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What is an algorithm? 

•  An algorithm is a computational procedure that takes 
values as input and produces values as output, in order to 
solve a well defined computational problem: 
–  The statement of the problem specifies a desired relationship 

between the input and the output. 
–  The algorithm specifies how to achieve that input/output 

relationship. 
–  A particular value of the input corresponds to an instance of the 

problem. 
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What is a programming language? 

•  A programming language is an artificial language designed 
for expressing algorithms on a computer: 
–  Need to express an infinite number of algorithms (Turing 

complete). 
–  Requires an unambiguous syntax, specified by a finite context free 

grammar. 
–  Should have a well defined compositional semantics for each 

syntactic construct: operational vs. axiomatic vs. denotational. 
–  Often requires a practical implementation i.e. pragmatics: 

•  Implementation on a real machine vs. virtual machine 
•  translation vs. compilation vs. interpretation. 
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Turing Machines 

•  An infinite one-dimensional tape divided into cells: 
–  each cell may contain one symbol, either 0 or 1. 

•  A read-write head that can also move left or right. 

•  A set of transition rules (the program): 
–  tuples ⟨Statecurrent,  Symbol,  Statenext,  Action ⟩ 
–  3 possible actions: 

•  write a symbol in the current cell on the tape. 
•  move the head one cell to the left or right. 

–  machine halts when no transition rule is specified for current 
situation. 
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Turing Machines 
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http://plato.stanford.edu/entries/turing-machine 



Outline 

•  Reasons for Studying Programming Languages 

•  Influences on Language Design 

•  Language Paradigms 

•  Implementation Methods 

•  Overview of Compilation 
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Reasons for studying concepts of PLs 

•  Increased ability to express ideas/algorithms 
–  Natural language:  

•  The depth at which people can think is influenced by the 
expressive power of the language they use (also Sapir-Worf  
hypothesis). 

•  http://fora.tv/2010/10/26/Lera_Boroditsky_How_Language_Shapes_Thought 

–  Programming languages:  
•  The complexity of the algorithms that people implement is 

influenced by the set of constructs available in the 
programming language. 

•  Kenneth E. Iversion (inventor of APL programming language): 
–  “Notation as a tool of thought” (Turing award lecture). 
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Notation and Complexity 

int[] a = {2, 6, 1, 9, 7}; 
int[] b = {11, 4, 8, 2}; 
 
for (int i = 1; i < a.length; i++) { 

 int key = a[i]; 
 int k = i – 1; 
 while (k >= 0 && a[k] > key) { 
  a[k+1] = a[k] 
  k = k – 1; 
 } 
 a[k+1] = key; 

} 
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for (int i = 1; i < b.length; i++) { 
 int key = b[i]; 
 int k = i – 1; 
 while (k >= 0 && b[k] > key) { 
  b[k+1] = b[k] 
  k = k – 1; 
 } 
 b[k+1] = key; 

} 
 



Reasons for studying concepts of PLs 

•  Improved background for choosing appropriate languages: 
–  Many programmers use the language with which they are most 

familiar, even though poorly suited for the new project 
–  Ideal: use the most appropriate language.  
–  Features important for a given project are included already in the 

language design, as opposed to being simulated  => elegance & 
safety. 
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Reasons for studying concepts of PLs 

•  Increased ability to learn new languages: 
–  Once fundamental concepts are known, new languages are easier 

to learn (recognize same principles as incorporated in the new 
language). 

–  Example:  
•  Knowing the concepts of Object Oriented Programming (OOP) 

makes learning Java significantly easier. 
•  Knowing the grammar of your native language makes it easier 

to learn another language. 
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Reasons for studying concepts of PLs 

•  Better understanding of significance of implementation: 
–  Example: a small subprogram that is called very frequently can be 

a highly inefficient design choice. 
–  More details can be learned by studying compiler design. 

•  Better use of languages that are already known. 

•  Overall advancement of computing: 
–  Algol 60 vs. Fortran. 
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Outline 

•  Reasons for Studying Programming Languages 

•  Influences on Language Design 

•  Language Paradigms 

•  Implementation Methods 

•  Overview of Compilation 
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Influences on Language Design 

•  Computer Architecture: 
–  Languages are developed around the prevalent computer 

architecture, known as the von Neumann architecture. 

•  Programming Methodologies: 
–  New software development methodologies (e.g., object-oriented 

software development) led to new programming paradigms and by 
extension, to new programming languages. 

•  Application Domains: 
–  Scientific, Artificial Intelligence, Business, Systems, Web, … 
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Influences: Computer Architecture  

•  Most prevalent computer architecture: Von Neumann  
•  Imperative languages, most dominant, because of von 

Neumann computers: 
–  Data and programs stored in memory 
–  Memory is separate from CPU 
–  Instructions and data are piped from memory to CPU 
–  Basis for imperative languages: 

•  Variables model memory cells 
•  Assignment statements model piping 
•  Iteration is efficient 
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Von Neumann Architecture 
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Von Neumann Architecture 

•  Fetch-execute-cycle (on a von Neumann architecture 
computer) 

initialize the program counter 

repeat forever 
 fetch the instruction pointed by the counter 
 increment the counter 

 decode the instruction 

 execute the instruction 

end repeat 
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Von Neumann Bottleneck 

•  Connection speed between a computer’s memory and its 
processor determines the speed of a computer. 

•  Program instructions often can be executed much faster 
than the speed of the connection; the connection speed thus 
results in a bottleneck. 

•  Known as the von Neumann bottleneck; it is the primary 
limiting factor in the speed of computers 
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Influences: Programming Methodologies 

•  1950s and early 1960s: Simple applications; worry about 
machine efficiency 

•  Late 1960s: People efficiency became important; 
readability, better control structures 
–  structured programming 
–  top-down design and step-wise refinement 

•  Late 1970s: Process-oriented to data-oriented design 
–  abstract data types (Simula 67) 

•  Middle 1980s: Object-oriented programming 
–  data abstraction + inheritance + polymorphism 
–  Smaltalk, Ada 95, C++, Java, CLOS, Prolog++ 

18 
Lecture 01 



Influences: Application Domains 

•  Scientific applications 
–  Large numbers of floating point computations; extensive use of 

arrays 
–  Fortran, Matlab 

•  Business applications 
–  Produce reports, use decimal numbers and characters 
–  COBOL 

•  Artificial intelligence 
–  Symbols rather than numbers manipulated; use of linked lists 

•  LISP 
–  Lately, many AI applications (e.g. statistical or connectionist 

approaches) are written in Java, C++, Python. 
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Influences: Application Domains 

•  Systems programming: 
–  Need efficiency because of continuous use. 
–  C (UNIX almost entirely written in C). 

•  Web Software: 
–  Eclectic collection of languages:  

•  markup (e.g., XHTML). 
•  scripting for dynamic content: 

–  client side, using scripts embedded in the XHTML 
document. Examples: Javascript, PHP. 

–  server side, using the Common Gateway Interface. 
Examples: JSP, ASP, PHP. 

•  general-purpose, executed on the Web server through CGI. 
Example: Java, C++, … 
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Is there value in knowing multiple languages? 

•  To have a second language is to have a second soul. 
»  Charlemagne, Holy Roman Emperor 

•  A man who knows four languages is worth four men. 
»  Charles V, Holy Roman Emperor 

21 
Lecture 01 

[Lera Boroditsky’s presentation] 



Is there value in knowing multiple languages? 

•  To have a second language is to have a second soul. 
»  Charlemagne, Holy Roman Emperor 

•  A man who knows four languages is worth four men. 
»  Charles V, Holy Roman Emperor 

•  I speak English to my accountants, French to my 
ambassadors, Italian to my mistress, Latin to my God, and 
German to my horse. 

»  Frederick the Great of Prussia 
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Is there value in knowing multiple languages? 

•  I speak English to my accountants, French to my 
ambassadors, Italian to my mistress, Latin to my God, and 
German to my horse. 

»  Frederick the Great of Prussia 

•  I speak Matlab to my applied mathematician, Cobol to my 
accountant, C to my device driver writer, PHP to my web 
designer, Java to myself, … 

»  CS3200 instructor, early 21st century 
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Is there value in knowing multiple languages? 

•  The ability to speak several languages is an asset, but the 
ability to keep your mouth shut in one language is 
priceless. 

»  Anonymous 

•  Drawing on my fine command of language, I said nothing. 
»  Robert Benchley 

•  A distinguished diplomat could hold his tongue in ten 
languages. 

»  Anonymous 
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Outline 

•  Reasons for Studying Programming Languages 

•  Influences on Language Design 

•  Language Paradigms 

•  Implementation Methods 

•  Overview of Compilation 
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Implementation Methods 

•  Compilation: 
–  Programs are translated into machine language & system calls. 
 

•  Interpretation: 
–  Programs are interpreted by another program – an interpreter. 
 

•  Hybrid: 
–  Programs are translated into an intermediate language that allows 

easy interpretation. 

•  Just-in-Time: 
–  Hybird + compile subprograms’ code the first time they are called. 
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Compilation 

•  Translates high-level program (source language) into 
equivalent target program (target language): 
–  machine code, assembly code, byte-code, or high level language. 
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Interpretation 

•  Interpreter usually implemented as a read-eval-print loop: 
–  read expression in the input language (usually translating it in 

some internal form). 
–  evaluates the internal form of the expression. 
–  print the result of the evaluation. 
–  loops and reads the next input expression until exit. 
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Interpretation vs. Compilation 

•  Greater flexibility and better diagnostics: 
–  run-time errors are immediately displayed. 
–  excellent source-level debuggers. 
–  can easily cope with languages that generate and execute code 

dynamically. 

•  Slower execution. 
–  Often also requires more memory space. 

•  Now rare for traditional high-level languages. 
–  Significant comeback with some Web scripting languages (e.g., 

JavaScript, PHP). 
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Hybrid Implementation 

•  A compromise between compilers and pure interpreters. 
•  A high-level language program is translated to an 

intermediate language that allows easy interpretation. 
 ⇒  Faster than pure interpretation. 
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Just-in-Time Implementation 

•  Initially translate programs to an intermediate language. 
•  Then compile the intermediate language of the 

subprograms into machine code when they are called.  
•  Machine code version is kept for subsequent calls. 

•  JIT systems are widely used for Java programs: 
–  byte-code  as intermediate language. 

•  .NET languages (C#) are implemented with a JIT system: 
–  .NET Common Intermediate Language (CIL). 

31 
Lecture 01 



Linking 

•  The process of collecting system program units and other 
user libraries and “linking” them to a user program. 
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Preprocessors 

•  Preprocessor is run before compiler: 
–  Removes comments. 
–  Expands macros, commonly used to: 

•  specify that code from another file is to be 
included; 

•  define simple expressions/functions. 

•  C preprocessor: 
–  expands #include, #define, and similar 

macros. 
–  deletes portions of code ⇒ conditional compilation. 
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Layered Interface of Virtual Computers 
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Outline 

•  Reasons for Studying Programming Languages 

•  Influences on Language Design 

•  Language Paradigms 

•  Implementation Methods 

•  Overview of Compilation 
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Sample Program: GCD 
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int main() {  
  int i = getint(), j = getint();  
  while (i != j) {  
    if (i > j) i = i - j;  
    else j = j - i;  
  }  
  putint(i);  
} 



Phases of Compilation 
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Lexical Analysis 

•  Groups characters into tokens, the smallest meaningful 
units of the program. 
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int      main   (   )        { 
int      i      =   getint   (   )   ,   j   =   getint   (   )   ; 
while    (      i   !=       j   )   {  
if       (      i   >        j   )   i   =   i   -        j   ;  
else     j      =   j        -   i   ;  
}  
putint   (      i   )        ;  
}  



Phases of Compilation 
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Syntactic Analysis 

•  Organizes tokens into a parse tree that represents higher-
level constructs in terms of their constituents: 
–  Potentially recursive rules known as context-free grammar define 

the ways in which these constituents combine. 
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iteration-statement → while ( expression ) statement  
 

statement → compound-statement  
compound-statement → { block-item-list opt }  
 

block-item-list opt → block-item-list  
block-item-list opt → ϵ  
 

block-item-list → block-item  
block-item-list → block-item-list block-item  
block-item → declaration  
block-item → statement 



Parse Tree (Concrete Syntax Tree) 
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Parse Tree (continued) 
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Parse Tree (continued) 

43 
Lecture 01 

A B 



Phases of Compilation 
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Semantic Analysis 

•  Enforces rules that pertain to the meaning of the program: 
–  Static Semantics: 

•  identifiers declared before used. 
•  identifier used in appropriate context. 
•  subroutine calls provide correct number and type of arguments. 
•  labels in different switch clauses are distinct constants. 

–  Dynamic Semantics: 
•  variables should be given a value before being used. 
•  pointers are dereferenced only if they point to valid objects. 
•  array subscript expressions are within the bounds of the array. 
•  arithmetic operations do not overflow. 
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Syntax Tree (Abstract Syntax Tree) 
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Phases of Compilation 
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Target Code Generation & Improvement 

•  Using the annotated syntax tree as intermediate form: 
–  traverse the symbol table to assign locations to variables. 
–  traverse the syntax tree, generating: 

•  loads and stores for variable references. 
•  arithmetic operations, tests, and branches. 

–  see Figure 1.6 in PLP. 

•  Code Improvement: 
–  keep local variables in registers, instead of locations on the stack. 
–  see Example 1.2 in PLP. 

48 
Lecture 01 



Outline 

•  Reasons for Studying Programming Languages 

•  Influences on Language Design 

•  Language Paradigms 

•  Implementation Methods 

•  Overview of Compilation 
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Language Paradigms 

•  Imperative (Turing Machines – Alan Turing, 1912-1954) 
–  Designed around the von Neumann architecture. 
–  Computation is performed through statements that change a 

program’s state. 
–  Central features are variables, assignment statements, and iteration; 

sequencing of commands, explicit state update via assignment. 
–  May include : 

•  OO programming languages,  
•  scripting languages,  
•  visual languages. 

–  Examples: Fortran, Algol, Pascal, C/C++, Java, Perl, JavaScript, 
Visual BASIC .NET 
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Language Paradigms 

•  Functional (Lambda Calculus – Alonzo Church, 1903-1995) 
–  Main means of making computations is by applying functions to 

given parameters. 
–  Examples: LISP, Scheme, ML, Haskell 
–  May include OO concepts. 

•  Logic (Predicate Calculus – Gotlob Frege, 1848-1925) 
–  Rule-based (rules are specified in no particular order). 
–  Computations are made through a logical inference process. 
–  Example: Prolog, CLIPS. 
–  May include OO concepts. 
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Summary 

•  The study of programming languages is valuable for a 
number of reasons: 
–  Increase our capacity to use different constructs. 
–  Enable us to choose languages more intelligently. 
–  Makes learning new languages easier. 

•  Major influences on language design:  
–  machine architecture. 
–  software development methodologies. 
–  application domains. 

•  Major implementation methods: 
–  compilation, pure interpretation, hybrid, and just-in-time. 
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Criteria for Language Evaluation 

•  Readability: the ease with which programs can be read 
and understood. 

•  Writability: the ease with which a language can be used to 
create programs. 

•  Reliability: conformance to specifications (e.g. program 
correctness). 

•  Cost: the ultimate total cost associated with a PL. 
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Readibility 

•  Overall simplicity 
–  A manageable set of basic features and constructs. 
–  Minimal feature multiplicity. 

•  Example: increment operators in C 
–  Minimal operator overloading. 

•  Example: C++ vs. Java 

•  Orthogonality 
–  A relatively small set of primitive constructs that can be combined 

in a relatively small number of ways. 
•  Example: addition in assembly on IBM mainframe vs. VAX 

minicomputers. 
–  Every possible combination is legal 

•  Example: returning arrays & records in C. 
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Readibility 

•  Control statements 
–  The presence of well-known control structures 

•  Example: goto in Fortran & Basic vs. for/while loops in C. 
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i = 0; 
loop1: 
  if (i >= 10)  
    goto out1; 
loop2: 
  if (j >= 10) 
    goto out2; 
  A[i,j] = 1; 
  j++; 
  goto loop2; 
out2: 
  i++; 
  j = 0; 
  goto loop1; 
out1:      

“Goto” Version: “For” Version: 

 
? 
 



Readibility 

•  Data types and structures 
–  Adequate predefined data types and structures 

•  Example: Boolean vs. Integer 
–  The presence of adequate facilities for defining data structures 

•  Example: array of structs vs. collection of arrays (C). 

•  Syntactic design: 
–  Identifier forms (allow long names). 
–  Special words and methods of forming compound statements. 
–  Form and meaning:  

•  self-descriptive constructs, meaningful keywords. 
–   static keyword in C has context dependent meaning. 
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Criteria for Language Evaluation 

•  Readability: the ease with which programs can be read 
and understood. 

•  Writability: the ease with which a language can be used to 
create programs. 

•  Reliability: conformance to specifications (e.g. program 
correctness). 

•  Cost: the ultimate total cost associated with a PL. 
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Writability 

•  Simplicity and orthogonality 
–  Few constructs, a small number of primitives, a consistent, small 

set of rules for combining them (avoid misuse or disuse of 
features). 

 

•  Support for abstraction 
–  The ability to define and use complex structures  or operations in 

ways that allow details to be ignored 
–  Process Abstraction (e.g. sorting algorithm implemented as a 

subprogram) 
–  Data Abstraction (e.g. trees & lists in C++/Java vs. Fortran77). 
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Writability 

•  Expressivity 
–  A set of relatively convenient ways of specifying operations. 
–  Strength and number of operators and predefined functions. 
–  Examples: 

•  Increment operators in C. 
•  Short circuit operators in Ada. 
•  Counting loops with for vs. while in Java. 
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Criteria for Language Evaluation 

•  Readability: the ease with which programs can be read 
and understood. 

•  Writability: the ease with which a language can be used to 
create programs. 

•  Reliability: conformance to specifications (e.g. program 
correctness). 

•  Cost: the ultimate total cost associated with a PL. 
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Reliability 

•  Type checking 
–  Testing for type errors at compile-time vs. run-time. 
–  Examples: 

•  (+) Ada, Java, C#, C++. 
•  (−) C. 

•  Exception handling 
–  Intercept run-time errors, take corrective measures and continue. 
–  Examples: 

•  (+) Ada, C++, Java. 
•  (−) Fortran, C. 
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Reliability 

•  Aliasing 
–  Presence of two or more distinct referencing methods for the same 

memory location: 
•  Pointers in C, references in C++. 

•  Readability and writability 
–  A language that does not support “natural” ways of expressing an 

algorithm will require the use  of “unnatural” approaches (less 
safe), and hence reduced reliability. 
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Criteria for Language Evaluation 

•  Readability: the ease with which programs can be read 
and understood. 

•  Writability: the ease with which a language can be used to 
create programs. 

•  Reliability: conformance to specifications (e.g. program 
correctness). 

•  Cost: the ultimate total cost associated with a PL. 
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Cost 

•  Training programmers to use the language. 
•  Writing programs (closeness to particular applications). 
•  Compiling programs: 

–  Tradeoff between compile vs. execution time through optimization. 
•  Executing programs: 

–  Example: many run-time type checks slow the execution (Java). 
•  Language implementation system:  

–  Availability of free compilers. 
•  Reliability: poor reliability leads to high costs. 
•  Maintaining programs: 

–  Corrections & adding new functionality. 

64 
Lecture 01 



Other Criteria 

•  Portability 
–  The ease with which programs can be moved from one 

implementation to another (helped by standardization). 

•  Generality 
–  The applicability to a wide range of applications. 

•  Well-definedness 
–  The completeness and precision of the language’s official 

definition. 
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Trade-offs in Language Design 

•  Reliability vs. cost of execution 
–  Example: Java demands all references to array elements be 

checked for proper indexing, which leads to increased execution 
costs 

 
•  Readability vs. writability 

Example: APL provides many powerful operators (and a large 
number of new symbols), allowing complex computations to be 
written in a compact program but at the cost of poor readability. 

 
•  Writability (flexibility) vs. reliability 

–  Example: C++ pointers are powerful and very flexible but are 
unreliable. 
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