
Organization of Programming Languages
CS 3200/5200D

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 03

What is a programming language?

•  A programming language is an artificial language
designed for expressing algorithms on a computer:
–  Need to express an infinite number of algorithms (Turing complete).
–  Requires an unambiguous syntax, specified by a finite context free

grammar.
–  Should have a well defined compositional semantics for each

syntactic construct: axiomatic vs. denotational vs. operational.
–  Often requires a practical implementation i.e. pragmatics:

•  Implementation on a real machine vs. virtual machine
•  translation vs. compilation vs. interpretation.

2
Lecture 01

Implementation Methods: Compilation

•  Translate high-level program (source language) into
machine code (machine language).

•  Slow translation, fast execution.
•  Compilation process has several phases:

–  lexical analysis: converts characters in the source program into
lexical units (e.g. identifiers, operators, keywords).

–  syntactic analysis: transforms lexical units into parse trees which
represent the syntactic structure of program.

–  semantics analysis: check for errors hard to detect during
syntactic analysis; generate intermediate code.

–  code generation: machine code is generated.

3
Lecture 01

Phases of Compilation

4
Lecture 01

Lexical Analysis: Terminology

•  An alphabet Σ is a set of characters.
–  the English alphabet.

•  A lexeme is a string of characters from Σ.
–  index = count + 1;

•  A token is a category of lexemes:
–  index, count → identifier
–  + → plus_operator
–  1 → integer_literal
–  ; → semicolon

•  The lexical rules of a language specify which lexemes
belong to the language, and their categories.

5
Lecture 03

Syntactic Analysis: Terminology

•  An alphabet Σ is a set of tokens.
–  Σ = {identifier, plus_operator, integer_literal, … }

•  A sentence S is a string of tokens from Σ (S∈Σ*).
–  identifier equal identifier plus_operator integer_literal

semicolon

–  “index = count + 1;” is the original sequence of lexemes.

•  A language L is a set of sentences (L⊆Σ*).

•  The syntactic rules of a language specify which sentences
belong to the language:
–  if S∈L, then S is said to be well formed.

6
Lecture 03

Generative Grammars

•  Formal grammars were first studied by linguists:
–  Panini (4th century BC): the earliest known grammar of Sanskrit.
–  Chomsky (1950s): first formalized generative grammars.

•  A grammar is tuple G = (Σ, N, P, S):
–  A finite set Σ of terminal symbols.

•  the tokens of a programming language.
–  A finite set N of nonterminal symbols, disjoint from Σ.

•  expressions, statements, type declarations in a PL.
–  A finite set P of production rules.

•  P : (Σ∪N)* N (Σ∪N)* → (Σ∪N)*
–  A distinguished start symbol S∈N.

7
Lecture 03

Generative Grammars

•  The language L associated with a formal grammar G is the
set of strings from Σ* that can be generated as follows:
–  start with the start symbol S;
–  apply the production rules in P until no more nonterminal symbols

are present.

•  Example:
–  Σ = {a,b,c}, N={S,B}
–  P consists of the following production rules:

1.  S → aBSc
2.  S → abc
3.  Ba → aB
4.  Bb → bb

8
Lecture 03

Generative Grammars

•  Production rules:
1.  S → aBSc
2.  S → abc
3.  Ba → aB
4.  Bb → bb

•  Derivations of strings in the language L(G):
–  S ⇒2 abc
–  S ⇒1 aBSc ⇒2 aBabcc ⇒3 aaBbcc ⇒4 aabbcc
–  S ⇒ … ⇒ aaabbbccc

•  L(G) = {anbncn| n > 0}

9
Lecture 03

Chomsky Hierarchy (1956)

•  Type 0 grammars (unrestricted grammars)
–  Includes all formal grammars.

•  Type 1 grammars (context-sensitive grammars).
–  Rules restricted to: αAβ→ αγβ, where A is a non-terminal, and α,
β, γ strings of terminals and non-terminals.

•  Type 2 grammars (context-free grammars).
–  Rules restricted to A→ γ, where A is a non-terminal, and γ a string

of terminals and non-terminals

•  Type 3 grammars (regular grammars).
–  Rules restricted to A → γ, where A is a non-terminal, and γ:

•  the empty string, or a single terminal symbol followed
optionally by a non-terminal symbol.

10
Lecture 03

Context Free Grammars (Type 2)

•  Example:
–  Σ = {a,b}, N={S}
–  P consists of the following production rules:

1.  S → aSb
2.  S → ε

–  L(G) = ?

11
Lecture 03

CFGs provide the formal syntax specification
of most programming languages.

Regular Grammars (Type 3)

•  Example:
–  Σ = {a,b}, N={S,A,B}
–  P consists of the following production rules:

1.  S → aS
2.  S → cB
3.  B → bB
4.  B → ε

–  L(G) = ?

12
Lecture 03

Regular Grammars/Expressions provide the formal
lexical specification of most programming languages.

Lexical Analysis

•  A lexical analyzer is a “front-end” for the syntactic parser:
–  identifies substrings of the source program that belong together –

lexemes.
–  lexemes are categorized into lexical categories called tokens such

as: keywords, identifiers, operators, numbers, strings, comments.

•  The lexemes of a PL can be formally specified using:
–  Regular Grammars.
–  Regular Expressions.
–  Finite State Automata.
–  RE ⇔ RG ⇔ FSA (same generative power).

13
Lecture 03

Lexical Analysis: Regular Expressions

•  Operators:
 “+” { return (PLUS); } // PLUS = 201
 “–” { return (MINUS); } // MINUS = 202
 “*” { return (MULT); } // MULT = 203
 “/” { return (DIV); } // DIV = 204

•  Each keyword is associated a token definition:
 “bool” { return (BOOL); } // BOOL = 301
 “break” { return (BREAK); } // BREAK = 302
 “case” { return (CASE); } // CASE = 303

14
Lecture 03

lexemes as REs tokens

Lexical Analysis: Regular Expressions

•  Identifiers:
 [a–zA–Z_][a–zA–Z_0–9]* { return (ID); } // ID = 200

•  * is Kleene star and means zero or more.
•  + means one or more
•  . means any character.
•  [^\t\n] means any character other than whitespaces.

•  Numbers:
 [1–9][0–9]* { return (DECIMALINT); }
 0[0–7]* { return (OCTALINT); }
 (0x|0X)[0–9a–fA–F]+ { return (HEXINT); }

15
Lecture 03

Lexical Analysis: Regular Expressions

•  More meta-characters:
–  | creates a disjunction of RE’s.

•  if A and B are RE’s, A|B is an RE that will match either A or B.
–  (…) matches whatever RE is inside the parantheses.

•  indicates the start and end of a group
•  | can be used inside groups.

•  Regular expressions in Python through module re:
–  http://docs.python.org/3/howto/regex.html
–  http://docs.python.org/3/library/re.html

16
Lecture 03

Lexical Analysis

•  In practice, a scanner generator (e.g. Lex, Flex) reads
such lexical definitions and automatically generates code
for the lexical analyzer (scanner).

•  The scanner is implemented as a deterministic Finite State
Automaton (FSA).

•  An FSA is an abstract state machine that can be used to
recognize tokens from a stream of characters.

17
Lecture 03

Syntax: Formal Specification using BNF

•  Backus-Naur Form (BNF):
–  Invented by John Backus to describe Algol 60.
–  BNF is a metalanguage notation for Context Free Grammars, used

for describing the syntax of programming languages.
•  Nonterminals are abstractions for syntactic constructs in the

language (e.g. expressions, statements, type declarations, etc.)
–  Nonterminals are enclosed in angle brackets.

•  Terminals are lexemes or tokens.

18
Lecture 03

BNF

•  Examples:
–  <if_stmt> → if <logic_expr> then <stmt>
–  <if_stmt> → if <logic_expr> then <stmt> else <stmt>

•  The ‘|’ symbol is a logical operator used to specify
multiple RHS in a production rule:
–  <if_stmt> → if <logic_expr> then <stmt>

 | if <logic_expr> then <stmt> else <stmt>

19
Lecture 03

LHS RHS

Recursive Productions

•  Syntactic lists are described using recursion:
 <ident_list> → ident

 | ident , <ident_list>

•  Simple expression grammar:
 <expr> → <expr> + <expr>
 | <expr> * <expr>

 | a | b | c

20
Lecture 03

Grammars & Derivations

•  A Simple Grammar:
 <program> → <stmts>

 <stmts> → <stmt> | <stmt> ; <stmts>

 <stmt> → <var> = <expr>

 <var> → a | b | c | d

 <expr> → <term> + <term> | <term> - <term>
 <term> → <var> | const

•  A derivation is a repeated application of rules, starting
with the start symbol and ending with a sentence (a
sequence of terminal symbols)

21
Lecture 03

Grammars & Derivations

•  An example (leftmost) derivation:
 <program> => <stmts> => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>
 => a = b + <term>

 => a = b + const

22
Lecture 03

Derivations

•  A string of symbols in a derivation is a sentential form.
•  A sentence is a sentential form that has only terminal

symbols.
•  A leftmost derivation is one in which the leftmost

nonterminal in each sentential form is the one that is
expanded.

•  A rightmost derivation is one in which the rightmost
nonterminal in each sentential form is the one that is
expanded.

•  A derivation may be neither leftmost nor rightmost

23
Lecture 03

Parse Trees

•  Parse Tree = a hierarchical representation of a derivation.

24
Lecture 03

<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

Parse Trees

•  For any string from L(G), a grammar G defines a recursive
tree structure = Parse Tree.

•  Parse Trees:
–  The root and intermediate nodes are nonterminals.
–  The leaf nodes are terminals.
–  For each rule used in a derivation step:

•  the LHS is a parent node.
•  the symbols in the RHS are children nodes (from left to right).

25
Lecture 03

Syntactic Ambiguity

•  A grammar is ambiguous if and only if it can generate a
sentence that has two or more distinct parse trees.

•  A grammar is ambiguous if a sentence has more than one
leftmost derivations.

•  This simple expression grammar is ambiguous :
 <expr> → <expr> + <expr>
 | <expr> * <expr>

 | a | b | c

26
Lecture 03

Syntactic Ambiguity

27
Lecture 03

<expr>

<expr> <expr>

<expr> <expr>

+

* a

b c

<expr>

<expr> <expr>

<expr> <expr>

*

+
c

a b

* lower than + + lower than *

Operator Precedence

•  The expression string “a + b * c” has two different parse
trees:
–  Q: Which one is “correct”?
–  A: Both are syntactically correct, but we prefer the first one:

•  Its structure is closer to the the correct semantics of the
expression.

•  Want meaning of the expression to be easily determined from
its parse tree ⇒ need parse tree to encode precedence rules.

•  Operator ‘*’ generated lower in the parse tree than ‘+’ means
that ‘*’ has higher precedence than ‘+’.

28
Lecture 03

Operator Precedence

•  Expression grammar that encodes precedence rules:
 <expr> → <expr> + <term> | <term>

 <term> → <term> * <fact> | <fact>
 <fact> → a | b | c

•  What is the parse tree for “a + b * c”?
•  What is the parse tree for “a + b + c”?

•  Is this new grammar non-ambiguous?

29
Lecture 03

Associativity of operators

•  Associativity, like prededence, can be encoded in the
grammar:

 <expr> → <expr> + <term> | <term>

 <term> → <term> * <fact> | <fact>
 <fact> → a | b | c

–  Left recursive rules ⇒ left associative operators.
–  Right recursive rules ⇒ right associative operators.

•  What are the parse trees for “a + b * c” & “a + b + c”?

30
Lecture 03

Associativity of Operators

•  Introducing the exponentiation operator ‘^’:
 <expr> → <expr> + <term> | <term>

 <term> → <term> * <fact> | <fact>
 <fact> → <base> ^ <fact> | <base>

 <base> → a | b | c

•  What is the precedence of ‘+’, ‘*’, ‘^’?
•  What is the associativity of ‘^’?

31
Lecture 03

Syntax vs. Semantics

•  Operator precedence and associativity are semantic rules.
•  CFGs are used to specify syntactic rules.

•  The grammar can be written to encode semantic rules.
Why is this useful?

32
Lecture 03

Syntax vs. Semantics

•  The CFG specification is used to build a Syntactic
Analyzer.

•  The Syntactic Analyzer verifies that the input is a
syntactically correct program.

•  The Syntactic Analyzer generates a parse tree that is used
in Intermediate Code Generation to eventually generate
semantically correct machine code.

•  Hence, the need for parse trees that are both syntactically
correct and semantically correct.

33
Lecture 03

The “Dangling Else” Ambiguity

•  Initial grammar rules for the if-then-else statement :
<if_stmt> → if <logic_expr> then <stmt>

| if <logic_expr> then <stmt> else <stmt>

<stmt> → <if_stmt>

 | <other_stmt>

•  Why is this grammar ambiguous?

•  Grammar can be rewritten to reflect semantic constraints
on the if-then-else statement (Example 2.32).

34
Lecture 03

Extended BNF

•  Optional parts are placed in brackets []
 <proc_call> -> ident [‘(‘<expr_list>’)’]

•  Alternative parts of RHSs are placed inside parentheses
and separated via vertical bars
 <term> → <term> (+|-) const

•  Repetitions (0 or more) are placed inside braces { }
 <ident> → letter {letter|digit}

35
Lecture 03

BNF vs. EBNF

•  BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>
•  EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

36
Lecture 03

Syntactic Analysis: The Problem

•  Syntactic Analysis (Parsing) = a computing problem:
–  Input:

•  a context free grammar.
•  a sequence of tokens.

–  Output:
•  YES if the input can be generated by the CFG.

–  The parse tree ⇒ need unambiguous grammar.
•  NO if the input cannot be generated by the CFG.

–  Find all syntax errors; for each, produce an appropriate
diagnostic message and recover quickly.

37
Lecture 03

Syntactic Analysis: The Algorithms

•  Syntactic Analyzer (Parser) = an algorithm/program that
solves the syntactic analysis problem.

•  Time Complexity of syntactic parsing algorithms:
–  Parsers that work for any unambiguous CFG are complex and

inefficient – O(n3):
•  Cocke-Younger-Kasami (CYK) bottom-up parsing algorithm.

–  Compilers use parsers that only work for a subset of all
unambiguous CFG grammars, but do it in linear time – O(n):

•  Two categories of parsers:
–  Top-down (LL)
–  Bottom-up (LR)

38
Lecture 03

Top-down Parsers

•  Top down – produce the parse tree, beginning at the root:
–  Traces or builds the parse tree in preorder.
–  Most common are LL(k):

•  L: a left-to-right scanning of the input.
•  L: corresponds to a leftmost derivation.
•  k: number of lookahead symbols.

–  Given a sentential form, xAα , the parser must choose the correct
A-rule to get the next sentential form in the leftmost derivation,
using only the first k tokens produced by A.

–  Useful parsers look only one token ahead in the input ⇒ LL(1).

39
Lecture 03

Top-down Parsers

•  The most common top-down parsing algorithms:
–  Recursive Descent – a coded implementation, based directly on

the BNF description of the language.
–  Table driven implementation – a parsing table is used to

implement the BNF rules.

•  Implementation Methods:
–  Manually coded.
–  Generated automatically:

•  ANTLR is an LL(*) parser generator [www.antlr.org].
•  JavaCC is an LL(k) parser generator [javacc.dev.java.net]

40
Lecture 03

Bottom-up Parsing

•  Bottom up – produce the parse tree, beginning at the leaves:
–  Most common are LR(k):

•  L: a left-to-right scanning of the input.
•  R: corresponds to the reverse of a rightmost derivation.
•  k: number of lookahead symbols.

–  Given a right sentential form, α, determine what substring of α is the
right-hand side of the rule in the grammar that must be reduced to
produce the previous sentential form in the right derivation.

–  Useful parsers look only one token ahead in the input ⇒ LR(1).

•  LR Parser generators:
–  yacc (Stephen Johnson for UNIX) ,
–  bison (GNU version of yacc).

41
Lecture 03

Recursive Descent Parsing

•  Assume we have a lexical analyzer named lex(), which puts
the next token code in nextToken.

•  There is a subprogram for each nonterminal in the grammar,
which can parse sentences that can be generated by that
nonterminal.

•  The coding process when there is only one RHS:
–  For each terminal symbol in the RHS, compare it with nextToken;

•  if they match, continue;
•  else there is an error.

–  For each nonterminal symbol in the RHS, call its associated parsing
subprogram ⇒ problem if grammar is Left Recursive.

42
Lecture 03

Recursive Descent Parsing

•  Left Recursive grammar:
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>
 <factor> → id

•  Cannot do recursive descent parsing:
void expr() { expr(); … } ⇒ infinite recursion!

43
Lecture 03

Recursive Descent Parsing

•  An expression grammar that has no left recursion:
 <expr> → <term> {(+ | -) <term>}

 <term> → <factor> {(* | /) <factor>}

 <factor> → id |(<expr>)

•  Added support for parantheses.

•  Left recursion can be eliminated automatically for any
CFG.

44
Lecture 03

<expr> → <term> {(+ | -) <term>}

void expr() {

/* Parse the first term */

 term();

/* As long as the next token is + or -, call
 lex to get the next token, and parse the
 next term */

 while (nextToken == PLUS ||
 nextToken == MINUS){
 lex();
 term();
 }
}

 45
Lecture 03

Recursive Descent Parsing

•  Convention: Every parsing routine leaves the next token in
nextToken.

•  A nonterminal that has more than one RHS requires an
initial process to determine which RHS it is to parse:
–  The correct RHS is chosen on the basis of the next token of input

(the lookahead).
•  The next token is compared with the first token that can be

generated by each RHS until a match is found.
•  If no match is found, output a syntax error.

46
Lecture 03

<factor> → id|(<expr>)

void factor() {
 /* Determine which RHS */
 if (nextToken) == ID)
 /* For the RHS id, just call lex */
 lex();
 else if (nextToken == LEFT_PAREN) {
 lex();
 expr();
 if (nextToken == RIGHT_PAREN)
 lex();
 else
 error();
 }
 else error(); /* Neither RHS matches */
 }

47
Lecture 03

The LL Grammars

•  The Left Recursion problem:
–  If a grammar has left recursion, either direct or indirect, it cannot

be the basis for a top-down parser.
–  A grammar can be modified to remove direct left recursion.

For each nonterminal A,
1.  Group the A-rules as A → Aα1 | … | Aαm | β1 | β2 | … | βn

 where none of the β‘s begins with A
2. Replace the original A-rules with:
 A → β1A’ | β2A’ | … | βnA’
 A’ → α1A’ | α2A’ | … | αmA’ | ε

–  [Aho et al., 1986] give an algorithm to remove left recursion from
any CFG.

48
Lecture 03

Eliminating Left Recursion

•  Left Recursive grammar:
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>
 <factor> → id

•  Exercise: Transform into an equivalent grammar w/o left
recursion.

49
Lecture 03

The LL Grammars

•  The lack of Pairwise Disjointness:
–  The inability to determine the correct RHS on the basis of one

token of lookahead
–  Def: FIRST(α) = {a | α =>* aβ }, where =>* means zero or more

derivation steps.
–  [Aho et al., 1986] give an algorithm to compute FIRST(α).

•  Pairwise Disjointness Test:
–  For each nonterminal A in the grammar that has more than one

RHS, for each pair of rules, A → αi and A → αj, it must be true
that:

 FIRST(αi) ⋂ FIRST(αj) = φ

50
Lecture 03

LL Grammars: Pairwise Disjointness

•  Example:
 A → aB | bAb | Bb
 B → cB | d

•  Example:

<variable> → identifier | identifier [<expr>]

•  Pairwise Disjointness hard to solve in general case.
•  In some cases, Left Factoring can solve the problem.

51
Lecture 03

LL Grammars: Left Factoring

•  Replace:
 <variable> → identifier |

 identifier ‘[‘ <expr> ‘]’

•  With:
 <variable> → identifier <new>

 <new> → ε | ‘[‘ <expr> ‘]’

 or
 <variable> → identifier [‘[‘ <expression> ‘]’]

(the outer brackets are metasymbols of EBNF)

52
Lecture 03

Readings & Exercises

•  Reading assignment:
–  Chapter 2: Programming Language Syntax:

•  Intro from 2, then 2.1;
•  Intro from 2.2;
•  Intro from 2.3, then 2.3.1, 2.3.2

•  Exercises:
–  2.1, 2.3, 2.9, 2.11, 2.12, 2.13, 2.15 (a-d), 2.27

53
Lecture 03

Summary

•  Generative Grammars
–  Regular Grammars (RG) for lexical analysis.
–  Context Free Grammars (CFG) for syntactic analysis.

•  Lexical Analysis
–  RG, Regular Expressions.
–  Implementation: Finite State Automata (FSA).

•  Syntactic Analysis:
–  CFGs specified using BNF.
–  Implementation:

•  Top-down parsing (e.g. Recursive Descent).
•  Bottom-up Parsing.

54
Lecture 03

Finite State Automata

•  A deterministic FSA is a tuple (Σ,S,s0,δ,F):
–  Σ is the input alphabet (a finite set of symbols).
–  S is a finite set of states.
–  s0∈S is the initial state.
–  δ:S×Σ→S is the state–transition function.
–  F⊆S is the set of final states.

55
Lecture 03

FSA: Representation & Implementation

•  An FSA can be represented using transition diagrams.

•  An FSA for recognizing integer literals, identifiers, and
reserved words:
–  When recognizing an identifier, all uppercase and lowercase letters

are equivalent ⇒ use a character class that includes all letters
(Letter).

–  When recognizing an integer literal, all digits are equivalent ⇒ use
a digit class (Digit).

–  Use a table lookup to determine whether a possible identifier is in
fact a reserved word.

56
Lecture 03

Transition Diagrams

57
Lecture 03

Transition Diagrams

Lecture 03
58

Syntax vs. Semantics

•  Syntax: specifies the form or structure of the expressions,
statements, and program units.
–  <if_stmt> → if <logic_expr> then <stmt>
–  <if_stmt> → if <logic_expr> then <stmt> else <stmt>
–  <while_stmt> → while (<logic_expr>) <stmt>

•  Semantics: the meaning of the expressions, statements,
and program units.
–  what is the meaning of the Java while statement above?

•  Syntax vs. Semantics:
–  semantics should follow directly from syntax.
–  formal specification easier for syntax than for semantics

59
Lecture 03

