meaning => low generalization!

* Dense representations:
— Each word w is a dense vector w € R¥, where k « [V].
— Can use unsupervised learning:
« Use Harris’ Distributional Hypothesis [Word, 1954]

— words that appear in the same contexts tend to have
similar meanings.

 sim(ocean, water) > sim(ocean, forest) > 0

Using Context to Build Word Representations

[—

 Distributional Semantics i1dea:

— The meaning of a word is determined by the words that
appear nearby, i.e. its context.
* “You shall know a word by the company it keeps” (Firth 1957).
* One of the most successful ideas of modern statistical NLP!

— @Given an occurrence of word w, its context = the set of words that
appear within a fixed-size window to the left and to the right.

 Use all the contexts of word w to build its representation:

Enculturation is the process by which people learn values and behaviors that are ...
Reading directions helps a player learn the patterns that solve the Rubik's ...
.. some people may be motivated to learn how to play a real instrument ...

5 left context words 5 right context words .
B

(Neural) Language Modeling with l
Dense Word Representations Y

e Softmax on top of a hidden layer of size h per word:

P(w | deep, algorithms) <== for each word w in V
(000 .- Q]

\\\ ’,‘ W
_________________ #params = |V|xh + 2xhx|V|

\

f a U fX b U shared projection matrix U
,,,,,, ‘

\

(CQe - (@00 -
w(deep) W(algorlthms) |

Neural Language Modeling with
Dense Word Representations

* Neural Language Modeling:
— Associate each word w with its distributed representation Uw.
* w is the sparse (one-hot) representation of word w.
» Uw is the dense representation of word w:

— 1.e. word representation, 1.e. word embedding,
1.e. distributed representation.

U is the projection or embedding matrix:
— 1ts columns are the word embeddings.

— Simultaneously learn the word embeddings (U) and the softmax
parameters (W).

— After training on large text corpus, throw away W, keep only U:
» Can be tied for even better performance [Press & Wolf, ACL’17].

https://www.aclweb.org/anthology/E17-2025/

Neural Languange Models
for Learning Word Embeddings

=

e Softmax traimning of NLMs is expensive:
— Maximum Likelithood => minimize cross-entropy.

* Need to compute the normalization constant for each training
example 1.e. for each word instance in the corpus:

exp(W[w, :]xh,)

T T
E (W)= —lnnp(wt |h,)= —Eln
=1 t=1

Z(w,)

Z(w,)= E exp(W[v:]xh,)

vevV

— Use Pairwise Ranking approach instead.

Neural Languange Models
for Learning Word Embeddings

[

e Pairwise Ranking approach:
— Train such that p(w, | h,) > p(w | h)) 1.e. W[w,:]xh,> W[w:]xh,
e w1s sampled at random from V.

* give a higher score to the actual word w, than to random words.

T

W,U = argmin ¥ ¥ max{0,1-Wlw, :1xh, + Ww:]xh,}

t=1 w&V

minimize J(U,W) = i E g, +RU)+R(W)

t=1 w&V

subject to: W[w, :]xh, -W[w:]xh, =1-§

Neural Languange Models
for Learning Word Embeddings

« Pairwise Ranking approach [Collobert et al., IMLR 11]:
— Train using SGD on the ranking criterion.

— Sample “negative” words from V for each w,.

e Evaluation of learned embeddings:
— Word similarity questions:

 given seed word w, find word(s) v with most similar
embedding;:

arg max cos(Uw,Uv)
vev

— Analogy questions [Mikolov et al., NIPS’13].

Evaluation of Word Embeddings

[Collobert et al., IMLR’11]

COLLOBERT. WESTON. BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word 1is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using

13

Word2Vec Framework

[Mikolov et al., NIPS’13]

Assign 2 vector representations v,, and u,, to each word w in
a given vocabulary V:

— Initialize vector representations with random values.
Go through each position 7 in the text:

— Word w, is considered the center word c.

— Words in the context are considered outside words o.
Use the dot-product between the word vectors for v, and u,
to calculate the probability of:

— o given ¢ (Skip-gram model).

— ¢ given o (Cbow model).

Repeatedly adjust the word vectors to increase probabilities.

The Skip-gram Model: Naive Implementation
with Softmax

P(we_z|wy) P(Weyo|we)

/‘\/‘\

... directions help players learn the patterns that

« To calculate P(W¢,p |W¢) use softmax with 2 vectors / word:
— v, if w 1s the center (¢) word w,, 1.e. the parameters.

— u,, 1f w 1s a context (o) word w,,, 1.€. the features.

exp (Ve Up)

p(olc) =

ZWEV exXp (UCTUW)

The Skip-gram Model

« Maximize likelihood over all positions # = 1..7 1n the text:

T
1
J(6) = T z log p(We ik |lwe)

=1 kECt

where context C; = {k| —m < k <m, k + 0}.

o 0 € R?VI is the vector of all parameters:

O [Vaardvark | g | Vz00 | Uaardvark | P | uzoo]

The Skip-gram Model: Gradient Computation

* Training the center and outside embeddings:
— Batch GD on J(0) will be very slow!
— Instead, run SGD on J (6, t), i.e. update after each position .
1. Compute the gradient of J (6, t) w.r.t. the center word params v.,.
2. Compute the gradient of /(6, t) w.r.t. the context words features u,.

J©,6) =) logp(weaxlwo)

keC;
T
exp(v; Up)
T
ZWEV exp (vc uw)

— Need to create & use hash from words to their word vectors.

p(olc) =

The Skip-gram Model: From Softmax to
Binary Logistic Regression

=

 Partition function in Softmax 1s too computationally
expensive:

exp (v Uo)
ZWEV exp (VCTUW)

p(olc) =

» Instead, word2vec trains Logistic Regression to classify:
— Positive: The true (c, o) pairs.
— Negative: Noisy (c, r) pairs, where 7 1s a word sampled at random.
e Called Negative Sampling (NS):
— A special case of Noise Contrastive Estimation (NCE):

» NS good for learning embeddings, but not for LMs.
Chris Dyer — Notes on NCE and NS

e See also Ruder — Approximating the Sofmax.

18
R ———— e

http://ruder.io/word-embeddings-softmax/index.html
http://demo.clab.cs.cmu.edu/cdyer/nce_notes.pdf

The word2vec Skip-gram Model:
~ Logistic Regression with Negative Sampling

e Learn vector representations of words in order to predict
surrounding words:

— Logistic regression with negative sampling and subsampling of

frequent words.
positive context words (C,)

L oY

Read an array of numbers from a text file, using STL in C++

icon . browser . problem

y Sy
graphics program

randomly sampled negative context words (N,)

19
e

The word2vec Skip-gram Model

[Mikolov et al., NIPS’13]

2

Common words provide less information than rare words:

— co-occurrence (France, Paris) more important than (France, the).

* try to counter imbalance between rare and frequent words.

Negative sampling:

— Estimate unigram distribution U(w) of words from the training

Corpus.

— Sample negatives according to distribution P (w) = U(w)*4/ Z.

Subsampling of frequent words:

Compute discounting distribution Py(w) = 1 — sqrt(10-> / f(w)).

Discard (positive) examples ¢ = w, according to P4(w,).

The word2vec Skip-gram Model

[Mikolov et al., NIPS’13]

» Use vector representations both as features and parameters:
— Parameters: vector v, of center word c.

— Features: vector u, of word o to be predicted in context C.
p(o € Cle) = o(viu,) = (1 + exp(—viuy)) ™!
— Features: vector u, of word k to be predicted not in context C.

p(k & Cle) = 1 — o(ujve) = o(~ugve)

* For each position =1 .. T'in a sequence of 7 words:
— For each not discarded positive (c, o) pair, sample K negative words:

* Use SGD to minimize negative log- likelihood objective:

o s — og G0 o) Zloga —vluy)

The Skip-gram Model

[Mikolov et al., NIPS’13]

* Evaluation of learned embeddings:
— Word similarity questions:

 given seed word w, find word(s) v with most similar embedding:

WTV

V = argmaxvevw

— Analogy questions:

 find word x such that: w (e.g. Paris) is to v (e.g. France) what x
is to u (e.g. Germany).

e want w — v to be similar to x — u <=>w — v + u similar to x.

(w—-v+u)lx

T = argmax,cy

The Skip-gram Model

[Mikolov et al., ICLR’13]

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

Country and Capital Vectors Projected by PCA

China«
»Beijing
Russia« h
Japan«
»Moscow |
Turkey ~Ankara *J0okyo

Polandk

Germanyx« -
Francé’ “>Warsaw

~xBerlin
05 Italy< aris .

- - Athens
Greecex ome

4 | Spainx -

x “»Madrid
'1 .5 — POftUga] - >LiSb0n .

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

0.5

0.3

0.2

0.1

Visualizations of Semantic Relations (GloVe)

T

T

T

I
!
|
I
l

brother

r heiress

| /

/ / /
! heir PR
/ / / m
/ / l/
/ /
+ ques)
' 7 dduke
[

» countess
g duchess-

/
/ s empress

0.1 0.2 0.3 0.4

image credit

: ¢cs224n at Stanford. 25

Visualizations of Syntactic Relations (GloVe)

— — slowest

. “slower _ _ _ — —-«shortest

s

or Jstronger” T T T = — = — — strongest]
-
; ST OBTIr T B e et s g
sirong 2 loudest
—0.1+ loud .~]

-0.2 clear <~ " dafkeF = = = = = = — o _ _ _

soft « - - =

dark «

—03 l | | 1 1 1 1 | |
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

darkest

image credit: cs224n at Stanford. 26

Readings

* Chapter 14 in Eisenstein’s NLP Textbook.

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

GloVe

https://nlp.stanford.edu/projects/glove [Pennington et al., EMNLP’14]

» Insight: Ratios of co-occurrence probabilities can encode
meaning components.

Probability and Ratio | k = solid k = gas k = water k = fashion
P(klice) 1.9x 107 6.6x 107> 3.0x107% 1.7x 107
P(k|steam) 22x%x107° 78x107% 22x1073 1.8x107°
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

— Co-occurrences with solid and gas are important for the meaning of
target words ice and steam:

» Large values of the ratio correlate with properties specific to ice.
« Small values of the ratio correlate with properties specific to steam.
— Co-occurrences with water and fashion are not important:

e Values closeto 1.
28

https://nlp.stanford.edu/projects/glove/

GloVe

https://nlp.stanford.edu/projects/glove [Pennington et al., EMNLP’14]

« Want to capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space:
— Probabilities are computed as ratios of co-occurrence counts:
Xik
Xk

— Use a log-bilinear model:

Bik) = probability that word i appears in the context of word k

wi Wy = log P(i|k)

— Log-ratios are then expressed in terms of vector differences:
P(z|a)

~

wg(wa 2 wb) = log

P(x|b)

https://nlp.stanford.edu/projects/glove/

GloVe

https://nlp.stanford.edu/projects/glove [Pennington et al., EMNLP’14]

» The exchange symmetry between a word and its context words can be
satisfied by estimating log counts as:

w?wk+bi+5k:10gX¢k Bk = log X}

* Solve a weighted least squares regression model:

\ %
J = Z f (Xij) (W{Wj + bi + Bj - logX,-j)z
i,j=1

10
0.8
0.6

f(Xij)

04

02

https://nlp.stanford.edu/projects/glove/

GloVe

https://nlp.stanford.edu/projects/glove [Pennington et al., EMNLP’14]

» Fast training, scalable to huge corpora:

— Good performance even with small corpus and small vectors

* Hyper-parameters:
— Good dimension is ~300.
— Asymmetric context (only words to the left) not as good.

— Window size of 8 around each center word 1s sufficient.

* Some 1deas from Glove paper have been shown to improve
skip-gram (SG):

— Use sum of both vectors (context + target).

https://nlp.stanford.edu/projects/glove/

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

« Dataset created by [Mikolov et al., ICLR 2013] and available at
http://download.tensorflow.org/data/questions-words.txt

« Example of semantic relation:
— : family

* boy girl brother sister
* boy girl brothers sisters
* boy girl dad mom
* boy girl father mother
* boy girl grandfather grandmother
* boy girl grandpa grandma
* boy girl grandson granddaughter
* boy girl groom bride |
* boy girl he she |

32 |
e ——

http://download.tensorflow.org/data/questions-words.txt

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

[

« Dataset created by [Mikolov et al., ICLR 2013] and available at
http://download.tensorflow.org/data/questions-words.txt

* Example of syntactic relation:
— : gram2-opposite

 acceptable unacceptable aware unaware
* acceptable unacceptable certain uncertain
« acceptable unacceptable clear unclear
« acceptable unacceptable comfortable uncomfortable
* acceptable unacceptable competitive uncompetitive
* acceptable unacceptable consistent inconsistent
* acceptable unacceptable convincing unconvincing
* acceptable unacceptable convenient inconvenient

« acceptable unacceptable decided undecided b

http://download.tensorflow.org/data/questions-words.txt

Comparative Evaluation on Syntactic and
Semantic Analogy Questions

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 16B | 161 526 36.1
vLBL 300 1.5B | 542 648 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 703
SVD 300 6B | 63 81 173
SVD-S 300 6B | 367 46.6 42.1
SVD-L 300 6B | 566 63.0 60.1
CBOW'™ 300 6B | 63.6 674 65.7
SGT 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 670 717
CBOW 1000 6B | 573 689 63.7
SG 1000 6B | 66.1 65.1 656
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 819 69.3 75.0

34
R ———— e

Comparative Evaluation on Correlation with
Human Judgments of Similarity

[

* WordSimilarity-353 Test Collection:

— http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

tiger cat 7.35
tiger tiger 10

book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31
stock jaguar 0.92

image credit: cs224n at Stanford. -

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Comparative Evaluation on Correlation with
Human Judgments of Similarity

* Spearman rank correlation on word similarity tasks.

Model Size |[WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 56.5 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 751 565 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 658 72.7 77.8 539 38.1
SVD-L 42B| 740 764 741 583 39.9
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 59.4 455

* Some ideas from Glove paper have been shown to improve skip-gram (SG):

Unkown Words (OOV)

Subword Embeddings

Word embeddings i1gnore the internal structure of words:
skiing = ski + ing

Limitation for morphologically rich languages:

— In French or Spanish, most verbs have more than 40 different
inflected forms; the Finnish language has 15 cases for nouns.

— These languages contain many word forms that occur rarely (or not
at all) in the training corpus.

e Makes it difficult to learn good word representations.

Improve vector representations by using character-level

information => subword embeddings.

38
e

FastText
https://fasttext.cc/ [Bojanowski et al., FAIR’13]

« Learn representation for character n-grams, 1.e. subwords.

e Each word 1s represented as the sum of its n-gram vectors:
— Use all the n-grams for 3 <n <6.

skiing = {<sk, <ski, <skii, <skiin,

ski, skii, skiin, skiing,
Kii, kiin, kiing, kiing>,
iin, iing, iing>,
ing, ing>,
ng=,
<skiing>}

— Short n-grams (n = 4) are good to capture syntactic information.

— Longer n-grams (n = 6) are good to capture semantic information.

https://fasttext.cc/

FastText
https:/fasttext.cc/ [Bojanowski et al., FAIR13]

| —]

» Use a hashing function that maps n-grams to integers in 1
to K = 2.1 million:

— A word is represented by its index in the word dictionary and the
set of hashed n-grams it contains.

— About 1.5x slower to train than word2vec Skip-Gram models.

 For OOV words, word vector = sum of subword vectors.

 Instrinsic evaluations:
— Correlation with human judegments on word similarity datasets.

— Word analogy tasks.

https://fasttext.cc/

FastText Evaluation
https:/fasttext.cc/ [Bojanowski et al., FAIR’13]

| —]

Trained all models on Wikipedia. Used null vectors for OOV words in
word2vec Skip-Gram (sg), CBOS, and Subword Information SG (sisg-).

Semantic similarity

sg cbow sisg- sisg

AR WS353 51 52 54 55 WOI"dAI’lCZlOgy Tasks
GUR350 61 62 64 70 sg cbow sisg
DE gg‘z‘g; ;2 ;Z 2} ii o Semamic 257 276 275
Syntactic 52.8 55.0 77.8

RW 43 43 46 47 :
EN WS353 72 73 71 7 DE Semant%c 66.5 66.8 62.3
Syntactic 44.5 450 564
Es WS353 57 58 58 59

EN Semantic 78.5 78.2 77.8
FR ~ RG65 70 69 s 75 Syntactic 70.1 69.9 74.9
RO Wbcoor 48 04 of oA |, Semantic 523 547 523
RU HJ 59 60 60 66 Syntactic 51.5 51.8 62.7

41
e

https://fasttext.cc/

Multiple Word Vectors per Word Sense

“Improving Word Representations via Global Context and
Multiple Word Prototypes” [Huang et al., ACL 2012]

“Efficient Non-parametric Estimation of Multiple
Embeddings per Word in Vector Space” [Neelakantan et
al., EMNLP’14].

“Linear Algebraic Structure of Word Senses, with
Applications to Polysemy” [Arora et al., TACL’18].

Word Embeddings: Extensions

“Dependency-Based Word Embeddings” [Levy & Goldberg, ACL’14] |

Combine with co-occurrence/PPMI based word embeddings:

— “Symmetric Pattern Based Word Embeddings for Improved Word Similarity
Prediction” [Schwartz et al., CoNLL’15].

Bilingual word embeddings:

— “Bilingual Word Embeddings for Phrase-Based Machine Translation” [Zou et al.,
EMNLP’13].

— “Multilingual Models for Compositional Distributed Semantics” [Hermann &
Blunsom, ACL’14].
Phrase, paragraph, and document embeddings:

“Distributed Representations of Sentences and Documents™ [Le & Mikolov,
ICML’14] |
— “Skip-thought vectors™ [Kiros et al., NIPS’15]

— “A hierarchical neural autoencoder for paragraphs and documents™ [Li et al.,
EMNLP’15] |

— ” KATE: K-Competitive Autoencoder for Text” [Chen & Zaki, KDD’17] |
43 |

e ———————— T ——

