
Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

Python Stack

Linear Algebra and Optimization in NumPy

Computation Graphs in PyTorch

Machine Learning
ITCS 6156/8156

1

mailto:rbunescu@uncc.edu

Python Programming Stack for Deep Learning

• Python = object-oriented, interpreted, scripting language.
– imperative programming, with functional programming features.

• NumPy = package for powerful N-dimensional arrays:
– sophisticated (broadcasting) functions.
– useful linear algebra, Fourier transform, and random number

capabilities.

• SciPy = package for numerical integration and optimization.

• Matplotlib = comprehensive 2D and 3D plotting library.

2

https://xkcd.com/353/
http://www.numpy.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://matplotlib.org/

Python Programming Stack for Deep Learning

• PyTorch = a wrapper of NumPy that enables the use of
GPUs and automatic differentiation:
– Tensors similar to NumPy’s ndarray, but can also be used on GPU.

• Jupyter Notebook = a web app for creating documents that
contain live code, equations, visualizations and markdown
text.

• Anaconda = an open-source distribution of Python and
Python packages:
– Package versions are managed through Conda.
– Install all packages above using Anaconda / Conda install.

3

https://pytorch.org/
https://jupyter.org/
https://docs.anaconda.com/

Anaconda Install

• Anaconda: Installation instructions for various platforms can be
found at: https://docs.anaconda.com/anaconda/install/

– For Mac and Linux users, the system PATH must be updated after installation so
that ‘conda’ can be used from the command line.

• Mac OS X:
– For bash users: export PATH=~/anaconda3/bin:$PATH
– For csh/tcsh users: setenv PATH ~/anaconda3/bin:$PATH

• For Linux:
– For bash users: export PATH=~/anaconda3/bin:$PATH
– For csh/tcsh users: setenv PATH ~/anaconda3/bin:$PATH

– It is recommend the above statement be put in the ~/.bashrc or ~/.cshrc
file, so that it is executed every time a new terminal window is open.

– To check that conda was installed, running “conda list” in the terminal
should list all packages that come with Anaconda.

4

https://docs.anaconda.com/anaconda/install/

Installing Packages with Conda / Anaconda

• A number of tools and libraries that we will use can be
configured from Anaconda:
– Python 3, NumPy, SciPy, Matplotlib, Jupyter Notebook, Ipython,

Pandas, Scikit-learn.
– PyTorch can be installed from Anaconda, with ‘conda’ from the

command line:
• The actual command line depends on the platform as follows:

– Using the GUI on pytorch.org, choose the appropriate OS,
conda, Python 3.6, CUDA or CPU version.

5

http://pytorch.org/

import numpy as np

Ø np.array()
– indexing, slices.

Ø ndarray.shape, .size, .ndim, .dtype, .T
Ø np.zeros(), np.ones(), np.arange(). np.eye()

– dtype parameter.
– tuple (shape) parameter.

Ø np.reshape(), np.ravel()
Ø np.amax(), np.maximum(), np.sum(), np.mean,() np.std()

– axis parameter, also np.ndarray
Ø np.stack(), np.[hv]stack(), np.column_stack(), np.split()
Ø np.exp(), np.log(),
• https://docs.scipy.org/doc/numpy/user/quickstart.html

6

https://docs.scipy.org/doc/numpy/user/quickstart.html

NumPy: Broadcasting

• Broadcasting describes how numpy treats arrays with
different shapes during arithmetic operations.

• The smaller array is “broadcast” across the larger array so
that they have compatible shapes, subject to broadcasting
rules:
– NumPy compares their shapes element-wise.
– It starts with the trailing dimensions, and works its way forward.
– Two dimensions are compatible when:

• they are equal, or one of them is 1.

• https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

7

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Other Numpy Functions

Ø np.dot(), np.vdot()
• also np.ndarray.

Ø np.outer(), np.inner()

Ø import numpy.random as random:
• randn(), randint(), uniform()

Ø import numpy.linalg as la:
• la.norm(), la.det(), la.matrix_rank(), np.trace()
• la.eig(), la.svd()
• la.qr(), la.cholesky()

§ https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

8

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Logistic Regresion: Vectorization

• Version 1: Compute gradient component-wise.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:, n])
temp = h − t[n]
for k in range(K):
grad(k) = grad(k) + temp * X[k,n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

9

Logistic Regresion: Vectorization

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[:, n])) − t[n]) * X[:, n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

10

Logistic Regresion: Vectorization

• Version 3: Compute gradient, vectorized.

grad = X @ (sigmoid(w.dot(X)) − t)

def sigmoid(x):
return 1 / (1 + np.exp(−x))

∇E(w) = (hn − tn)xn
T

n=1

N

∑

11

import scipy

• scipy.sparse.coo_matrix()
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()
• scipy.optimize:

– scipy.optimize.fmin_l_bfgs_b()
theta, _, _ = fmin_l_bfgs_b(softmaxCost, theta,

args = (numClasses, inputSize, decay, images, labels),
maxiter = 100, disp = 1)

– scipy.optimize.fmin_cg()
– scipy.minimize
https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

12

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

Towards PyTorch: Graphs of Computations

• A function J can be expressed by the composition of
computational elements from a given set:
– logic operators.
– logistic operators.
– multiplication and additions.

• The function is defined by a graph of computations:
– A directed acyclic graph, with one node per computational element.
– Depth of architecture = depth of the graph = longest path from an

input node to an output node.

13

Logistic Regression as a Computation Graph

14

Inference =
Forward
Propagation

Learning =
Backward
Propagation

J

softmax

Neural Network as a Computation Graph

Inference =
Forward
Propagation

Learning =
Backward
Propagation

J

15

What is PyTorch

• A wrapper of NumPy that enables the use of GPUs.
– Tensors similar to NumPy’s ndarray, but can also be used on GPU.

• A flexible deep learning platform:
– Deep Neural Networks built on a tape-based autograd system:

• Building neural networks using and replaying a tape recorder.
• Reverse-mode auto-differentiation allows changing the

network at runtime:
– The computation graph is created on the fly.
– Backpropagation is done on the dynamically built graph.

http://pytorch.org/about/

16

http://pytorch.org/about/

Automatic Differentiation

• Deep learning packages offer automatic differentiation.

• PyTorch has the autograd package:
– torch.Tensor the main class; torch.Function class also important.

• When requires_grad = True, it tracks all operations on this
tensor (e.g. the parameters).

• An acyclic graph is built dynamically that encodes the history
of computations, i.e. compositions of functions.

– TensorFlow compiles static computation graphs.
• To compute the gradient, call backward() in a scalar valued

Tensor (e.g. the loss).

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

17

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensors

• PyTorch tensors support the same operations as NumPy.
– Arithmetic.
– Slicing and Indexing.
– Broadcasting.
– Reshaping.
– Sum, Max, Argmax, …

• PyTorch tensors can be converted to NumPy tensors.
• NumPy tensors can be converted to PyTorch tensors.

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

18

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

Autograd

• The autograd package provides automatic differentiation
for all operations on Tensors.
– It is a define-by-run framework, which means that the gradient is

defined by how your code is run:
• Every single backprop iteration can be different.

• autograd.Tensor is the central class of the package.
– Once you finish your computation you can call .backward() and

have all the gradients computed automatically.

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

19

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensor and Function

• A Tensor v has three important attributes:
– v.data holds the raw tensor value.
– v.grad is another Tensor which accumulates the gradient w.r.t. v:

• The gradient of what?
– The gradient of any variable u that uses v on which we call

u.backward().
• http://pytorch.org/docs/master/autograd.html

– v.grad_fn stores the Function that has created the Tensor v:
• http://pytorch.org/docs/master/autograd.html

20

http://pytorch.org/docs/master/autograd.html
http://pytorch.org/docs/master/autograd.html

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

• Example 2:

f = f (g1(x),g2 (x),…,gn (x))

∂f
∂x

=
∂f
∂gi

∂gi
∂xi=1

n

∑

𝑙𝑜𝑠𝑠 𝑥 = (ℎ! 𝑥 − ℎ" 𝑥)"
ℎ! 𝑥 = 2𝑔! 𝑥 + 1
ℎ" 𝑥 = 2𝑔! 𝑥 + 𝑔" 𝑥
𝑔! 𝑥 = 3𝑥
𝑔" 𝑥 = 𝑥" + 𝑥

𝑔! 𝑥𝑔" 𝑥

x x

* x

+

3

* 2

*

+
ℎ# 𝑥

1

+
ℎ$ 𝑥

−

^2

𝑙𝑜𝑠𝑠 𝑥

PyTorch

• Install using Anaconda:
– conda install pytorch torchvision -c pytorch
– http://pytorch.org

• Install from sources:
– https://github.com/pytorch/pytorch#from-source

• Tutorials:
– http://pytorch.org/tutorials/
– http://pytorch.org/tutorials/beginner/pytorch_with_examples.html

22

http://pytorch.org/
https://github.com/pytorch/pytorch
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/beginner/pytorch_with_examples.html

