Organization of Programming Languages CS 3200/5200D

Lecture 03

Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu

What is a programming language?

- A **programming language** is an artificial language designed for expressing algorithms on a computer:
 - Need to express an *infinite* number of algorithms (Turing complete).
 - Requires an unambiguous syntax, specified by a finite context free grammar.
 - Should have a well defined compositional **semantics** for each syntactic construct: *axiomatic vs. denotational vs. operational*.
 - Often requires a practical implementation i.e. pragmatics:
 - Implementation on a real machine vs. virtual machine
 - translation vs. compilation vs. interpretation.

Implementation Methods: Compilation

- Translate high-level program (source language) into machine code (machine language).
- Slow translation, fast execution.
- Compilation process has several phases:
 - lexical analysis: converts characters in the source program into lexical units (e.g. identifiers, operators, keywords).
 - syntactic analysis: transforms lexical units into *parse trees* which represent the syntactic structure of program.
 - semantics analysis: check for errors hard to detect during syntactic analysis; generate *intermediate code*.
 - code generation: machine code is generated.

Phases of Compilation

Lexical Analysis: Terminology

- An alphabet Σ is a set of characters.
 - the English alphabet.
- A lexeme is a string of characters from Σ .
 - index = count + 1;
- A token is a category of lexemes:
 - index, count → identifier
 - $+ \rightarrow plus_operator$
 - $-1 \rightarrow integer_literal$
 - ; → semicolon
- The **lexical rules** of a language specify which lexemes belong to the language, and their categories.

Syntactic Analysis: Terminology

- An alphabet Σ is a set of tokens.
 - $\Sigma = \{ identifier, plus_operator, integer_literal, ... \}$
- A sentence S is a string of tokens from Σ (S $\in \Sigma^*$).
 - identifier equal identifier plus_operator integer_literal semicolon
 - "index = count + 1;" is the original sequence of lexemes.
- A language L is a set of sentences $(L \subseteq \Sigma^*)$.
- The syntactic rules of a language specify which sentences belong to the language:
 - if $S \in L$, then S is said to be *well formed*.

Generative Grammars

- Formal grammars were first studied by linguists:
 - Panini (4th century BC): the earliest known grammar of Sanskrit.
 - Chomsky (1950s): first formalized generative grammars.
- A grammar is tuple $G = (\Sigma, N, P, S)$:
 - A finite set Σ of terminal symbols.
 - the tokens of a programming language.
 - A finite set N of **nonterminal symbols**, disjoint from Σ .
 - expressions, statements, type declarations in a PL.
 - A finite set P of **production rules**.
 - $P: (\Sigma \cup N)^* \land (\Sigma \cup N)^* \rightarrow (\Sigma \cup N)^*$
 - A distinguished start symbol $S \in \mathbb{N}$.

Lecture 03

Generative Grammars

- The language L associated with a formal grammar G is the set of strings from Σ* that can be generated as follows:
 - start with the start symbol S;
 - apply the production rules in P until no more nonterminal symbols are present.
- Example:
 - $-\Sigma = \{a,b,c\}, N = \{S,B\}$
 - P consists of the following production rules:
 - 1. $S \rightarrow aBSc$
 - 2. $S \rightarrow abc$
 - 3. Ba \rightarrow aB
 - 4. $Bb \rightarrow bb$

Lecture 03

Generative Grammars

- Production rules:
 - 1. $S \rightarrow aBSc$
 - 2. $S \rightarrow abc$
 - 3. Ba \rightarrow aB
 - 4. $Bb \rightarrow bb$
- Derivations of strings in the language L(G):
 - $S \Rightarrow_2 abc$
 - $-S \Rightarrow_1 aBSc \Rightarrow_2 aBabcc \Rightarrow_3 aaBbcc \Rightarrow_4 aabbcc$
 - $S \Rightarrow ... \Rightarrow aaabbbccc$
- $L(G) = \{a^n b^n c^n | n > 0\}$

Chomsky Hierarchy (1956)

- Type 0 grammars (unrestricted grammars)
 - Includes all formal grammars.
- Type 1 grammars (context-sensitive grammars).
 - Rules restricted to: $\alpha A\beta \rightarrow \alpha\gamma\beta$, where A is a non-terminal, and α , β , γ strings of terminals and non-terminals.
- Type 2 grammars (context-free grammars).
 - Rules restricted to $A \rightarrow \gamma$, where A is a non-terminal, and γ a string of terminals and non-terminals
- Type 3 grammars (regular grammars).
 - Rules restricted to A $\rightarrow \gamma$, where A is a non-terminal, and γ :
 - the empty string, or a single terminal symbol followed optionally by a non-terminal symbol. Lecture 03

Context Free Grammars (Type 2)

- Example:
 - $-\Sigma = \{a,b\}, N = \{S\}$
 - P consists of the following production rules:
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
 - L(G) = ?

CFGs provide the formal **syntax specification** of most programming languages.

Regular Grammars (Type 3)

- Example:
 - $-\Sigma = \{a,b\}, N = \{S,A,B\}$
 - P consists of the following production rules:
 - 1. $S \rightarrow aS$ 2. $S \rightarrow cB$ 3. $B \rightarrow bB$ 4. $B \rightarrow \varepsilon$ - L(G) = ?
 - **Regular Grammars/Expressions** provide the formal **lexical specification** of most programming languages.

Lexical Analysis

- A lexical analyzer is a "front-end" for the syntactic parser:
 - identifies substrings of the source program that belong together lexemes.
 - lexemes are categorized into lexical categories called tokens such as: keywords, identifiers, operators, numbers, strings, comments.
- The lexemes of a PL can be formally specified using:
 - Regular Grammars.
 - Regular Expressions.
 - Finite State Automata.
 - RE \Leftrightarrow RG \Leftrightarrow FSA (same generative power).

Lexical Analysis: Regular Expressions

• Each keyword is associated a token definition:

"bool" "break" "case" { return (BOOL); } // BOOL = 301 { return (BREAK); } // BREAK = 302 { return (CASE); } // CASE = 303

Lecture 03

Lexical Analysis: Regular Expressions

• Identifiers:

 $[a-zA-Z_][a-zA-Z_0-9]^*$ { return (ID); } // ID = 200

- * is Kleene star and means zero or more.
- + means one or more
- . means any character.
- [^\t\n] means any character *other* than whitespaces.
- Numbers:

[1-9][0-9]* 0[0-7]* (0x|0X)[0-9a-fA-F]+ { return (DECIMALINT); } { return (OCTALINT); } { return (HEXINT); }

Lexical Analysis: Regular Expressions

- More meta-characters:
 - | creates a disjunction of RE's.
 - if A and B are RE's, A|B is an RE that will match either A or B.
 - (...) matches whatever RE is inside the parantheses.
 - indicates the start and end of a group
 - | can be used inside groups.
- Regular expressions in Python through module re:
 - <u>http://docs.python.org/3/howto/regex.html</u>
 - http://docs.python.org/3/library/re.html

Lexical Analysis

- In practice, a scanner generator (e.g. *Lex, Flex*) reads such lexical definitions and automatically generates code for the lexical analyzer (scanner).
- The scanner is implemented as a deterministic Finite State Automaton (FSA).
- An FSA is an abstract state machine that can be used to recognize tokens from a stream of characters.

Syntax: Formal Specification using BNF

- Backus-Naur Form (BNF):
 - Invented by John Backus to describe Algol 60.
 - BNF is a metalanguage notation for Context Free Grammars, used for describing the syntax of programming languages.
 - Nonterminals are abstractions for syntactic constructs in the language (e.g. *expressions, statements, type declarations, etc.*)
 - Nonterminals are enclosed in angle brackets.
 - Terminals are *lexemes* or *tokens*.

BNF

- Examples:
 - <if_stmt> → if <logic_expr> then <stmt>
 - $\langle if_stmt \rangle \rightarrow if \langle logic_expr \rangle$ then $\langle stmt \rangle$ else $\langle stmt \rangle$ LHS RHS
- The '|' symbol is a logical operator used to specify multiple RHS in a production rule:

- <if_stmt> → if <logic_expr> then <stmt>

if <logic_expr> then <stmt> else <stmt>

Recursive Productions

Syntactic lists are described using recursion:
 <ident_list> → ident

ident , <ident_list>

Simple expression grammar:
 <expr> → <expr> + <expr>
 | <expr> * <expr>
 | a | b | c

Grammars & Derivations

• A Simple Grammar:

<program> → <stmts> <stmts> → <stmt> | <stmt> ; <stmts> <stmt> → <var> = <expr> <var> → a | b | c | d <expr> → <term> + <term> | <term> - <term> <term> → <var> | const

• A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence (a sequence of terminal symbols)

Grammars & Derivations

An example (leftmost) derivation:
 <program> => <stmts> => <stmt>

=> <var> = <expr> => a = <expr> => a = <term> + <term> => a = <var> + <term> => a = b + <term> => a = b + const

Derivations

- A string of symbols in a derivation is a *sentential form*.
- A *sentence* is a sentential form that has only terminal symbols.
- A *leftmost derivation* is one in which the leftmost nonterminal in each sentential form is the one that is expanded.
- A *rightmost derivation* is one in which the rightmost nonterminal in each sentential form is the one that is expanded.
- A derivation may be neither leftmost nor rightmost

Parse Trees

• **Parse Tree** = a hierarchical representation of a derivation.

Parse Trees

• For any string from L(G), a grammar G defines a recursive tree structure = Parse Tree.

• Parse Trees:

- The root and intermediate nodes are nonterminals.
- The leaf nodes are terminals.
- For each rule used in a derivation step:
 - the LHS is a parent node.
 - the symbols in the RHS are children nodes (from left to right).

Syntactic Ambiguity

- A grammar is *ambiguous* if and only if it can generate a sentence that has two or more distinct parse trees.
- A grammar is *ambiguous* if a sentence has more than one leftmost derivations.
- This simple expression grammar is ambiguous :
 <expr> → <expr> + <expr>
 | <expr> * <expr>
 - | a | b | c

Syntactic Ambiguity

Operator Precedence

- The expression string "a + b * c" has two different parse trees:
 - Q: Which one is "correct"?
 - A: Both are syntactically correct, but we prefer the first one:
 - Its structure is closer to the the correct semantics of the expression.
 - Want meaning of the expression to be easily determined from its parse tree ⇒ need parse tree to encode precedence rules.
 - Operator '*' generated lower in the parse tree than '+' means that '*' has higher precedence than '+'.

Operator Precedence

- Expression grammar that encodes precedence rules:
 <expr> → <expr> + <term> | <term>
 <term> → <term> * <fact> | <fact>
 <fact> → a | b | c
- What is the parse tree for "a + b * c"?
- What is the parse tree for "a + b + c"?
- Is this new grammar non-ambiguous?

Associativity of operators

- Associativity, like prededence, can be encoded in the grammar:
 <expr> → <expr> + <term> | <term>
 <term> → <term> * <fact> | <fact>
 <fact> → a | b | c
 - Left recursive rules \Rightarrow left associative operators.
 - Right recursive rules \Rightarrow right associative operators.
- What are the parse trees for "a + b * c" & "a + b + c"?

Associativity of Operators

- Introducing the exponentiation operator '^':
 - <expr> → <expr> + <term> | <term>
 <term> → <term> * <fact> | <fact>
 <fact> → <base> ^ <fact> | <base>
 <base> → a | b | c
- What is the precedence of '+', '*', '^'?
- What is the associativity of '^'?

Syntax vs. Semantics

- Operator precedence and associativity are semantic rules.
- CFGs are used to specify syntactic rules.
- The grammar can be written to encode semantic rules. Why is this useful?

Syntax vs. Semantics

- The CFG specification is used to build a **Syntactic Analyzer**.
- The Syntactic Analyzer verifies that the input is a *syntactically correct* program.
- The Syntactic Analyzer generates a parse tree that is used in **Intermediate Code Generation** to eventually generate *semantically correct* machine code.
- Hence, the need for parse trees that are both *syntactically correct* and *semantically correct*.

The "Dangling Else" Ambiguity

Initial grammar rules for the if-then-else statement :
 <if_stmt> → if <logic_expr> then <stmt>

if <logic_expr> then <stmt> else <stmt>

<stmt> → <if_stmt> | <other_stmt>

- Why is this grammar ambiguous?
- Grammar can be rewritten to reflect semantic constraints on the if-then-else statement (Example 2.32).

Extended BNF

- Optional parts are placed in brackets []
 <proc_call> -> ident [`(`<expr_list>')']
- Alternative parts of RHSs are placed inside parentheses and separated via vertical bars
 <term> → <term> (+|-) const
- Repetitions (0 or more) are placed inside braces { }
 <ident> → letter {letter|digit}

BNF vs. EBNF

• BNF

- $\langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}$
- $< term > \rightarrow < factor > { (* | /) < factor > }$

Syntactic Analysis: The Problem

- Syntactic Analysis (Parsing) = a computing problem:
 - Input:
 - a context free grammar.
 - a sequence of tokens.
 - Output:
 - YES if the input can be generated by the CFG.
 - The parse tree \Rightarrow need unambiguous grammar.
 - NO if the input cannot be generated by the CFG.
 - Find all syntax errors; for each, produce an appropriate diagnostic message and recover quickly.

Syntactic Analysis: The Algorithms

- Syntactic Analyzer (Parser) = an algorithm/program that solves the syntactic analysis problem.
- Time Complexity of syntactic parsing algorithms:
 - Parsers that work for any unambiguous CFG are complex and inefficient $-O(n^3)$:
 - Cocke-Younger-Kasami (CYK) bottom-up parsing algorithm.
 - Compilers use parsers that only work for a subset of all unambiguous CFG grammars, but do it in linear time – O(n):
- Two categories of parsers:
 - Top-down (LL)
 - Bottom-up (LR)

Top-down Parsers

- **Top down** produce the parse tree, beginning at the root:
 - Traces or builds the parse tree in preorder.
 - Most common are LL(k):
 - L: a left-to-right scanning of the input.
 - L: corresponds to a leftmost derivation.
 - k: number of lookahead symbols.
 - Given a sentential form, $xA\alpha$, the parser must choose the correct A-rule to get the next sentential form in the leftmost derivation, using only the first k tokens produced by A.
 - Useful parsers look only one token ahead in the input \Rightarrow LL(1).

Top-down Parsers

- The most common top-down parsing algorithms:
 - Recursive Descent a coded implementation, based directly on the BNF description of the language.
 - Table driven implementation a parsing table is used to implement the BNF rules.
- Implementation Methods:
 - Manually coded.
 - Generated automatically:
 - ANTLR is an LL(*) parser generator [www.antlr.org].
 - JavaCC is an LL(k) parser generator [javacc.dev.java.net]

Bottom-up Parsing

- **Bottom up** produce the parse tree, beginning at the leaves:
 - Most common are LR(k):
 - L: a left-to-right scanning of the input.
 - R: corresponds to the reverse of a rightmost derivation.
 - k: number of lookahead symbols.
 - Given a right sentential form, α , determine what substring of α is the right-hand side of the rule in the grammar that must be reduced to produce the previous sentential form in the right derivation.
 - Useful parsers look only one token ahead in the input \Rightarrow LR(1).
- LR Parser generators:
 - yacc (Stephen Johnson for UNIX),
 - bison (GNU version of yacc).

- Assume we have a lexical analyzer named lex(), which puts the next token code in nextToken.
- There is a subprogram for each nonterminal in the grammar, which can parse sentences that can be generated by that nonterminal.
- The coding process when there is **only one RHS**:
 - For each terminal symbol in the RHS, compare it with nextToken;
 - if they match, continue;
 - else there is an error.
 - For each nonterminal symbol in the RHS, *call* its associated parsing subprogram ⇒ problem if grammar is Left Recursive.

Cannot do recursive descent parsing:
 void expr() { expr(); ... } ⇒ infinite recursion!

- An expression grammar that has no left recursion:
 <expr> → <term> { (+ | -) <term> }
 <term> → <factor> { (* | /) <factor> }
 <factor> → id | (<expr>)
- Added support for parantheses.
- Left recursion can be eliminated automatically for any CFG.

$\langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}$

void expr() {

/* Parse the first term */

term();

/* As long as the next token is + or -, call
 lex to get the next token, and parse the
 next term */

```
while (nextToken == PLUS ||
    nextToken == MINUS) {
    lex();
    term();
}
```

 Convention: Every parsing routine leaves the next token in <u>nextToken</u>.

- A nonterminal that has more than one RHS requires an initial process to determine which RHS it is to parse:
 - The correct RHS is chosen on the basis of the next token of input (the lookahead).
 - The next token is compared with the first token that can be generated by each RHS until a match is found.
 - If no match is found, output a syntax error.

$< factor > \rightarrow id | (< expr >)$

```
void factor() {
   /* Determine which RHS */
   if (nextToken) == ID)
     /* For the RHS id, just call lex */
     lex();
   else if (nextToken == LEFT PAREN) {
     lex();
     expr();
     if (nextToken == RIGHT PAREN)
     lex();
     else
       error();
   else error(); /* Neither RHS matches */
```

The LL Grammars

- The Left Recursion problem:
 - If a grammar has left recursion, either direct or indirect, it cannot be the basis for a top-down parser.
 - A grammar can be modified to remove direct left recursion.
 For each nonterminal A,
 - 1. Group the A-rules as $A \rightarrow A\alpha_1 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid ... \mid \beta_n$ where none of the β 's begins with A
 - 2. Replace the original A-rules with:

 $\mathbf{A} \rightarrow \beta_1 \mathbf{A}' \mid \beta_2 \mathbf{A}' \mid \dots \mid \beta_n \mathbf{A}'$

 $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_m A' \mid \epsilon$

 [Aho et al., 1986] give an algorithm to remove left recursion from any CFG.

Eliminating Left Recursion

• Exercise: Transform into an equivalent grammar w/o left recursion.

The LL Grammars

- The lack of Pairwise Disjointness:
 - The inability to determine the correct RHS on the basis of one token of lookahead
 - Def: FIRST(α) = {a | $\alpha =>_* a\beta$ }, where =>_* means zero or more derivation steps.
 - [Aho et al., 1986] give an algorithm to compute $FIRST(\alpha)$.
- Pairwise Disjointness Test:
 - For each nonterminal A in the grammar that has more than one RHS, for each pair of rules, $A \rightarrow \alpha_i$ and $A \rightarrow \alpha_j$, it must be true that:

 $FIRST(\alpha_i) \cap FIRST(\alpha_j) = \phi$

Lecture 03

LL Grammars: Pairwise Disjointness

• Example:

 $A \rightarrow aB | bAb | Bb$ $B \rightarrow cB | d$

• Example:

<variable> → identifier | identifier [<expr>]

- Pairwise Disjointness hard to solve in general case.
- In some cases, Left Factoring can solve the problem.

LL Grammars: Left Factoring

• Replace:

<variable> → identifier |

identifier `[` <expr> `]'

With:
 <variable> → identifier <new>
 <new> → ε | '[' <expr> ']'
 Or

<variable> → identifier ['[' <expression> ']']
(the outer brackets are metasymbols of EBNF)

Readings & Exercises

- Reading assignment:
 - Chapter 2: Programming Language Syntax:
 - Intro from 2, then 2.1;
 - Intro from 2.2;
 - Intro from 2.3, then 2.3.1, 2.3.2
- Exercises:

- 2.1, 2.3, 2.9, 2.11, 2.12, 2.13, 2.15 (a-d), 2.27

Summary

- Generative Grammars
 - Regular Grammars (RG) for lexical analysis.
 - Context Free Grammars (CFG) for syntactic analysis.
- Lexical Analysis
 - RG, Regular Expressions.
 - Implementation: Finite State Automata (FSA).
- Syntactic Analysis:
 - CFGs specified using BNF.
 - Implementation:
 - Top-down parsing (e.g. Recursive Descent).
 - Bottom-up Parsing.

Finite State Automata

- A deterministic FSA is a tuple $(\Sigma, S, s_0, \delta, F)$:
 - $-\Sigma$ is the input alphabet (a finite set of symbols).
 - S is a finite set of states.
 - − $s_0 \in S$ is the initial state.
 - $\delta: S \times \Sigma \rightarrow S$ is the state-transition function.
 - F \subseteq S is the set of final states.

FSA: Representation & Implementation

- An FSA can be represented using transition diagrams.
- An FSA for recognizing integer literals, identifiers, and reserved words:
 - When recognizing an identifier, all uppercase and lowercase letters are equivalent ⇒ use a character class that includes all letters (Letter).
 - When recognizing an integer literal, all digits are equivalent ⇒ use a digit class (Digit).
 - Use a table lookup to determine whether a possible identifier is in fact a reserved word.

Transition Diagrams

Transition Diagrams

Syntax vs. Semantics

- Syntax: specifies the form or structure of the expressions, statements, and program units.
 - <if_stmt> → if <logic_expr> then <stmt>
 - <if_stmt> → if <logic_expr> then <stmt> else <stmt>
 - <while stmt> → while (<logic expr>) <stmt>
- Semantics: the meaning of the expressions, statements, and program units.
 - what is the meaning of the Java while statement above?
- Syntax vs. Semantics:
 - semantics should follow directly from syntax.
 - formal specification easier for syntax than for semantics

Lecture 03