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A Brief History of Programming Languages

• Assembly languages
• IBM 704 and Fortran – FORmula TRANslation
• LISP – LISt Processing
• ALGOL 60 – International Algorithmic Language
• Simula 67 – first object oriented language
• Ada – history’s largest design effort
• C++ – Combining Imperative and Object-Oriented Features
• Java – An Imperative-Based Object-Oriented Language
• Prolog – Logic Programming
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Assembly Languages

• Invented by machine designers in early 1950s.
• Machine code is tedious and error-prone.

– Poor readability.
– Poor modifiability.

• Shift from machine code to mnemonics.
• First occurrencs of reusable macros & subroutines.
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Machine Code (Intel Core2 Quad CPU)
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55
4889E5
897DEC
C745FC01
C745F802
EB0E
8B45FC
0FAF45F8
8945FC
8345F801
8B45F8
3B45EC
7CEA
8B45FC
C9
C3

int factorial (int n)
{

int result = 1;
int i;
for (i = 2; i <= n; i++)

result = result ∗ i;

return result;
}

> gcc –c –g –Wa,–aln=factorial.s –c factorial.c



Assembly (Intel Core2 Quad CPU) 
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.LFB2:
pushq %rbp

.LCFI0:
movq %rsp, %rbp

.LCFI1:
movl %edi, -20(%rbp)
movl $1, -4(%rbp)
movl $2, -8(%rbp)
jmp .L2

.L3:
movl -4(%rbp), %eax
imull -8(%rbp), %eax
movl %eax, -4(%rbp)
addl $1, -8(%rbp)

.L2:
movl -8(%rbp), %eax
cmpl -20(%rbp), %eax
jle .L3
movl -4(%rbp), %eax
leave
ret

> gcc –S factorial.c
> gcc –c –g –Wa,–a,–ad factorial.c



Fortran 0

• Designed by John Backus at IBM in the early 1950’s
• First widely accepted compiled high-level language:

– Designed for the new IBM 704, which had index registers and 
floating point hardware.

– This led to the idea of compiled programming languages, because 
there was no place to hide the cost of interpretation (no need for 
floating-point software).

• Design influenced by environment:
– Computers were expensive, slow, with small memory.
– Primary use of computers was for scientific applications.
– No existing efficient way to program computers.
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Fortran I

• First implemented version of Fortran (1957, 18 worker years 
of effort):
– Names could have up to six characters.
– Post-test counting loop (DO).
– Formatted I/O.
– No dynamic memory allocation.
– User-defined subprograms (separate compilation added in Fortran II).
– Three-way selection statement (IF).
– No data typing statements (I,J,K,L,M,N integers, rest floating point).
– Code was very fast => quickly became widely used.

7
Lecture 02



Evolution of Fortran

• Fortran IV, 77, 90, 95, 2003:
– Explicit type declarations for variables.
– Subprograms as parameters.
– Character string handling
– Logical loop control statements
– Dynamic arrays, records, pointers
– Multiple selection statement
– Modules, recursive subprograms
– Parametrized data types
– Support for OOP
– Procedure pointers, interoperability with C.
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Factorial in Fortran
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function fact(n)
integer fact, n, p
p = 1
do i = 2, n

p = p * i
end do
fact = p

end

program demo_factorial
integer fact, n
print *, “n = “
read *, n
print *, n, “! = ", fact(n)

end 



LISP

• Designed by John McCarthy at MIT in the late 1950s.
• Design influenced by AI applications:

– Symbolic computation (rather than numeric).
• Ex: differentiation of algebraic expressions.
• Ex: Advice taker.

– Process data in lists (rather than arrays):
• Dynamically allocated linked lists.
• Implicit deallocation of abandoned lists.

• Implemented on IBM 704.
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“Pure” LISP

• Purely functional language:
– No need for variables, assignment, or iteration (loops).
– Control via recursion and conditional expressions.
– Syntax is based on lambda calculus.

• Only two data types: Atoms and Lists.
– Atoms are either symbols (identifiers) or numeric literals.
– Two basic list operations: CAR and CDR

11

(defun factorial (n)
(if  (<= n 1)

1
(∗ n (fact (− n 1)))))



Lists
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(A B C D) and (A (B C) D (E (F G)))



Related Functional Languages

• Scheme (MIT mid-1970s):
– Small size, simple syntax and semantics.
– Exclusive use of static scoping.
– Functions are first class entities.

• Common Lisp, Miranda, Haskell, ML.
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(define fact
(lambda (n)

(if  (<= n 1) 
1
(∗ n (fact (− n 1))))))



Algol

• International Algorithmic Language.
• Designed by IFIP working group in 1958-1960:

– John Backus, Peter Naur, John McCarthy, Alan Perlis & others.
– Syntax specified formally using the Backus-Naur Form (BNF).

• Goals:
– Universal language for communicating algorithms.
– Portable, machine independent.
– Close to mathematical notation.
– Must be translatable to machine code.
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Algol 58

• Concept of type was formalized (explicit variable type declarations) 
• Names could be any length
• Arrays could have any number of dimensions
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator, assignment operator was :=
• if had an else-if clause
• No I/O - “would make it machine dependent”
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Algol 60

• New features:
– Block structure (local scope).
– Two parameter passing methods.
– Recursive subprograms.
– Stack-dynamic arrays.

– Still no I/O and no string handling.
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Algol 60

• Successes:
– It was the standard way to publish algorithms for over 20 years.
– First machine-independent language.
– First language whose syntax was formally defined (BNF).
– Significant influence on all of today’s modern languages:

• Pascal, Modula, Ada, C, C++ & Java are direct descendants.
• Scheme adopted lexical scoping from Algol.
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Algol 60

• Failures:
– Never widely used, especially in U.S.
– Reasons:

• Lack of I/O and the character set made programs non-portable.
• Too flexible => hard to implement.
• Entrenchment of Fortran.
• Formal syntax description.
• Lack of support from IBM.
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Simula 67

• Designed by Kristen Nygaard and Ole-Johan Dahl at NCC.
• Superset of Algol 60, for simulations.
• Innovations:

– Coroutines (subprograms that restart at the position where they 
previously stopped).

– First OOP language:
• Classes (package data structure with manipulating routines).
• Objects as class instances (local data & code executed at 

creation).
• Inheritance, virtual methods.
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Simula 67

• Influenced all subsequent OO programming languages:
– Smalltalk
– Objective-C
– C++
– Eiffel
– Modula 3
– Self
– C#
– CLOS
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Ada

• Designed for DoD as a high-level language for embedded 
systems applications:

• Huge design effort, involving hundreds of people, much 
money, and about eight years.
– Strawman requirements (April 1975)
– Woodman requirements (August 1975)
– Tinman requirements (1976)
– Ironman equipments (1977)
– Steelman requirements (1978)

• Named Ada after Augusta Ada Byron, the first 
programmer
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Ada

• Major Contributions:
– Packages - support for data abstraction
– Exception handling - elaborate 
– Generic program units
– Concurrency - through the rendezvous synchronization model

• Comments:
– Competitive design
– Included all that was then known about software engineering and 

language design
– First compilers were very difficult; the first really usable compiler 

came nearly five years after the language design was completed
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Ada 95

• Ada 95 (began in 1988):
– Support for OOP through type derivation.
– Better control mechanisms for shared data.
– New concurrency features.
– More flexible libraries.

• Popularity suffered because the DoD no longer requires its 
use but also because of popularity of C++.
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Factorial in Ada
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procedure demo_factorial is
function factorial (n: Integer) return Integer is
begin

if n <= 1 then
return 1;

else
return n * factorial(n – 1);

end if;
end factorial;

n: Integer;
begin

get(n);
put(factorial(n));

end demo_factorial;



C: A Portable Systems Language

• Designed by Dennis Ritchie at Bell Labs in 1972.
• Designed for systems programming:

– the development of an OS and its utilities.
– first Unix written in assembly language.
– B was first high-level language on UNIX (Ken Thompson, 1970)
– C was developed as a typed language based on B:

• int i, *pi, *ppi;
• int f(), *f(), *(*pf)();
• int *api[10], (*pai)[10];
• syntax influenced by Algol 68.
• also added structs & unions.
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C: A Portable Systems Language 

• Standardization:
– K&R book published in 1983.
– ANSI C standard in 1989 (C89).

• C++ like function prototypes, const & volatile keywords, …
– ISO 9899:1999 (C99)

• C++ like decls, inline functions, bools, variable arrays & more.

• Used as a portable assembly language:
– Early C++, Modula 3, and Eiffel were translaed to C.

• C compilers available for all kinds of architectures:
– GNU gcc for more than 70 instruction set architectures.
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C++: Combining Imperative and OO 
Programming 

• Developed by Bjarne Stroustrup at Bell Labs in 1980.

• Backward compatible with C:
– Easy to link C++ code with C code.

• Facilities for OOP related to Simula 67 & Smalltalk:
– Derived classes & inheritance (1983).
– Virtual methods, overloaded methods & operators (1984).
– Multiple inheritance, abstract classes (1989).
– Templates, exception handling (ISO 1998).
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C++: Combining Imperative and OO 
Programming 

• Large & complex language:
– Supports both procedural and OO programming through functions 

&  methods.

• Very popular:
– Availability of good & inexpensive compilers.
– Suitable for large commercial software projects.

• Microsoft’s version (released with .NET in 2002):
– No multiple inheritance, references for garbage collected objects, 

…
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Java: An Imperative-Based OO Language

• Developed by a team headed by James Gosling at Sun in 
the early 1990s
– C and C++ were not satisfactory for embedded electronic devices.

• Based on C++:
– Significantly simplified:

• no struct,union,enum.
• no pointer arithmetic.
• eliminated half of the assignment coercions of C++ .
• no multiple inheritance, no operator overloading.

– Supports only OOP (e.g. no stand-alone subprograms).
– All objects allocated on the heap & garbage collected.
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Java: An Imperative-Based OO Language

• Very successful:
– Eliminated many unsafe features of C++ ⇒ simpler, safer design.
– Supports concurrency (threads, synchronized methods).
– Libraries for applets, GUIs, database access.
– Portable: 

• Java Virtual Machine concept, JIT compilers.
– Widely used for Web programming.
– Use increased faster than any previous language.

• Java 5.0:
– Enumeration class, generics, new iteration construct.
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Prolog: Logic Programming

• Developed, by Colmerauer and Roussel (University of 
Aix-Marseille), with help from Kowalski ( University of 
Edinburgh) in the early 1970s.

• Non-procedural language:
– describe What as opposed to How.
– notation based on predicate calculus (Horn clauses).
– Inference method based on resolution (Robinson 1965).

• Highly inefficient relative to equivalent imperative progs.
• Small application areas in AI and DBMS.
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Prolog: Logic Programming

• Program = a collections of statements:
– Facts: 

• mother(joanne, jake); father(vern, joanne)
– Rules:

• parent(X,Y) :- mother(X,Y).
• parent(X,Y) :- father(X,Y).
• grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

– Queries:
• grandparent(X,jake).
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Factorial in Prolog
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factorial(0,1).

factorial(1,1).

factorial(N,M) :- N1 is N – 1,
factorial(N1,M1),
M is N*M1.



Scripting Languages for the Web

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun 

Microsystems
– A client-side HTML-embedded scripting language, often used to create dynamic 

HTML documents
– Purely interpreted
– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form processing 

and database access through the Web
– Purely interpreted

• Python
– multiparadigm scripting language:

• imperative
• functional
• object oriented

– Used for CGI programming and form processing
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