
Organization of Programming Languages
CS320/520N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 02

A Brief History of Programming Languages

• Assembly languages
• IBM 704 and Fortran – FORmula TRANslation
• LISP – LISt Processing
• ALGOL 60 – International Algorithmic Language
• Simula 67 – first object oriented language
• Ada – history’s largest design effort
• C++ – Combining Imperative and Object-Oriented Features
• Java – An Imperative-Based Object-Oriented Language
• Prolog – Logic Programming

2
Lecture 02

Assembly Languages

• Invented by machine designers in early 1950s.
• Machine code is tedious and error-prone.

– Poor readability.
– Poor modifiability.

• Shift from machine code to mnemonics.
• First occurrencs of reusable macros & subroutines.

3
Lecture 02

Machine Code (Intel Core2 Quad CPU)

4
Lecture 02

55
4889E5
897DEC
C745FC01
C745F802
EB0E
8B45FC
0FAF45F8
8945FC
8345F801
8B45F8
3B45EC
7CEA
8B45FC
C9
C3

int factorial (int n)
{

int result = 1;
int i;
for (i = 2; i <= n; i++)

result = result ∗ i;

return result;
}

> gcc –c –g –Wa,–aln=factorial.s –c factorial.c

Assembly (Intel Core2 Quad CPU)

5
Lecture 02

.LFB2:
pushq %rbp

.LCFI0:
movq %rsp, %rbp

.LCFI1:
movl %edi, -20(%rbp)
movl $1, -4(%rbp)
movl $2, -8(%rbp)
jmp .L2

.L3:
movl -4(%rbp), %eax
imull -8(%rbp), %eax
movl %eax, -4(%rbp)
addl $1, -8(%rbp)

.L2:
movl -8(%rbp), %eax
cmpl -20(%rbp), %eax
jle .L3
movl -4(%rbp), %eax
leave
ret

> gcc –S factorial.c
> gcc –c –g –Wa,–a,–ad factorial.c

Fortran 0

• Designed by John Backus at IBM in the early 1950’s
• First widely accepted compiled high-level language:

– Designed for the new IBM 704, which had index registers and
floating point hardware.

– This led to the idea of compiled programming languages, because
there was no place to hide the cost of interpretation (no need for
floating-point software).

• Design influenced by environment:
– Computers were expensive, slow, with small memory.
– Primary use of computers was for scientific applications.
– No existing efficient way to program computers.

6
Lecture 02

Fortran I

• First implemented version of Fortran (1957, 18 worker years
of effort):
– Names could have up to six characters.
– Post-test counting loop (DO).
– Formatted I/O.
– No dynamic memory allocation.
– User-defined subprograms (separate compilation added in Fortran II).
– Three-way selection statement (IF).
– No data typing statements (I,J,K,L,M,N integers, rest floating point).
– Code was very fast => quickly became widely used.

7
Lecture 02

Evolution of Fortran

• Fortran IV, 77, 90, 95, 2003:
– Explicit type declarations for variables.
– Subprograms as parameters.
– Character string handling
– Logical loop control statements
– Dynamic arrays, records, pointers
– Multiple selection statement
– Modules, recursive subprograms
– Parametrized data types
– Support for OOP
– Procedure pointers, interoperability with C.

8
Lecture 02

Factorial in Fortran

9
Lecture 02

function fact(n)
integer fact, n, p
p = 1
do i = 2, n

p = p * i
end do
fact = p

end

program demo_factorial
integer fact, n
print *, “n = “
read *, n
print *, n, “! = ", fact(n)

end

LISP

• Designed by John McCarthy at MIT in the late 1950s.
• Design influenced by AI applications:

– Symbolic computation (rather than numeric).
• Ex: differentiation of algebraic expressions.
• Ex: Advice taker.

– Process data in lists (rather than arrays):
• Dynamically allocated linked lists.
• Implicit deallocation of abandoned lists.

• Implemented on IBM 704.

10
Lecture 02

“Pure” LISP

• Purely functional language:
– No need for variables, assignment, or iteration (loops).
– Control via recursion and conditional expressions.
– Syntax is based on lambda calculus.

• Only two data types: Atoms and Lists.
– Atoms are either symbols (identifiers) or numeric literals.
– Two basic list operations: CAR and CDR

11

(defun factorial (n)
(if (<= n 1)

1
(∗ n (fact (− n 1)))))

Lists

12
Lecture 02

(A B C D) and (A (B C) D (E (F G)))

Related Functional Languages

• Scheme (MIT mid-1970s):
– Small size, simple syntax and semantics.
– Exclusive use of static scoping.
– Functions are first class entities.

• Common Lisp, Miranda, Haskell, ML.

13
Lecture 02

(define fact
(lambda (n)

(if (<= n 1)
1
(∗ n (fact (− n 1))))))

Algol

• International Algorithmic Language.
• Designed by IFIP working group in 1958-1960:

– John Backus, Peter Naur, John McCarthy, Alan Perlis & others.
– Syntax specified formally using the Backus-Naur Form (BNF).

• Goals:
– Universal language for communicating algorithms.
– Portable, machine independent.
– Close to mathematical notation.
– Must be translatable to machine code.

14
Lecture 02

Algol 58

• Concept of type was formalized (explicit variable type declarations)
• Names could be any length
• Arrays could have any number of dimensions
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator, assignment operator was :=
• if had an else-if clause
• No I/O - “would make it machine dependent”

15
Lecture 02

Algol 60

• New features:
– Block structure (local scope).
– Two parameter passing methods.
– Recursive subprograms.
– Stack-dynamic arrays.

– Still no I/O and no string handling.

16
Lecture 02

Algol 60

• Successes:
– It was the standard way to publish algorithms for over 20 years.
– First machine-independent language.
– First language whose syntax was formally defined (BNF).
– Significant influence on all of today’s modern languages:

• Pascal, Modula, Ada, C, C++ & Java are direct descendants.
• Scheme adopted lexical scoping from Algol.

17
Lecture 02

Algol 60

• Failures:
– Never widely used, especially in U.S.
– Reasons:

• Lack of I/O and the character set made programs non-portable.
• Too flexible => hard to implement.
• Entrenchment of Fortran.
• Formal syntax description.
• Lack of support from IBM.

18
Lecture 02

Simula 67

• Designed by Kristen Nygaard and Ole-Johan Dahl at NCC.
• Superset of Algol 60, for simulations.
• Innovations:

– Coroutines (subprograms that restart at the position where they
previously stopped).

– First OOP language:
• Classes (package data structure with manipulating routines).
• Objects as class instances (local data & code executed at

creation).
• Inheritance, virtual methods.

19
Lecture 02

Simula 67

• Influenced all subsequent OO programming languages:
– Smalltalk
– Objective-C
– C++
– Eiffel
– Modula 3
– Self
– C#
– CLOS

20
Lecture 02

Ada

• Designed for DoD as a high-level language for embedded
systems applications:

• Huge design effort, involving hundreds of people, much
money, and about eight years.
– Strawman requirements (April 1975)
– Woodman requirements (August 1975)
– Tinman requirements (1976)
– Ironman equipments (1977)
– Steelman requirements (1978)

• Named Ada after Augusta Ada Byron, the first
programmer

21
Lecture 02

Ada

• Major Contributions:
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the rendezvous synchronization model

• Comments:
– Competitive design
– Included all that was then known about software engineering and

language design
– First compilers were very difficult; the first really usable compiler

came nearly five years after the language design was completed

22
Lecture 02

Ada 95

• Ada 95 (began in 1988):
– Support for OOP through type derivation.
– Better control mechanisms for shared data.
– New concurrency features.
– More flexible libraries.

• Popularity suffered because the DoD no longer requires its
use but also because of popularity of C++.

23
Lecture 02

Factorial in Ada

24
Lecture 02

procedure demo_factorial is
function factorial (n: Integer) return Integer is
begin

if n <= 1 then
return 1;

else
return n * factorial(n – 1);

end if;
end factorial;

n: Integer;
begin

get(n);
put(factorial(n));

end demo_factorial;

C: A Portable Systems Language

• Designed by Dennis Ritchie at Bell Labs in 1972.
• Designed for systems programming:

– the development of an OS and its utilities.
– first Unix written in assembly language.
– B was first high-level language on UNIX (Ken Thompson, 1970)
– C was developed as a typed language based on B:

• int i, *pi, *ppi;
• int f(), *f(), *(*pf)();
• int *api[10], (*pai)[10];
• syntax influenced by Algol 68.
• also added structs & unions.

25
Lecture 02

C: A Portable Systems Language

• Standardization:
– K&R book published in 1983.
– ANSI C standard in 1989 (C89).

• C++ like function prototypes, const & volatile keywords, …
– ISO 9899:1999 (C99)

• C++ like decls, inline functions, bools, variable arrays & more.

• Used as a portable assembly language:
– Early C++, Modula 3, and Eiffel were translaed to C.

• C compilers available for all kinds of architectures:
– GNU gcc for more than 70 instruction set architectures.

26
Lecture 02

C++: Combining Imperative and OO
Programming

• Developed by Bjarne Stroustrup at Bell Labs in 1980.

• Backward compatible with C:
– Easy to link C++ code with C code.

• Facilities for OOP related to Simula 67 & Smalltalk:
– Derived classes & inheritance (1983).
– Virtual methods, overloaded methods & operators (1984).
– Multiple inheritance, abstract classes (1989).
– Templates, exception handling (ISO 1998).

27
Lecture 02

C++: Combining Imperative and OO
Programming

• Large & complex language:
– Supports both procedural and OO programming through functions

& methods.

• Very popular:
– Availability of good & inexpensive compilers.
– Suitable for large commercial software projects.

• Microsoft’s version (released with .NET in 2002):
– No multiple inheritance, references for garbage collected objects,

…

28
Lecture 02

Java: An Imperative-Based OO Language

• Developed by a team headed by James Gosling at Sun in
the early 1990s
– C and C++ were not satisfactory for embedded electronic devices.

• Based on C++:
– Significantly simplified:

• no struct,union,enum.
• no pointer arithmetic.
• eliminated half of the assignment coercions of C++ .
• no multiple inheritance, no operator overloading.

– Supports only OOP (e.g. no stand-alone subprograms).
– All objects allocated on the heap & garbage collected.

29
Lecture 02

Java: An Imperative-Based OO Language

• Very successful:
– Eliminated many unsafe features of C++ ⇒ simpler, safer design.
– Supports concurrency (threads, synchronized methods).
– Libraries for applets, GUIs, database access.
– Portable:

• Java Virtual Machine concept, JIT compilers.
– Widely used for Web programming.
– Use increased faster than any previous language.

• Java 5.0:
– Enumeration class, generics, new iteration construct.

30
Lecture 02

Prolog: Logic Programming

• Developed, by Colmerauer and Roussel (University of
Aix-Marseille), with help from Kowalski (University of
Edinburgh) in the early 1970s.

• Non-procedural language:
– describe What as opposed to How.
– notation based on predicate calculus (Horn clauses).
– Inference method based on resolution (Robinson 1965).

• Highly inefficient relative to equivalent imperative progs.
• Small application areas in AI and DBMS.

31
Lecture 02

Prolog: Logic Programming

• Program = a collections of statements:
– Facts:

• mother(joanne, jake); father(vern, joanne)
– Rules:

• parent(X,Y) :- mother(X,Y).
• parent(X,Y) :- father(X,Y).
• grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

– Queries:
• grandparent(X,jake).

32
Lecture 02

Factorial in Prolog

33
Lecture 02

factorial(0,1).

factorial(1,1).

factorial(N,M) :- N1 is N – 1,
factorial(N1,M1),
M is N*M1.

Scripting Languages for the Web

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun

Microsystems
– A client-side HTML-embedded scripting language, often used to create dynamic

HTML documents
– Purely interpreted
– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form processing

and database access through the Web
– Purely interpreted

• Python
– multiparadigm scripting language:

• imperative
• functional
• object oriented

– Used for CGI programming and form processing

34
Lecture 02

	Organization of Programming Languages�CS320/520N
	A Brief History of Programming Languages
	Assembly Languages
	Machine Code (Intel Core2 Quad CPU)
	Assembly (Intel Core2 Quad CPU)
	Fortran 0
	Fortran I
	Evolution of Fortran
	Factorial in Fortran
	LISP
	“Pure” LISP
	Lists
	Related Functional Languages
	Algol
	Algol 58
	Algol 60
	Algol 60
	Algol 60
	Simula 67
	Simula 67
	Ada
	Ada
	Ada 95
	Factorial in Ada
	C: A Portable Systems Language
	C: A Portable Systems Language
	C++: Combining Imperative and OO Programming
	C++: Combining Imperative and OO Programming
	Java: An Imperative-Based OO Language
	Java: An Imperative-Based OO Language
	Prolog: Logic Programming
	Prolog: Logic Programming
	Factorial in Prolog
	Scripting Languages for the Web

