Machine Learning
ITCS 6156/8156

Linear Algebra and Optimization in Python

Razvan C. Bunescu
Department of Computer Science @ CCI
rbunescu@uncc.edu
Python Programming Stack

- **Python** = object-oriented, interpreted, scripting language.
 - imperative programming, with functional programming features.

- **NumPy** = package for powerful N-dimensional arrays:
 - sophisticated (broadcasting) functions.
 - useful linear algebra, Fourier transform, and random number capabilities.

- **SciPy** = package for numerical integration and optimization.

- **Matplotlib** = comprehensive 2D plotting library.
import numpy as np

- np.array()
 - indexing, slices.
- ndarray.shape, .size, .ndim, .dtype, .T
- np.zeros(), np.ones(), np.arange(), np.eye()
 - dtype parameter.
 - tuple (shape) parameter.
- np.reshape(), np.ravel()
 - also np.ndarray.
- np.amax(), np.maximum(), np.sum(), np.mean(), np.std()
 - axis parameter, also np.ndarray
- np.stack(), np.[hv]stack(), np.column_stack(), np.split()
- np.exp(), np.log(),
NumPy: Broadcasting

• Broadcasting describes how numpy treats arrays with different shapes during arithmetic operations.

• The smaller array is “broadcast” across the larger array s.t. they have compatible shapes, subject to broadcasting rules:
 – NumPy compares their shapes element-wise.
 – It starts with the trailing dimensions and works its way forward.
 – Two dimensions are compatible when:
 • they are equal, or one of them is 1.
 – When no dimension is left in one array, it is viewed as 1.

- https://docs.scipy.org/doc/numpy-dev/user/basics.broadcasting.html
Other Numpy Functions

- `np.dot()`, `np.vdot()`
 - also `np.ndarray`.
- `np.outer()`, `np.inner()`

- **`import numpy.random as random:`**
 - `randn()`, `randint()`, `uniform()`

- **`import numpy.linalg as la:`**
 - `la.norm()`, `la.det()`, `la.matrix_rank()`, `np.trace()`
 - `la.eig()`, `la.svd()`
 - `la.qr()`, `la.cholesky()`

- https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
import scipy

- scipy.sparse.coo_matrix()
 groundTruth = coo_matrix((np.ones(numCases, dtype = np.uint8),
 (labels, np.arange(numCases)))).toarray()

- scipy.optimize:
 - scipy.optimize.fmin_l_bfgs_b()
 theta, _, _ = fmin_l_bfgs_b(softmaxCost, theta,
 args = (numClasses, inputSize, decay, images, labels),
 maxiter = 100, disp = 1)
 - scipy.optimize.fmin_cg()
 - scipy.optimize.minimize

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html
Implementation: Vectorization

- **Version 1**: Compute gradient component-wise.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]

```python
grad = np.zeros(K)
for n in range(N):
    h = sigmoid(w.dot(X[:, n]))
    temp = h - t[n]
    for k in range(K):
        grad(k) = grad(k) + temp * X[k,n]
```

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]
• **Version 2**: Compute gradient, partially vectorized.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]

\[
\text{grad} = \text{np.zeros(K)}
\]

\[
\text{for } n \text{ in range(N):}
\]

\[
\text{grad} = \text{grad} + (\text{sigmoid}(w\cdot\text{dot}(X[:, n])) - t[n]) \times X[:, n]
\]
Implementation: Vectorization

• **Version 3**: Compute gradient, vectorized.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]

\[
\text{grad} = X.\text{dot}(\text{sigmoid}(w.\text{dot}(X)) - t)
\]

```python
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
```