
Overview

Today we will:

• Introduce a new NLP task

• Language Modeling

• Introduce a new family of neural networks

• Recurrent Neural Networks (RNNs)

These are two of the most important ideas for the rest of the class!

motivates
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• Language Modeling is the task of predicting what word comes 
next.

the students opened their ______

• More formally: given a sequence of words                                 ,
compute the probability distribution of the next word             :

where            can be any word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

exams

minds

laptops
books
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Language Modeling

• You can also think of a Language Model as a system that 
assigns probability to a piece of text.

• For example, if we have some text                          , then the 
probability of this text (according to the Language Model) is:
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This is what our LM provides



You use Language Models every day!
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You use Language Models every day!
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n-gram Language Models

the students opened their  ______

• Question: How to learn a Language Model?

• Answer (pre- Deep Learning): learn a n-gram Language Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”

• bigrams: “the students”, “students opened”, “opened their”

• trigrams: “the students opened”, “students opened their”

• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams 
are, and use these to predict next word.
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How to build a neural Language Model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob dist of the next word

• How about a window-based neural model?

• We can apply this to Named Entity Recognition:

18
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A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______

discard
fixed window
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A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 
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A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed 

n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 
• Window can never be large 

enough!
• and          are multiplied by 

completely different weights in      .
No symmetry in how the inputs are 
processed.

We need a neural 
architecture that can 

process any length input

21
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Recurrent Neural Network

x

RNN
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Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y3y3
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Sequence to Sequence: Many-to-one + 
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

… 

x
2

x
1

W
1

h
T

Many to one: Encode input 
sequence in a single vector
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Sequence to Sequence: Many-to-one + 
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

… 

x
2

x
1

W
1

h
T

y
1

y
2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW
h
1

fW
h
2

fW

W
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201737

Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Sampling
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characters one at a time, 
feed back to model
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Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level



Recurrent Neural Networks (RNN)

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply the 
same weights 
repeatedlyA family of neural architectures

22

outputs 
(optional)
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A RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings

a zoo

output distribution 

Note: this input sequence could be much 
longer, but this slide doesn’t have space!

hidden states 

is the initial hidden state

23



A RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length

input
• Computation for step t

can (in theory) use 
information from many 
steps back

• Model size doesn’t 
increase for longer input

• Same weights applied on 
every timestep, so there is 
symmetry in how inputs 
are processed.

RNN Disadvantages:
• Recurrent computation is 

slow
• In practice, difficult to 

access information from 
many steps back 

More on 
these later 
in the 
course
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Training a RNN Language Model

• Get a big corpus of text which is a sequence of words

• Feed into RNN-LM; compute output distribution         for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:

25



Training a RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

26

Predicted 
prob dists



Training a RNN Language Model
= negative log prob

of “opened”

the students opened their …exams

…

27

Corpus

Loss

Predicted 
prob dists



Training a RNN Language Model
= negative log prob

of “their”

the students opened their …exams

…

28

Corpus

Loss

Predicted 
prob dists



Training a RNN Language Model
= negative log prob

of “exams”

the students opened their …exams

…

29

Corpus

Loss

Predicted 
prob dists



Training a RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…

30

Corpus

Loss

Predicted 
prob dists



Training a RNN Language Model

• However: Computing loss and gradients across entire corpus
is too expensive!

• In practice, consider                       as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss 
and gradients for small chunk of data, and update.

• Compute loss          for a sentence (actually a batch of 
sentences), compute gradients and update weights. Repeat.

31



Backpropagation for RNNs

……

Question: What’s the derivative of              w.r.t. the repeated weight matrix         ?

Answer:

“The gradient w.r.t. a repeated weight 
is the sum of the gradient 

w.r.t. each time it appears”

32

Why?



Multivariable Chain Rule

33

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs: Proof sketch

34

…

In our example: Apply the multivariable chain rule:
= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs

……

Question: How do we 
calculate this?

Answer: Backpropagate over 
timesteps i=t,…,0, summing 
gradients as you go.
This algorithm is called 
“backpropagation through time”
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Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to 
generate text by repeated sampling. Sampled output is next step’s input.

my favorite season is

…

sample

favorite

sample

season

sample

is

sample

spring

spring36



Generating text with a RNN Language Model

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text 
in that style.

• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

37
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Generating text with a RNN Language Model

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text 
in that style.

• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

38
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Generating text with a RNN Language Model

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text 
in that style.

• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

39
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Generating text with a RNN Language Model

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text 
in that style.

• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network40

This is an example of a character-level RNN-LM (predicts what character comes next)

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network


Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss          :

41

Inverse probability of corpus, according to Language Model

Normalized by 
number of words

Lower perplexity is better!



RNNs have greatly improved perplexity

n-gram model

Increasingly 
complex RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
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Why should we care about Language Modeling?

• Language Modeling is a benchmark task that helps us 
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks, 
especially those involving generating text or 
estimating the probability of text:

43

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.



Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:

• Take sequential input of any length 

• Apply the same weights on each step

• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model 

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more!

44



RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

45



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence encoding

How to compute 
sentence encoding?

e.g. sentiment classification

46



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence encoding

How to compute 
sentence encoding?

Basic way: 
Use final hidden state

e.g. sentiment classification

47



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise max or 
mean of all hidden states

e.g. sentiment classification

48



RNNs can be used as an encoder module
e.g. question answering, machine translation, many other tasks!

Context: Ludwig van 
Beethoven was a 
German composer 
and pianist. A crucial 
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an 
encoder for the Question (the 
hidden states represent the 
Question). The encoder is part 
of a larger neural system.

Answer: German

49



RNN-LMs can be used to generate text
e.g. speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail later.

50

Input (audio)

<START>

conditioning

RNN-LM



A note on terminology

By the end of the course: You will understand phrases like 
“stacked bidirectional LSTM with residual connections and self-attention”

RNN described in this lecture = “vanilla RNN”

Next lecture: You will learn about other RNN flavors

like GRU and LSTM

51

and multi-layer RNNs



Next time

• Problems with RNNs!

• Vanishing gradients

• Fancy RNN variants!

• LSTM

• GRU

• multi-layer

• bidirectional

motivates
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Vanishing gradient intuition

6



Vanishing gradient intuition

?

7



Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!

9



Vanishing gradient intuition

chain rule!

10



Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the 
gradient signal gets smaller 

and smaller as it 
backpropagates further11



Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much 
smaller than gradient signal from close-by.

So model weights are only updated only with respect to 
near effects, not long-term effects.

14



Why is vanishing gradient a problem?

• Another explanation: Gradient can be viewed as a measure of 
the effect of the past on the future

• If the gradient becomes vanishingly small over longer distances 
(step t to step t+n), then we can’t tell whether:

1. There’s no dependency between step t and t+n in the data

2. We have wrong parameters to capture the true 
dependency between t and t+n

15



Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the 
printer was out of toner. She went to the stationery store to buy 
more toner. It was very overpriced. After installing the toner into 
the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to 
model the dependency between “tickets” on the 7th step and 
the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this dependency

• So the model is unable to predict similar long-distance 
dependencies at test time

16



Effect of vanishing gradient on RNN-LM

• LM task: The writer of the books ___

• Correct answer: The writer of the books is planning a sequel

• Syntactic recency: The writer of the books is (correct)

• Sequential recency: The writer of the books are (incorrect)

• Due to vanishing gradient, RNN-LMs are better at learning from 
sequential recency than syntactic recency, so they make this 
type of error more often than we’d like [Linzen et al 2016]

is

are

17 “Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016. https://arxiv.org/pdf/1611.01368.pdf

https://arxiv.org/pdf/1611.01368.pdf


Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step 
becomes too big:

• This can cause bad updates: we take too large a step and reach 
a bad parameter configuration (with large loss)

• In the worst case, this will result in Inf or NaN in your network 
(then you have to restart training from an earlier checkpoint)

18

learning rate

gradient



Gradient clipping: solution for exploding gradient

19 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

• Gradient clipping: if the norm of the gradient is greater than 
some threshold, scale it down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

http://proceedings.mlr.press/v28/pascanu13.pdf


Gradient clipping: solution for exploding gradient

20 Source: “Deep Learning”, Goodfellow, Bengio and Courville, 2016. Chapter 10.11.1. https://www.deeplearningbook.org/contents/rnn.html

• This shows the loss surface of a simple RNN (hidden state is a scalar not a vector)

• The “cliff” is dangerous because it has steep gradient

• On the left, gradient descent takes two very big steps due to steep gradient, resulting 
in climbing the cliff then shooting off to the right (both bad updates)

• On the right, gradient clipping reduces the size of those steps, so effect is less drastic

https://www.deeplearningbook.org/contents/rnn.html


How to fix vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to 
preserve information over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• How about a RNN with separate memory?

21



Long Short-Term Memory (LSTM)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a 
solution to the vanishing gradients problem. 

• On step t, there is a hidden state and a cell state 

• Both are vectors length n

• The cell stores long-term information

• The LSTM can erase, write and read information from the cell

• The selection of which information is erased/written/read is controlled by 
three corresponding gates

• The gates are also vectors length n

• On each timestep, each element of the gates can be open (1), closed (0), 
or somewhere in-between.

• The gates are dynamic: their value is computed based on the current 
context 

22 “Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf

https://www.bioinf.jku.at/publications/older/2604.pdf


We have a sequence of inputs        , and we will compute a sequence of hidden states        
and cell states       .  On timestep t:

Long Short-Term Memory (LSTM)
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Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

23
Gates are applied using 
element-wise product



Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

24
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Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state
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How does LSTM solve vanishing gradients?

• The LSTM architecture makes it easier for the RNN to 
preserve information over many timesteps

• e.g. if the forget gate is set to remember everything on every 
timestep, then the info in the cell is preserved indefinitely

• By contrast, it’s harder for vanilla RNN to learn a recurrent 
weight matrix Wh that preserves info in hidden state 

• LSTM doesn’t guarantee that there is no vanishing/exploding 
gradient, but it does provide an easier way for the model to 
learn long-distance dependencies
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LSTMs: real-world success

• In 2013-2015, LSTMs started achieving state-of-the-art results

• Successful tasks include: handwriting recognition, speech 
recognition, machine translation, parsing, image captioning

• LSTM became the dominant approach

• Now (2019), other approaches (e.g. Transformers) have become 
more dominant for certain tasks. 

• For example in WMT (a MT conference + competition):

• In WMT 2016, the summary report contains ”RNN” 44 times

• In WMT 2018, the report contains “RNN” 9 times and 
“Transformer” 63 times
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Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf


Gated Recurrent Units (GRU)

• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

• On each timestep t we have input         and hidden state         (no cell state).

28 "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of 
hidden state are updated vs preserved

Reset gate: controls what parts of 
previous hidden state are used to 
compute new content

Hidden state: update gate 
simultaneously controls what is kept 
from previous hidden state, and what 
is updated to new hidden state content 

New hidden state content: reset gate 
selects useful parts of prev hidden 
state. Use this and current input to 
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info 
long-term (e.g. by setting update gate to 0)

https://arxiv.org/pdf/1406.1078v3.pdf


LSTM vs GRU

• Researchers have proposed many gated RNN variants, but LSTM 
and GRU are the most widely-used

• The biggest difference is that GRU is quicker to compute and has 
fewer parameters

• There is no conclusive evidence that one consistently performs 
better than the other

• LSTM is a good default choice (especially if your data has 
particularly long dependencies, or you have lots of training data)

• Rule of thumb: start with LSTM, but switch to GRU if you want 
something more efficient
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Bidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie 
was”). 

What about right
context?

In this example, 
“exciting” is in the 
right context and this 
modifies the meaning 
of “terribly” (from 
negative to positive)

Task: Sentiment Classification



Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNNs
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Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute 
one forward step of the RNN” – it could be a 
vanilla, LSTM or GRU computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNNs: simplified diagram
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terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be 
the concatenated forwards+backwards states.



Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access 
to the entire input sequence.

• They are not applicable to Language Modeling, because in LM 
you only have left context available.

• If you do have entire input sequence (e.g. any kind of encoding), 
bidirectionality is powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from 
Transformers) is a powerful pretrained contextual 
representation system built on bidirectionality.

• You will learn more about BERT later in the course!
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Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over 
many timesteps)

• We can also make them “deep” in another dimension by 
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex 
representations

• The lower RNNs should compute lower-level features and the 
higher RNNs should compute higher-level features. 

• Multi-layer RNNs are also called stacked RNNs.
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Multi-layer RNNs

42
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1



Multi-layer RNNs in practice

• High-performing RNNs are often multi-layer (but aren’t as deep 
as convolutional or feed-forward networks)

• For example: In a 2017 paper, Britz et al find that for Neural 
Machine Translation, 2 to 4 layers is best for the encoder RNN, 
and 4 layers is best for the decoder RNN
• However, skip-connections/dense-connections are needed to train 

deeper RNNs (e.g. 8 layers)

• Transformer-based networks (e.g. BERT) can be up to 24 layers 
• You will learn about Transformers later; they have a lot of 

skipping-like connections

43 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf


In summary

Lots of new information today! What are the practical takeaways?

44

1. LSTMs are powerful but GRUs are faster 2. Clip your gradients

3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you 
might need skip/dense-connections if it’s deep



Section 3: Attention
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Sequence-to-sequence: the bottleneck problem
En

co
d

er
 R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

D
eco

d
er R

N
N

Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 
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Sequence-to-sequence: the bottleneck problem
En

co
d

er
 R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

D
eco

d
er R

N
N

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to 
the encoder to focus on a particular part of the source sequence

• First we will show via diagram (no equations), then we will show 
with equations
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Sequence-to-sequence with attention
En
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Source sentence (input)

<START>il a         m’      entarté
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N
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n
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o
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s

dot product
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
sc

o
re

s

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)

A
tt

en
ti

o
n

 
d

is
tr

ib
u

ti
o

n

Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention
En

co
d

er
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N
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Source sentence (input)

<START>il a         m’      entarté
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o
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s

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention
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Source sentence (input)

<START>il a         m’      entarté
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Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute ො𝑦1 as before

ො𝑦1

he
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Sequence-to-sequence with attention
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Source sentence (input)
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Attention 
output

ො𝑦2

hit
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Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.



Sequence-to-sequence with attention
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output

he hit

ො𝑦3

me
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Sequence-to-sequence with attention
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ො𝑦4

with
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Attention 
output

he hit me with a

ො𝑦6

pie
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Attention: in equations

• We have encoder hidden states 

• On timestep t, we have decoder hidden state 

• We get the attention scores         for this step:

• We take softmax to get the attention distribution        for this step (this is a 
probability distribution and sums to 1)

• We use        to take a weighted sum of the encoder hidden states to get the 
attention output 

• Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on

• We get (soft) alignment for free!

• This is cool because we never explicitly trained
an alignment system

• The network just learned alignment by itself
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Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the 
sequence-to-sequence model for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a 
technique to compute a weighted sum of the values, 
dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in the seq2seq + attention model, each decoder 
hidden state (query) attends to all the encoder hidden states 
(values).75



Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector values, and a vector query, attention is a 
technique to compute a weighted sum of the values, dependent on 
the query.
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Intuition:

• The weighted sum is a selective summary of the information 
contained in the values, where the query determines which 
values to focus on.

• Attention is a way to obtain a fixed-size representation of an 
arbitrary set of representations (the values), dependent on 
some other representation (the query).



There are several attention variants

• We have some values and a query

• Attention always involves:

1. Computing the attention scores  

2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the 
context vector)

77

There are 
multiple ways 

to do this



Attention variants

There are several ways you can compute                from                                   
and                :

• Basic dot-product attention:

• Note: this assumes

• This is the version we saw earlier

• Multiplicative attention:

• Where                       is a weight matrix

• Additive attention:

• Where                                                 are weight matrices and
is a weight vector. 

• d3 (the attention dimensionality) is a hyperparameter
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More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative 
advantages/disadvantages of these in Assignment 4!

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf
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