
Organization of Programming Languages
CS 3200/5200D

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 01

What is an algorithm?

•  An algorithm is a computational procedure that takes
values as input and produces values as output, in order to
solve a well defined computational problem:
–  The statement of the problem specifies a desired relationship

between the input and the output.
–  The algorithm specifies how to achieve that input/output

relationship.
–  A particular value of the input corresponds to an instance of the

problem.

2
Lecture 01

What is a programming language?

•  A programming language is an artificial language designed
for expressing algorithms on a computer:
–  Need to express an infinite number of algorithms (Turing

complete).
–  Requires an unambiguous syntax, specified by a finite context free

grammar.
–  Should have a well defined compositional semantics for each

syntactic construct: operational vs. axiomatic vs. denotational.
–  Often requires a practical implementation i.e. pragmatics:

•  Implementation on a real machine vs. virtual machine
•  translation vs. compilation vs. interpretation.

3
Lecture 01

Turing Machines

•  An infinite one-dimensional tape divided into cells:
–  each cell may contain one symbol, either 0 or 1.

•  A read-write head that can also move left or right.

•  A set of transition rules (the program):
–  tuples ⟨Statecurrent, Symbol, Statenext, Action ⟩
–  3 possible actions:

•  write a symbol in the current cell on the tape.
•  move the head one cell to the left or right.

–  machine halts when no transition rule is specified for current
situation.

4
Lecture 01

Turing Machines

5
Lecture 01

http://plato.stanford.edu/entries/turing-machine

Outline

•  Reasons for Studying Programming Languages

•  Influences on Language Design

•  Language Paradigms

•  Implementation Methods

•  Overview of Compilation

6
Lecture 01

Reasons for studying concepts of PLs

•  Increased ability to express ideas/algorithms
–  Natural language:

•  The depth at which people can think is influenced by the
expressive power of the language they use (also Sapir-Worf
hypothesis).

•  http://fora.tv/2010/10/26/Lera_Boroditsky_How_Language_Shapes_Thought

–  Programming languages:
•  The complexity of the algorithms that people implement is

influenced by the set of constructs available in the
programming language.

•  Kenneth E. Iversion (inventor of APL programming language):
–  “Notation as a tool of thought” (Turing award lecture).

7
Lecture 01

Notation and Complexity

int[] a = {2, 6, 1, 9, 7};
int[] b = {11, 4, 8, 2};

for (int i = 1; i < a.length; i++) {

 int key = a[i];
 int k = i – 1;
 while (k >= 0 && a[k] > key) {
 a[k+1] = a[k]
 k = k – 1;
 }
 a[k+1] = key;

}

8
Lecture 01

for (int i = 1; i < b.length; i++) {
 int key = b[i];
 int k = i – 1;
 while (k >= 0 && b[k] > key) {
 b[k+1] = b[k]
 k = k – 1;
 }
 b[k+1] = key;

}

Reasons for studying concepts of PLs

•  Improved background for choosing appropriate languages:
–  Many programmers use the language with which they are most

familiar, even though poorly suited for the new project
–  Ideal: use the most appropriate language.
–  Features important for a given project are included already in the

language design, as opposed to being simulated => elegance &
safety.

9
Lecture 01

Reasons for studying concepts of PLs

•  Increased ability to learn new languages:
–  Once fundamental concepts are known, new languages are easier

to learn (recognize same principles as incorporated in the new
language).

–  Example:
•  Knowing the concepts of Object Oriented Programming (OOP)

makes learning Java significantly easier.
•  Knowing the grammar of your native language makes it easier

to learn another language.

10
Lecture 01

Reasons for studying concepts of PLs

•  Better understanding of significance of implementation:
–  Example: a small subprogram that is called very frequently can be

a highly inefficient design choice.
–  More details can be learned by studying compiler design.

•  Better use of languages that are already known.

•  Overall advancement of computing:
–  Algol 60 vs. Fortran.

11
Lecture 01

Outline

•  Reasons for Studying Programming Languages

•  Influences on Language Design

•  Language Paradigms

•  Implementation Methods

•  Overview of Compilation

12
Lecture 01

Influences on Language Design

•  Computer Architecture:
–  Languages are developed around the prevalent computer

architecture, known as the von Neumann architecture.

•  Programming Methodologies:
–  New software development methodologies (e.g., object-oriented

software development) led to new programming paradigms and by
extension, to new programming languages.

•  Application Domains:
–  Scientific, Artificial Intelligence, Business, Systems, Web, …

13
Lecture 01

Influences: Computer Architecture

•  Most prevalent computer architecture: Von Neumann
•  Imperative languages, most dominant, because of von

Neumann computers:
–  Data and programs stored in memory
–  Memory is separate from CPU
–  Instructions and data are piped from memory to CPU
–  Basis for imperative languages:

•  Variables model memory cells
•  Assignment statements model piping
•  Iteration is efficient

14
Lecture 01

Von Neumann Architecture

15
Lecture 01

Von Neumann Architecture

•  Fetch-execute-cycle (on a von Neumann architecture
computer)

initialize the program counter

repeat forever
 fetch the instruction pointed by the counter
 increment the counter

 decode the instruction

 execute the instruction

end repeat

16
Lecture 01

Von Neumann Bottleneck

•  Connection speed between a computer’s memory and its
processor determines the speed of a computer.

•  Program instructions often can be executed much faster
than the speed of the connection; the connection speed thus
results in a bottleneck.

•  Known as the von Neumann bottleneck; it is the primary
limiting factor in the speed of computers

17
Lecture 01

Influences: Programming Methodologies

•  1950s and early 1960s: Simple applications; worry about
machine efficiency

•  Late 1960s: People efficiency became important;
readability, better control structures
–  structured programming
–  top-down design and step-wise refinement

•  Late 1970s: Process-oriented to data-oriented design
–  abstract data types (Simula 67)

•  Middle 1980s: Object-oriented programming
–  data abstraction + inheritance + polymorphism
–  Smaltalk, Ada 95, C++, Java, CLOS, Prolog++

18
Lecture 01

Influences: Application Domains

•  Scientific applications
–  Large numbers of floating point computations; extensive use of

arrays
–  Fortran, Matlab

•  Business applications
–  Produce reports, use decimal numbers and characters
–  COBOL

•  Artificial intelligence
–  Symbols rather than numbers manipulated; use of linked lists

•  LISP
–  Lately, many AI applications (e.g. statistical or connectionist

approaches) are written in Java, C++, Python.

19
Lecture 01

Influences: Application Domains

•  Systems programming:
–  Need efficiency because of continuous use.
–  C (UNIX almost entirely written in C).

•  Web Software:
–  Eclectic collection of languages:

•  markup (e.g., XHTML).
•  scripting for dynamic content:

–  client side, using scripts embedded in the XHTML
document. Examples: Javascript, PHP.

–  server side, using the Common Gateway Interface.
Examples: JSP, ASP, PHP.

•  general-purpose, executed on the Web server through CGI.
Example: Java, C++, …

20

Lecture 01

Is there value in knowing multiple languages?

•  To have a second language is to have a second soul.
»  Charlemagne, Holy Roman Emperor

•  A man who knows four languages is worth four men.
»  Charles V, Holy Roman Emperor

21
Lecture 01

[Lera Boroditsky’s presentation]

Is there value in knowing multiple languages?

•  To have a second language is to have a second soul.
»  Charlemagne, Holy Roman Emperor

•  A man who knows four languages is worth four men.
»  Charles V, Holy Roman Emperor

•  I speak English to my accountants, French to my
ambassadors, Italian to my mistress, Latin to my God, and
German to my horse.

»  Frederick the Great of Prussia

22
Lecture 01

[Lera Boroditsky’s presentation]

Is there value in knowing multiple languages?

•  I speak English to my accountants, French to my
ambassadors, Italian to my mistress, Latin to my God, and
German to my horse.

»  Frederick the Great of Prussia

•  I speak Matlab to my applied mathematician, Cobol to my
accountant, C to my device driver writer, PHP to my web
designer, Java to myself, …

»  CS3200 instructor, early 21st century

23
Lecture 01

Is there value in knowing multiple languages?

•  The ability to speak several languages is an asset, but the
ability to keep your mouth shut in one language is
priceless.

»  Anonymous

•  Drawing on my fine command of language, I said nothing.
»  Robert Benchley

•  A distinguished diplomat could hold his tongue in ten
languages.

»  Anonymous

24
Lecture 01

Outline

•  Reasons for Studying Programming Languages

•  Influences on Language Design

•  Language Paradigms

•  Implementation Methods

•  Overview of Compilation

25
Lecture 01

Implementation Methods

•  Compilation:
–  Programs are translated into machine language & system calls.

•  Interpretation:
–  Programs are interpreted by another program – an interpreter.

•  Hybrid:
–  Programs are translated into an intermediate language that allows

easy interpretation.

•  Just-in-Time:
–  Hybird + compile subprograms’ code the first time they are called.

26
Lecture 01

Compilation

•  Translates high-level program (source language) into
equivalent target program (target language):
–  machine code, assembly code, byte-code, or high level language.

27
Lecture 01

Interpretation

•  Interpreter usually implemented as a read-eval-print loop:
–  read expression in the input language (usually translating it in

some internal form).
–  evaluates the internal form of the expression.
–  print the result of the evaluation.
–  loops and reads the next input expression until exit.

28
Lecture 01

Interpretation vs. Compilation

•  Greater flexibility and better diagnostics:
–  run-time errors are immediately displayed.
–  excellent source-level debuggers.
–  can easily cope with languages that generate and execute code

dynamically.

•  Slower execution.
–  Often also requires more memory space.

•  Now rare for traditional high-level languages.
–  Significant comeback with some Web scripting languages (e.g.,

JavaScript, PHP).

29
Lecture 01

Hybrid Implementation

•  A compromise between compilers and pure interpreters.
•  A high-level language program is translated to an

intermediate language that allows easy interpretation.
 ⇒ Faster than pure interpretation.

30
Lecture 01

Just-in-Time Implementation

•  Initially translate programs to an intermediate language.
•  Then compile the intermediate language of the

subprograms into machine code when they are called.
•  Machine code version is kept for subsequent calls.

•  JIT systems are widely used for Java programs:
–  byte-code as intermediate language.

•  .NET languages (C#) are implemented with a JIT system:
–  .NET Common Intermediate Language (CIL).

31
Lecture 01

Linking

•  The process of collecting system program units and other
user libraries and “linking” them to a user program.

32
Lecture 01

Preprocessors

•  Preprocessor is run before compiler:
–  Removes comments.
–  Expands macros, commonly used to:

•  specify that code from another file is to be
included;

•  define simple expressions/functions.

•  C preprocessor:
–  expands #include, #define, and similar

macros.
–  deletes portions of code ⇒ conditional compilation.

33
Lecture 01

Layered Interface of Virtual Computers

34
Lecture 01

Outline

•  Reasons for Studying Programming Languages

•  Influences on Language Design

•  Language Paradigms

•  Implementation Methods

•  Overview of Compilation

35
Lecture 01

Sample Program: GCD

36
Lecture 01

int main() {
 int i = getint(), j = getint();
 while (i != j) {
 if (i > j) i = i - j;
 else j = j - i;
 }
 putint(i);
}

Phases of Compilation

37
Lecture 01

Lexical Analysis

•  Groups characters into tokens, the smallest meaningful
units of the program.

38
Lecture 01

int main () {
int i = getint () , j = getint () ;
while (i != j) {
if (i > j) i = i - j ;
else j = j - i ;
}
putint (i) ;
}

Phases of Compilation

39
Lecture 01

Syntactic Analysis

•  Organizes tokens into a parse tree that represents higher-
level constructs in terms of their constituents:
–  Potentially recursive rules known as context-free grammar define

the ways in which these constituents combine.

40
Lecture 01

iteration-statement → while (expression) statement

statement → compound-statement
compound-statement → { block-item-list opt }

block-item-list opt → block-item-list
block-item-list opt → ϵ

block-item-list → block-item
block-item-list → block-item-list block-item
block-item → declaration
block-item → statement

Parse Tree (Concrete Syntax Tree)

41
Lecture 01

next slide

A

B

Parse Tree (continued)

42
Lecture 01

Parse Tree (continued)

43
Lecture 01

A B

Phases of Compilation

44
Lecture 01

Semantic Analysis

•  Enforces rules that pertain to the meaning of the program:
–  Static Semantics:

•  identifiers declared before used.
•  identifier used in appropriate context.
•  subroutine calls provide correct number and type of arguments.
•  labels in different switch clauses are distinct constants.

–  Dynamic Semantics:
•  variables should be given a value before being used.
•  pointers are dereferenced only if they point to valid objects.
•  array subscript expressions are within the bounds of the array.
•  arithmetic operations do not overflow.

45
Lecture 01

Syntax Tree (Abstract Syntax Tree)

46
Lecture 01

Phases of Compilation

47
Lecture 01

Target Code Generation & Improvement

•  Using the annotated syntax tree as intermediate form:
–  traverse the symbol table to assign locations to variables.
–  traverse the syntax tree, generating:

•  loads and stores for variable references.
•  arithmetic operations, tests, and branches.

–  see Figure 1.6 in PLP.

•  Code Improvement:
–  keep local variables in registers, instead of locations on the stack.
–  see Example 1.2 in PLP.

48
Lecture 01

Outline

•  Reasons for Studying Programming Languages

•  Influences on Language Design

•  Language Paradigms

•  Implementation Methods

•  Overview of Compilation

49
Lecture 01

Language Paradigms

•  Imperative (Turing Machines – Alan Turing, 1912-1954)
–  Designed around the von Neumann architecture.
–  Computation is performed through statements that change a

program’s state.
–  Central features are variables, assignment statements, and iteration;

sequencing of commands, explicit state update via assignment.
–  May include :

•  OO programming languages,
•  scripting languages,
•  visual languages.

–  Examples: Fortran, Algol, Pascal, C/C++, Java, Perl, JavaScript,
Visual BASIC .NET

50
Lecture 01

Language Paradigms

•  Functional (Lambda Calculus – Alonzo Church, 1903-1995)
–  Main means of making computations is by applying functions to

given parameters.
–  Examples: LISP, Scheme, ML, Haskell
–  May include OO concepts.

•  Logic (Predicate Calculus – Gotlob Frege, 1848-1925)
–  Rule-based (rules are specified in no particular order).
–  Computations are made through a logical inference process.
–  Example: Prolog, CLIPS.
–  May include OO concepts.

51
Lecture 01

Summary

•  The study of programming languages is valuable for a
number of reasons:
–  Increase our capacity to use different constructs.
–  Enable us to choose languages more intelligently.
–  Makes learning new languages easier.

•  Major influences on language design:
–  machine architecture.
–  software development methodologies.
–  application domains.

•  Major implementation methods:
–  compilation, pure interpretation, hybrid, and just-in-time.

52
Lecture 01

Criteria for Language Evaluation

•  Readability: the ease with which programs can be read
and understood.

•  Writability: the ease with which a language can be used to
create programs.

•  Reliability: conformance to specifications (e.g. program
correctness).

•  Cost: the ultimate total cost associated with a PL.

53
Lecture 01

Readibility

•  Overall simplicity
–  A manageable set of basic features and constructs.
–  Minimal feature multiplicity.

•  Example: increment operators in C
–  Minimal operator overloading.

•  Example: C++ vs. Java

•  Orthogonality
–  A relatively small set of primitive constructs that can be combined

in a relatively small number of ways.
•  Example: addition in assembly on IBM mainframe vs. VAX

minicomputers.
–  Every possible combination is legal

•  Example: returning arrays & records in C.

54
Lecture 01

Readibility

•  Control statements
–  The presence of well-known control structures

•  Example: goto in Fortran & Basic vs. for/while loops in C.

55
Lecture 01

i = 0;
loop1:
 if (i >= 10)
 goto out1;
loop2:
 if (j >= 10)
 goto out2;
 A[i,j] = 1;
 j++;
 goto loop2;
out2:
 i++;
 j = 0;
 goto loop1;
out1:

“Goto” Version: “For” Version:

?

Readibility

•  Data types and structures
–  Adequate predefined data types and structures

•  Example: Boolean vs. Integer
–  The presence of adequate facilities for defining data structures

•  Example: array of structs vs. collection of arrays (C).

•  Syntactic design:
–  Identifier forms (allow long names).
–  Special words and methods of forming compound statements.
–  Form and meaning:

•  self-descriptive constructs, meaningful keywords.
–  static keyword in C has context dependent meaning.

56
Lecture 01

Criteria for Language Evaluation

•  Readability: the ease with which programs can be read
and understood.

•  Writability: the ease with which a language can be used to
create programs.

•  Reliability: conformance to specifications (e.g. program
correctness).

•  Cost: the ultimate total cost associated with a PL.

57
Lecture 01

Writability

•  Simplicity and orthogonality
–  Few constructs, a small number of primitives, a consistent, small

set of rules for combining them (avoid misuse or disuse of
features).

•  Support for abstraction
–  The ability to define and use complex structures or operations in

ways that allow details to be ignored
–  Process Abstraction (e.g. sorting algorithm implemented as a

subprogram)
–  Data Abstraction (e.g. trees & lists in C++/Java vs. Fortran77).

58
Lecture 01

Writability

•  Expressivity
–  A set of relatively convenient ways of specifying operations.
–  Strength and number of operators and predefined functions.
–  Examples:

•  Increment operators in C.
•  Short circuit operators in Ada.
•  Counting loops with for vs. while in Java.

59
Lecture 01

Criteria for Language Evaluation

•  Readability: the ease with which programs can be read
and understood.

•  Writability: the ease with which a language can be used to
create programs.

•  Reliability: conformance to specifications (e.g. program
correctness).

•  Cost: the ultimate total cost associated with a PL.

60
Lecture 01

Reliability

•  Type checking
–  Testing for type errors at compile-time vs. run-time.
–  Examples:

•  (+) Ada, Java, C#, C++.
•  (−) C.

•  Exception handling
–  Intercept run-time errors, take corrective measures and continue.
–  Examples:

•  (+) Ada, C++, Java.
•  (−) Fortran, C.

61

Lecture 01

Reliability

•  Aliasing
–  Presence of two or more distinct referencing methods for the same

memory location:
•  Pointers in C, references in C++.

•  Readability and writability
–  A language that does not support “natural” ways of expressing an

algorithm will require the use of “unnatural” approaches (less
safe), and hence reduced reliability.

62
Lecture 01

Criteria for Language Evaluation

•  Readability: the ease with which programs can be read
and understood.

•  Writability: the ease with which a language can be used to
create programs.

•  Reliability: conformance to specifications (e.g. program
correctness).

•  Cost: the ultimate total cost associated with a PL.

63
Lecture 01

Cost

•  Training programmers to use the language.
•  Writing programs (closeness to particular applications).
•  Compiling programs:

–  Tradeoff between compile vs. execution time through optimization.
•  Executing programs:

–  Example: many run-time type checks slow the execution (Java).
•  Language implementation system:

–  Availability of free compilers.
•  Reliability: poor reliability leads to high costs.
•  Maintaining programs:

–  Corrections & adding new functionality.

64
Lecture 01

Other Criteria

•  Portability
–  The ease with which programs can be moved from one

implementation to another (helped by standardization).

•  Generality
–  The applicability to a wide range of applications.

•  Well-definedness
–  The completeness and precision of the language’s official

definition.

65
Lecture 01

Trade-offs in Language Design

•  Reliability vs. cost of execution
–  Example: Java demands all references to array elements be

checked for proper indexing, which leads to increased execution
costs

•  Readability vs. writability

Example: APL provides many powerful operators (and a large
number of new symbols), allowing complex computations to be
written in a compact program but at the cost of poor readability.

•  Writability (flexibility) vs. reliability

–  Example: C++ pointers are powerful and very flexible but are
unreliable.

66
Lecture 01

