1 Notes on lecture slides material

1.1 Gradient descent

Let \(J(w) = \frac{1}{2}(w - 4)^2 + 1 \) and the initial guess \(w_0 = 0 \), for which \(J(w_0) = 9 \). Let the learning rate be \(\eta = 0.5 \). The gradient of \(J \) is \(\nabla J(w) = w - 4 \).

1. The gradient at \(w_0 \) is \(\nabla J(w_0) = w_0 - 4 = -4 \). The gradient update step is
 \[w_1 = w_0 - \eta \nabla J(w_0) = 0 - 0.5 \times (-4) = 2. \]
 So, \(w_1 = 2 \) for which \(J(w_1) = 3 \).

2. The gradient at \(w_1 \) is \(\nabla J(w_1) = w_1 - 4 = -2 \). The gradient update step is
 \[w_2 = w_1 - \eta \nabla J(w_1) = 2 - 0.5 \times (-2) = 3. \]
 So, \(w_2 = 3 \) for which \(J(w_2) = 1.5 \).

3. The gradient at \(w_2 \) is \(\nabla J(w_2) = w_2 - 4 = -1 \). The gradient update step is
 \[w_3 = w_2 - \eta \nabla J(w_2) = 3 - 0.5 \times (-1) = 3.5 \]
 So, \(w_3 = 3.5 \) for which \(J(w_3) = 1.125 \).

4. and so on ... for ever?

Bonus points: For different values of \(\eta \), plot on the same graph \(J(w) \) and the points (in blue) corresponding to the gradient steps. Try \(\text{eta} = 0.1, 0.5, 1, 2, \ldots \).

"Until \(J(w) \) does not improve": how do we quantify this? One method is to look at the relative change.

\[
\Delta J = \left| \frac{J(w_t) - J(w_{t-1})}{J(w_{t-1})} \right| \tag{1}
\]

If \(\Delta J \) is too small (0.0001) for a number of epochs (5 or 10), then you may consider stopping.
1.2 Feature scaling

Suppose feature x_j has values 1, 2, 3 in the training data (3 training examples). The sample mean is $m_j = \frac{1+2+3}{3} = 2$. The sample standard deviation is $\sigma_j = \sqrt{\frac{(1-m_j)^2+(2-m_j)^2+(3-m_j)^2}{3}} = \sqrt{\frac{2}{3}}$. Then the feature x_j which had values 1, 2, 3 will be scaled to the following values:

1. For training example 1, the new feature will be $\hat{x}_j = \frac{1-m_j}{\sigma_j} = \frac{1-2}{\sigma_j}$.
2. For training example 2, the new feature will be $\hat{x}_j = \frac{2-m_j}{\sigma_j} = \frac{2-2}{\sigma_j}$.
3. For training example 3, the new feature will be $\hat{x}_j = \frac{3-m_j}{\sigma_j} = \frac{3-2}{\sigma_j}$.