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What is a programming language? 

•  A programming language is an artificial language 
designed for expressing algorithms on a computer: 
–  Need to express an infinite number of algorithms (Turing complete). 
–  Requires an unambiguous syntax, specified by a finite context free 

grammar. 
–  Should have a well defined compositional semantics for each 

syntactic construct: axiomatic vs. denotational vs. operational. 
–  Often requires a practical implementation i.e. pragmatics: 

•  Implementation on a real machine vs. virtual machine 
•  translation vs. compilation vs. interpretation. 
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Implementation Methods: Compilation 

•  Translate high-level program (source language) into 
machine code (machine language). 

•  Slow translation, fast execution. 
•  Compilation process has several phases:  

–  lexical analysis: converts characters in the source program into 
lexical units (e.g. identifiers, operators, keywords). 

–  syntactic analysis: transforms lexical units into parse trees which 
represent the syntactic structure of program. 

–  semantics analysis: check for errors hard to detect during 
syntactic analysis; generate intermediate code. 

–  code generation: machine code is generated. 
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Phases of Compilation 
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Lexical Analysis: Terminology 

•  An alphabet Σ is a set of characters. 
–  the English alphabet. 

•  A lexeme is a string of characters from Σ. 
–  index = count + 1; 

•  A token is a category of lexemes: 
–  index, count → identifier 
–  + → plus_operator 
–  1 → integer_literal 
–  ; → semicolon 

•  The lexical rules of a language specify which lexemes 
belong to the language, and their categories. 
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Syntactic Analysis: Terminology 

•  An alphabet Σ is a set of tokens. 
–  Σ = {identifier, plus_operator, integer_literal, … } 

•  A sentence S is a string of tokens from Σ (S∈Σ*). 
–  identifier equal identifier plus_operator integer_literal 

semicolon 

–  “index = count + 1;” is the original sequence of lexemes. 

•  A language L is a set of sentences (L⊆Σ*). 

•  The syntactic rules of a language specify which sentences 
belong to the language: 
–  if S∈L, then S is said to be well formed. 
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Generative Grammars 

•  Formal grammars were first studied by linguists: 
–  Panini (4th century BC): the earliest known grammar of Sanskrit. 
–  Chomsky (1950s): first formalized generative grammars. 

•  A grammar is tuple G = (Σ, N, P, S): 
–  A finite set Σ of terminal symbols. 

•  the tokens of a programming language. 
–  A finite set N of nonterminal symbols, disjoint from Σ. 

•  expressions, statements, type declarations in a PL. 
–  A finite set P of production rules. 

•  P : (Σ∪N)* N (Σ∪N)* → (Σ∪N)* 
–  A distinguished start symbol S∈N. 
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Generative Grammars 

•  The language L associated with a formal grammar G is the 
set of strings from Σ* that can be generated as follows: 
–  start with the start symbol S; 
–  apply the production rules in P until no more nonterminal symbols 

are present. 

•  Example: 
–  Σ = {a,b,c}, N={S,B} 
–  P consists of the following production rules: 

1.  S → aBSc 
2.  S → abc 
3.  Ba → aB 
4.  Bb → bb 
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Generative Grammars 

•  Production rules: 
1.  S → aBSc 
2.  S → abc 
3.  Ba → aB 
4.  Bb → bb 

•  Derivations of strings in the language L(G): 
–  S ⇒2 abc 
–  S ⇒1 aBSc ⇒2 aBabcc ⇒3 aaBbcc ⇒4 aabbcc 
–  S ⇒ … ⇒ aaabbbccc 

•  L(G) = {anbncn| n > 0} 
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Chomsky Hierarchy (1956) 

•  Type 0 grammars (unrestricted grammars) 
–  Includes all formal grammars. 

•  Type 1 grammars (context-sensitive grammars). 
–  Rules restricted to: αAβ→ αγβ, where A is a non-terminal, and α, 
β, γ strings of terminals and non-terminals. 

•  Type 2 grammars (context-free grammars). 
–  Rules restricted to A→ γ, where A is a non-terminal, and γ a string 

of terminals and non-terminals 

•  Type 3 grammars (regular grammars). 
–  Rules restricted to A → γ, where A is a non-terminal, and γ: 

•  the empty string, or a single terminal symbol followed 
optionally by a non-terminal symbol. 
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Context Free Grammars (Type 2) 

•  Example: 
–  Σ = {a,b}, N={S} 
–  P consists of the following production rules: 

1.  S → aSb 
2.  S → ε 

–  L(G) = ? 
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Regular Grammars (Type 3) 

•  Example: 
–  Σ = {a,b}, N={S,A,B} 
–  P consists of the following production rules: 

1.  S → aS 
2.  S → cB 
3.  B → bB 
4.  B → ε 

–  L(G) = ? 
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Lexical Analysis 

•  A lexical analyzer is a “front-end” for the syntactic parser: 
–  identifies substrings of the source program that belong together – 

lexemes. 
–  lexemes are categorized into lexical categories called tokens such 

as: keywords, identifiers, operators, numbers, strings, comments. 

•  The lexemes of a PL can be formally specified using: 
–  Regular Grammars. 
–  Regular Expressions. 
–  Finite State Automata. 
–  RE  ⇔ RG  ⇔ FSA (same generative power). 
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Lexical Analysis: Regular Expressions 

•  Operators: 
 “+”    { return (PLUS); } // PLUS = 201 
 “–”    { return (MINUS); } // MINUS = 202 
 “*”    { return (MULT); } // MULT = 203 
 “/”    { return (DIV); }  // DIV = 204 

•  Each keyword is associated a token definition: 
 “bool”    { return (BOOL); } // BOOL = 301 
 “break”    { return (BREAK); } // BREAK = 302 
 “case”    { return (CASE); } // CASE = 303 
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Lexical Analysis: Regular Expressions 

•  Identifiers: 
 [a–zA–Z_][a–zA–Z_0–9]*   { return (ID); } // ID = 200 

•  * is Kleene star and means zero or more. 
•  + means one or more 
•  . means any character. 
•  [^\t\n ] means any character other than whitespaces. 

•  Numbers: 
 [1–9][0–9]*    { return (DECIMALINT); } 
 0[0–7]*     { return (OCTALINT); } 
 (0x|0X)[0–9a–fA–F]+   { return (HEXINT); } 
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Lexical Analysis: Regular Expressions 

•  More meta-characters: 
–  | creates a disjunction of RE’s. 

•  if A and B are RE’s, A|B is an RE that will match either A or B. 
–  ( … ) matches whatever RE is inside the parantheses. 

•  indicates the start and end of a group 
•  | can be used inside groups. 

•  Regular expressions in Python through module re: 
–  http://docs.python.org/3/howto/regex.html 
–  http://docs.python.org/3/library/re.html 
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Lexical Analysis 

•  In practice, a scanner generator (e.g. Lex, Flex) reads 
such lexical definitions and automatically generates code 
for the lexical analyzer (scanner). 

•  The scanner is implemented as a deterministic Finite State 
Automaton (FSA). 

•  An FSA is an abstract state machine that can be used to 
recognize tokens from a stream of characters. 
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Syntax: Formal Specification using BNF 

•  Backus-Naur Form (BNF): 
–  Invented by John Backus to describe Algol 60. 
–  BNF is a metalanguage notation for Context Free Grammars, used 

for describing the syntax of programming languages. 
•  Nonterminals are abstractions for syntactic constructs in the 

language (e.g. expressions, statements, type declarations, etc.) 
–  Nonterminals are enclosed in angle brackets. 

•  Terminals are lexemes or tokens. 
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BNF 

•  Examples: 
–  <if_stmt> → if <logic_expr> then <stmt> 
–  <if_stmt> → if <logic_expr> then <stmt> else <stmt> 

•  The ‘|’ symbol is a logical operator used to specify 
multiple RHS in a production rule: 
–  <if_stmt> → if <logic_expr> then <stmt> 

  | if <logic_expr> then <stmt> else <stmt> 
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Recursive Productions 

•  Syntactic lists are described using recursion: 
    <ident_list> → ident 

                | ident , <ident_list> 

•  Simple expression grammar: 
 <expr> → <expr> + <expr> 
   | <expr> * <expr> 

   | a | b | c 
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Grammars & Derivations 

•  A Simple Grammar: 
 <program> → <stmts> 

 <stmts> → <stmt> | <stmt> ; <stmts> 

 <stmt> → <var> = <expr> 

 <var> → a | b | c | d 

 <expr> → <term> + <term> | <term> - <term> 
 <term> → <var> | const 

 

•  A derivation is a repeated application of rules, starting 
with the start symbol and ending with a sentence (a 
sequence of terminal symbols) 
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Grammars & Derivations 

•  An example (leftmost) derivation: 
 <program> => <stmts> => <stmt>  

                      => <var> = <expr>  

                      => a = <expr>  

                      => a = <term> + <term> 

                      => a = <var> + <term>  
                      => a = b + <term> 

                      => a = b + const 
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Derivations 

•  A string of symbols in a derivation is a sentential form. 
•  A sentence is a sentential form that has only terminal 

symbols. 
•  A leftmost derivation is one in which the leftmost 

nonterminal in each sentential form is the one that is 
expanded. 

•  A rightmost derivation is one in which the rightmost 
nonterminal in each sentential form is the one that is 
expanded. 

•  A derivation may be neither leftmost nor rightmost 
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Parse Trees 

•  Parse Tree = a hierarchical representation of a derivation. 

24 
Lecture 03 

<program> 

<stmts> 

<stmt> 

const 

a 

<var> = <expr> 

<var> 

b 

<term> + <term> 



Parse Trees 

•  For any string from L(G), a grammar G defines a recursive 
tree structure = Parse Tree. 

•  Parse Trees: 
–  The root and intermediate nodes are nonterminals. 
–  The leaf nodes are terminals. 
–  For each rule used in a derivation step: 

•  the LHS is a parent node. 
•  the symbols in the RHS are children nodes (from left to right). 
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Syntactic Ambiguity 

•  A grammar is ambiguous if and only if it can generate a 
sentence that has two or more distinct parse trees. 

•  A grammar is ambiguous if a sentence has more than one 
leftmost derivations. 

•  This simple expression grammar is ambiguous : 
 <expr> → <expr> + <expr> 
   | <expr> * <expr> 

   | a | b | c 
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Syntactic Ambiguity 
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Operator Precedence 

•  The expression string “a + b * c” has two different parse 
trees: 
–  Q: Which one is “correct”? 
–  A: Both are syntactically correct, but we prefer the first one: 

•  Its structure is closer to the the correct semantics of the 
expression. 

•  Want meaning of the expression to be easily determined from 
its parse tree ⇒ need parse tree to encode precedence rules. 

•  Operator ‘*’ generated lower in the parse tree than ‘+’ means 
that ‘*’ has higher precedence than ‘+’. 
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Operator Precedence 

•  Expression grammar that encodes precedence rules: 
 <expr> → <expr> + <term> | <term> 

 <term> → <term> * <fact> | <fact> 
 <fact> → a | b | c 

•  What is the parse tree for “a + b * c”? 
•  What is the parse tree for “a + b + c”? 

•  Is this new grammar non-ambiguous? 
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Associativity of operators 

•  Associativity, like prededence, can be encoded in the 
grammar: 

 <expr> → <expr> + <term> | <term> 

 <term> → <term> * <fact> | <fact> 
 <fact> → a | b | c 

 
–  Left recursive rules ⇒ left associative operators. 
–  Right recursive rules ⇒ right associative operators. 

•  What are the parse trees for “a + b * c” &  “a + b + c”? 
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Associativity of Operators 

•  Introducing the exponentiation operator ‘^’: 
 <expr> → <expr> + <term> | <term> 

 <term> → <term> * <fact> | <fact> 
 <fact> → <base> ^ <fact> | <base> 

  <base> → a | b | c 

•  What is the precedence of ‘+’, ‘*’, ‘^’? 
•  What is the associativity of ‘^’? 
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Syntax vs. Semantics 

•  Operator precedence and associativity are semantic rules. 
•  CFGs are used to specify syntactic rules. 

•  The grammar can be written to encode semantic rules. 
Why is this useful? 
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Syntax vs. Semantics 

•  The CFG specification is used to build a Syntactic 
Analyzer. 

•  The Syntactic Analyzer verifies that the input is a 
syntactically correct program. 

•  The Syntactic Analyzer generates a parse tree that is used 
in Intermediate Code Generation to eventually generate 
semantically correct machine code. 

•  Hence, the need for parse trees that are both syntactically 
correct and semantically correct. 
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The “Dangling Else” Ambiguity 

•  Initial grammar rules for the if-then-else statement : 
<if_stmt> → if <logic_expr> then <stmt> 

| if <logic_expr> then <stmt> else <stmt> 
 

<stmt> → <if_stmt> 

      | <other_stmt> 

•  Why is this grammar ambiguous? 

•  Grammar can be rewritten to reflect semantic constraints 
on the if-then-else statement (Example 2.32). 
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Extended BNF 

•  Optional parts are placed in brackets [ ] 
 <proc_call> -> ident [‘(‘<expr_list>’)’] 

•  Alternative parts of RHSs are placed inside parentheses 
and separated via vertical bars  
 <term> → <term> (+|-) const 

•  Repetitions (0 or more) are placed inside braces { } 
 <ident> → letter {letter|digit} 
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BNF vs. EBNF 

•  BNF 
   <expr> → <expr> + <term> 
           | <expr> - <term> 
           | <term> 
   <term> → <term> * <factor> 
           | <term> / <factor> 
          | <factor> 
•  EBNF 
   <expr> → <term> {(+ | -) <term>} 
   <term> → <factor> {(* | /) <factor>} 
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Syntactic Analysis: The Problem 

•  Syntactic Analysis (Parsing) = a computing problem: 
–  Input:  

•  a context free grammar. 
•  a sequence of tokens. 

–  Output:  
•  YES if the input  can be generated by the CFG. 

–  The parse tree ⇒ need unambiguous grammar. 
•  NO if the input  cannot be generated by the CFG. 

–  Find all syntax errors; for each, produce an appropriate 
diagnostic message and recover quickly. 
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Syntactic Analysis: The Algorithms 

•  Syntactic Analyzer (Parser) = an algorithm/program that 
solves the  syntactic analysis problem. 

•  Time Complexity of syntactic parsing algorithms: 
–  Parsers that work for any unambiguous CFG are complex and 

inefficient – O(n3): 
•  Cocke-Younger-Kasami (CYK) bottom-up parsing algorithm. 

–  Compilers use parsers that only work for a subset of all 
unambiguous CFG grammars, but do it in linear time – O(n): 

•  Two categories of parsers: 
–  Top-down (LL) 
–  Bottom-up (LR) 
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Top-down Parsers 

•  Top down – produce the parse tree, beginning at the root: 
–  Traces or builds the parse tree in preorder. 
–  Most common are LL(k): 

•  L: a left-to-right scanning of the input. 
•  L: corresponds to a leftmost derivation. 
•  k: number of lookahead symbols. 

–  Given a sentential form, xAα , the parser must choose the correct 
A-rule to get the next sentential form in the leftmost derivation, 
using only the first k tokens produced by A. 

–  Useful parsers look only one token ahead in the input ⇒ LL(1). 
 

39 
Lecture 03 



Top-down Parsers 

•  The most common top-down parsing algorithms: 
–  Recursive Descent – a coded implementation, based directly on 

the BNF description of the language. 
–  Table driven implementation – a parsing table is used to 

implement the BNF rules. 

•  Implementation Methods: 
–  Manually coded. 
–  Generated automatically: 

•  ANTLR is an LL(*) parser generator [www.antlr.org]. 
•  JavaCC is an LL(k) parser generator [javacc.dev.java.net] 
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Bottom-up Parsing 

•  Bottom up – produce the parse tree, beginning at the leaves: 
–  Most common are LR(k): 

•  L: a left-to-right scanning of the input. 
•  R: corresponds to the reverse of a rightmost derivation. 
•  k: number of lookahead symbols. 

–  Given a right sentential form, α, determine what substring of α is the 
right-hand side of the rule in the grammar that must be reduced to 
produce the previous sentential form in the right derivation. 

–  Useful parsers look only one token ahead in the input ⇒ LR(1). 

•  LR Parser generators: 
–  yacc (Stephen Johnson for UNIX) ,  
–  bison (GNU version of yacc). 
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Recursive Descent Parsing 

•  Assume we have a lexical analyzer named lex(), which puts 
the next token code in nextToken. 

•  There is a subprogram for each nonterminal in the grammar, 
which can parse sentences that can be generated by that 
nonterminal. 

•  The coding process when there is only one RHS: 
–  For each terminal symbol in the RHS, compare it with nextToken;  

•  if they match, continue; 
•  else there is an error. 

–  For each nonterminal symbol in the RHS, call its associated parsing 
subprogram ⇒ problem if grammar is Left Recursive. 
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Recursive Descent Parsing 

•  Left Recursive grammar: 
 <expr> → <expr> + <term> 
           | <expr> - <term> 
           | <term> 
 <term> → <term> * <factor> 
           | <term> / <factor> 
           | <factor> 
 <factor> → id 
 

•  Cannot do recursive descent parsing: 
void expr() { expr(); … } ⇒ infinite recursion! 
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Recursive Descent Parsing 

•  An expression grammar that has no left recursion: 
 <expr> → <term> {(+ | -) <term>} 

 <term> → <factor> {(* | /) <factor>} 

 <factor> → id |(<expr>) 

•  Added support for parantheses. 

•  Left recursion can be eliminated automatically for any 
CFG. 
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<expr> → <term> {(+ | -) <term>} 

void expr() { 
 
/* Parse the first term */ 
  
  term();  
 
/* As long as the next token is + or -, call  
   lex to get the next token, and parse the  
   next term */ 
  
  while (nextToken == PLUS ||  
         nextToken == MINUS){ 
    lex(); 
    term();   
  } 
} 
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Recursive Descent Parsing 

•  Convention: Every parsing routine leaves the next token in 
nextToken. 

•  A nonterminal that has more than one RHS requires an 
initial process to determine which RHS it is to parse: 
–  The correct RHS is chosen on the basis of the next token of input 

(the lookahead). 
•  The next token is compared with the first token that can be 

generated by each RHS until a match is found. 
•  If no match is found, output a syntax error. 
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<factor> → id|(<expr>) 

void factor() { 
   /* Determine which RHS */ 
   if (nextToken) == ID) 
     /* For the RHS id, just call lex */ 
     lex(); 
   else if (nextToken == LEFT_PAREN) { 
     lex(); 
     expr(); 
     if (nextToken == RIGHT_PAREN) 
       lex(); 
     else 
       error(); 
   } 
   else error(); /* Neither RHS matches */ 
 } 
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The LL Grammars 

•  The Left Recursion problem: 
–  If a grammar has left recursion, either direct or indirect, it cannot 

be the basis for a top-down parser. 
–  A grammar can be modified to remove direct left recursion. 

For each nonterminal A,  
1.  Group the A-rules as A → Aα1 | … | Aαm |  β1 | β2 | … | βn 

     where none of the β‘s begins with A 
2. Replace the original A-rules with: 
      A → β1A’ | β2A’ | … | βnA’ 
      A’ → α1A’ | α2A’ | … | αmA’ |  ε 

–  [Aho et al., 1986] give an algorithm to remove left recursion from 
any CFG. 
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Eliminating Left Recursion 

•  Left Recursive grammar: 
 <expr> → <expr> + <term> 
           | <expr> - <term> 
           | <term> 
 <term> → <term> * <factor> 
           | <term> / <factor> 
           | <factor> 
 <factor> → id 

•  Exercise: Transform into an equivalent grammar w/o left 
recursion. 

49 
Lecture 03 



The LL Grammars 

•  The lack of Pairwise Disjointness: 
–  The inability to determine the correct RHS on the basis of one 

token of lookahead 
–  Def: FIRST(α) = {a | α =>* aβ }, where =>* means zero or more 

derivation steps. 
–  [Aho et al., 1986] give an algorithm to compute FIRST(α). 

•  Pairwise Disjointness Test: 
–  For each nonterminal A in the grammar that has more than one 

RHS, for each pair of rules, A → αi and A → αj, it must be true 
that: 

           FIRST(αi) ⋂ FIRST(αj) = φ 
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LL Grammars: Pairwise Disjointness 

•  Example: 
   A → aB  | bAb | Bb 
      B → cB  |  d 
 
•  Example: 

<variable> → identifier | identifier [<expr>] 

•  Pairwise Disjointness hard to solve in general case. 
•  In some cases, Left Factoring can solve the problem. 
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LL Grammars: Left Factoring 

•  Replace: 
 <variable> → identifier | 

    identifier ‘[‘ <expr> ‘]’ 

•  With: 
 <variable> → identifier <new> 

    <new> → ε | ‘[‘ <expr> ‘]’ 

       or 
  <variable> → identifier [‘[‘ <expression> ‘]’] 

(the outer brackets are metasymbols of EBNF) 
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Readings & Exercises 

•  Reading assignment: 
–  Chapter 2: Programming Language Syntax: 

•  Intro from 2, then 2.1; 
•  Intro from 2.2; 
•  Intro from 2.3, then  2.3.1, 2.3.2 

•  Exercises: 
–  2.1, 2.3, 2.9, 2.11, 2.12, 2.13, 2.15 (a-d), 2.27 
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Summary 

•  Generative Grammars 
–  Regular Grammars (RG) for lexical analysis. 
–  Context Free Grammars (CFG) for syntactic analysis. 

•  Lexical Analysis 
–  RG, Regular Expressions. 
–  Implementation: Finite State Automata (FSA). 

•  Syntactic Analysis: 
–  CFGs specified using BNF. 
–  Implementation: 

•  Top-down parsing (e.g. Recursive Descent). 
•  Bottom-up Parsing. 
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Finite State Automata 

•  A deterministic FSA is a tuple (Σ,S,s0,δ,F): 
–  Σ is the input alphabet (a finite set of symbols). 
–  S is a finite set of states. 
–  s0∈S is the initial state. 
–  δ:S×Σ→S is the state–transition function. 
–  F⊆S is the set of final states. 
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FSA: Representation & Implementation 

•  An FSA can be represented using transition diagrams. 

•  An FSA for recognizing integer literals, identifiers, and 
reserved words: 
–  When recognizing an identifier, all uppercase and lowercase letters 

are equivalent ⇒ use a character class that includes all letters 
(Letter). 

–  When recognizing an integer literal, all digits are equivalent ⇒ use 
a digit class (Digit). 

–  Use a table lookup to determine whether a possible identifier is in 
fact a reserved word. 
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Transition Diagrams 
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Transition Diagrams 
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Syntax vs. Semantics 

•  Syntax: specifies the form or structure of the expressions, 
statements, and program units. 
–  <if_stmt> → if <logic_expr> then <stmt> 
–  <if_stmt> → if <logic_expr> then <stmt> else <stmt> 
–  <while_stmt> → while (<logic_expr>) <stmt> 

•  Semantics: the meaning of the expressions,  statements, 
and program units. 
–  what is the meaning of the Java while statement above? 

•  Syntax vs. Semantics: 
–  semantics should follow directly from syntax. 
–  formal specification easier for syntax than for semantics 
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