Organization of Programming Languages
CS 3200/5200D

Lecture 03

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

What 1s a programming language?

* A programming language 1s an artificial language
designed for expressing algorithms on a computer:

— Need to express an infinite number of algorithms (Turing complete).

— Requires an unambiguous syntax, specified by a finite context free
grammar.

— Should have a well defined compositional semantics for each
syntactic construct: axiomatic vs. denotational vs. operational.

— Often requires a practical implementation i.e. pragmatics:
« Implementation on a real machine vs. virtual machine

* translation vs. compilation vs. interpretation.

Lecture 01

Implementation Methods: Compilation

Translate high-level program (source language) into
machine code (machine language).

Slow translation, fast execution.

Compilation process has several phases:

— lexical analysis: converts characters in the source program into
lexical units (e.g. identifiers, operators, keywords).

— syntactic analysis: transforms lexical units into parse trees which
represent the syntactic structure of program.

— semantics analysis: check for errors hard to detect during
syntactic analysis; generate intermediate code.

— code generation: machine code 1s generated.

Lecture 01

Phases

of Compilation

Character stream

|

E \ (" Scanner (lexical analysis))
E Token stream < > <
i Parser (syntax analysis)

E Parse tree G N
..__________________X-, ----Se-man-t-m—aﬁalysi-s-aﬂd-

Abstract syntax tree or

other intermediate form \

Modified «——

intermediate form \
Target language «—

(e.g., assembler) \
Modified -

target language

intermediate code generation

w Machine-independent 3
_code improvement (optional))

2 D)

Target code generation
NG

e Machine-specific 2

_code improvement (optional))

Lecture 01

Symbol table 1

JU

Back
end

Lexical Analysis: Terminology

An alphabet X 1s a set of characters.
— the English alphabet.

A lexeme 1s a string of characters from 2.
— 1ndex = count + 1;

A token i1s a category of lexemes:

— 1index, count = identifier

T Rl sWoper aters

= | Wk T cfefer | MEREE ek

— ;—> semicolon
The lexical rules of a language specify which lexemes
belong to the language, and their categories.

Lecture 03
S

Syntactic Analysis: Terminology

An alphabet X 1s a set of tokens.
> Z::{identifier, plills eperatomiint egenilliieral =

A sentence S 1s a string of tokens from X (SEX*).

= ldemmnevrcr clgusNdeniaiEt e r j@lilusFopeiat o it e gers 11 Feimasl
semicolon

— “index = count + 1;” 1s the original sequence of lexemes.

A language L is a set of sentences (LCX*).

The syntactic rules of a language specify which sentences
belong to the language:
— 1f SEL, then S 1s said to be well formed.

Lecture 03

Generative Grammars

e Formal grammars were first studied by linguists:
— Panini (4™ century BC): the earliest known grammar of Sanskrit.
— Chomsky (1950s): first formalized generative grammars.
A grammar i1s tuple G=(Z, N, P, S):
— A finite set 2 of terminal symbols.
* the tokens of a programming language.
— A finite set N of nonterminal symbols, disjoint from X.
* expressions, statements, type declarations in a PL.
— A finite set P of production rules.
 P:(ZUN)* N (ZUN)* — (ZUN)*
— A distinguished start symbol SEN.

Lecture 03

Generative Grammars

| —

* The language L associated with a formal grammar G 1s the
set of strings from Z* that can be generated as follows:
— start with the start symbol S;
— apply the production rules in P until no more nonterminal symbols
are present.
« Example:
— X ={ab,c}, N={S,B}

— P consists of the following production rules:

e SESaB Se
2. S —Fabc
3. Ba—aB
4. Bb—bb

Lecture 03

Generative Grammars

 Production rules:

1. S—aBSc
277 Sa=gabe
3. Ba—aB
4. Bb—bb
» Derivations of strings in the language L(G):
— S=,abc

— S =, aBSc =, aBabcc =, aaBbcc =, aabbcce

— S = ...=> aaabbbccc

o« WL(G) = {a"b"@| n >0}

Lecture 03

Chomsky Hierarchy (1956)

Type 0 grammars (unrestricted grammars)

— Includes all formal grammars.

Type 1 grammars (context-sensitive grammars).
— Rules restricted to: aAPp— ayf3, where A 1s a non-terminal, and o,
B, y strings of terminals and non-terminals.
Type 2 grammars (context-free grammars).
— Rules restricted to A— vy, where A 1s a non-terminal, and vy a string
of terminals and non-terminals
Type 3 grammars (regular grammars).
— Rules restricted to A — vy, where A 1s a non-terminal, and v:

* the empty string, or a single terminal symbol followed

optionally by a non-terminal symbol.

Lecture 03
10

Context Free Grammars (Type 2)

| —

« Example:
= e {aab}a N:{S}
— P consists of the following production rules:

1. S—aSb
S =
- L(G)="?

CFGs provide the formal syntax specification
of most programming languages.

Lecture 03
11

Regular Grammars (Type 3)

« Example:
— 2 ={ab}, N={S,A,B}
— P consists of the following production rules:

LR a5
g S —=CcB
S B —bB
4.7 5B —%8
—ale(G) =82

Regular Grammars/Expressions provide the formal
lexical specification of most programming languages.

Lecture 03
12

Lexical Analysis

* A lexical analyzer 1s a “front-end” for the syntactic parser:

— 1identifies substrings of the source program that belong together —
lexemes.

— lexemes are categorized into lexical categories called tokens such
as: keywords, identifiers, operators, numbers, strings, comments.

* The lexemes of a PL can be formally specified using:
— Regular Grammars.
— Regular Expressions.
— Finite State Automata.
— RE < RG < FSA (same generative power).

Lecture 03
13

Lexical Analysis: Regular Expressions

lexemes as REs tokens
e Operators: \
e { return (PLUYS); } // PLUS = 201
“ { return (MINUS); } // MINUS = 202
O { return (MULT); } // MULT = 203
Wi { return (DIV); } // DIV =204

« Each keyword i1s associated a token definition:

“bool” { return (BOOL); } // BOOL =301
“break”™ { return (BREAK); } / BREAK = 302
“case” { return (CASE); } // CASE =303

Lecture 03
14

Lexical Analysis: Regular Expressions

» Identifiers:
[a—zA—7Z][a—zA-Z 0-9]* { return (ID); } // ID =200
» *1s Kleene star and means zero or more.
* + means one or more
* . means any character.

* ["\t\n | means any character other than whitespaces.

e Numbers:
[1-9][0-9]* { return (DECIMALINT); }
0[0-7]* { return (OCTALINT); }
(0x|0X)[0—9a—fA-F]+ { return (HEXINT); }

Lecture 03
15

Lexical Analysis: Regular Expressions

 More meta-characters:
— | creates a disjunction of RE’s.
* if A and B are RE’s, AB 1s an RE that will match either A or B.
— (...) matches whatever RE i1s inside the parantheses.
* 1ndicates the start and end of a group
* | can be used inside groups.

» Regular expressions in Python through module re:
— http://docs.python.org/3/howto/regex.html
— http://docs.python.org/3/library/re.html

Lecture 03
16

Lexical Analysis

« In practice, a scanner generator (e¢.g. Lex, Flex) reads
such lexical definitions and automatically generates code
for the lexical analyzer (scanner).

* The scanner 1s implemented as a deterministic Finite State
Automaton (FSA).

e An FSA is an abstract state machine that can be used to
recognize tokens from a stream of characters.

Lecture 03
17

Syntax: Formal Specification using BNF

| —

e Backus-Naur Form (BNF):
— Invented by John Backus to describe Algol 60.

— BNF 1s a metalanguage notation for Context Free Grammars, used
for describing the syntax of programming languages.

* Nonterminals are abstractions for syntactic constructs in the
language (e.g. expressions, statements, type declarations, etc.)

— Nonterminals are enclosed in angle brackets.

 Terminals are lexemes or tokens.

Lecture 03
18

BNF

[—]

« Examples:
e T et > geriief <l ekpic Texpr>: thenF<stmtz
—, <IEEstmt > SEE: <logicdfiexpr> then <stmf> elise . <stmt>

L, | \ :)
LHS RHS

* The ‘|’ symbol 1s a logical operator used to specify

multiple RHS 1n a production rule:
b T SEmee""S8 L Mogpc expr> Sthen <semt>
| if <logic expr> then <stmt> else <stmt>

Lecture 03
19 |

Recursive Productions

» Syntactic lists are described using recursion:
<STdenyet] 1eie> Sl e Rt
o denitis <fcerit st

e Simple expression grammar:
Sexpre s e xpiese . <cRO 1>
| <expr> * <expr>

% R D '€

Lecture 03
20

Grammars & Derivations

| —

* A Simple Grammar:
SpReUEETI> St S EniEs>
ASEIICS > sl aae i € > 8 s TmEE < Siiitc's >
S LI <V clie S CCR S
<yl — ol Wk Scte| “d
<eXpris —> <term> +asferm>: f <tCerm@- <term>
STerm s> S8 > S| Ween st

* A derivation 1s a repeated application of rules, starting
with the start symbol and ending with a sentence (a
sequence of terminal symbols)

Lecture 03
21

Grammars & Derivations

* An example (leftmost) derivation:
SPNEeOEEN> S SRS >— . < SUBHNE >
o SVElRS — SaED e
=> a =F<expr>

=> a = <term> + <term>
= a —F<Vdar > i< e nimn>
=> "3 =R DSt e

= R — ot ofe)iChs

Lecture 03

22

Derivations

A string of symbols 1n a derivation 1s a sentential form.

A sentence 1s a sentential form that has only terminal
symbols.

A leftmost derivation 1s one in which the leftmost
nonterminal in each sentential form is the one that 1s
expanded.

A rightmost derivation 1s one in which the rightmost
nonterminal in each sentential form 1is the one that 1s
expanded.

A derivation may be neither leftmost nor rightmost

Lecture 03
23

Parse Trees

« Parse Tree = a hierarchical representation of a derivation.
<program>

|
<stmts>
|

<stmt>

e B

a <term> + <term>

<var> const
|

b

Lecture 03

Parse Trees

For any string from L(G), a grammar G defines a recursive
ircesstrutturci=rParsetirce.

Parse Trees:
— The root and intermediate nodes are nonterminals.
— The leaf nodes are terminals.
— For each rule used in a derivation step:
 the LHS i1s a parent node.
 the symbols in the RHS are children nodes (from left to right).

Lecture 03
25

Syntactic Ambiguity

* A grammar 1s ambiguous if and only 1f 1t can generate a
sentence that has two or more distinct parse trees.

e A grammar 1s ambiguous if a sentence has more than one
leftmost derivations.

e This simple expression grammar 1s ambiguous :
Sexpron SWcexpr it <elpitc>
| SEXpraf NS e xXpr 2

Eea D e

Lecture 03
26

Syntactic Ambiguity

* lower than + + lower than *
<expr> <expr> <expr> ¥

/R AN

<expr> <expr> C

o

Lecture 03

Operator Precedence

* The expression string “a+ b * ¢” has two different parse
trees:
— Q: Which one is “correct”?
— A: Both are syntactically correct, but we prefer the first one:

e [ts structure 1s closer to the the correct semantics of the
expression.

« Want meaning of the expression to be easily determined from
its parse tree = need parse tree to encode precedence rules.

e Operator ‘*’ generated lower in the parse tree than ‘+’ means
that “*’ has higher precedence than ‘+’.

Lecture 03
28

Operator Precedence

Expression grammar that encodes precedence rules:
<eXprr —Bcexpr> o <term> | . SEerm>
<EeTraa > <Ccernms > <fa@t >F <ftelet>
< fusleast>" —> SoW“Elos W C

What 1s the parse tree for “a+b * ¢”?
What 1s the parse tree for “a +b +¢”?

Is this new grammar non-ambiguous?

Lecture 03
29

Associativity of operators

» Associativity, like prededence, can be encoded 1n the
grammar;

<EXPT it SeXpranit. <telain> g <teliem>
<tcgaiPE-™ — SNRC I % < fEfc el <fa ce
<HRefe Lol B O L aEe

— Left recursive rules = left associative operators.

— Right recursive rules = right associative operators.

 What are the parse trees for “a+b *¢c” & “a+b+c”?

Lecture 03
30

Associativity of Operators

e Introducing the exponentiation operator ‘*’:
<eXprr —Bcexpr> o <term> | . SEerm>
<EeTraa > <Ccernms > <fa@t >F <ftelet>
<figlege> — gNasco " <fElCcE-al™ <daser

<@ c =R adr|” Dol C

oo “Wiliat 1s the pregedence off -+’ #4278
« What 1s the associativity of “*’?

Lecture 03
ST

Syntax vs. Semantics

e Operator precedence and associativity are semantic rules.
e CFGs are used to specify syntactic rules.

» The grammar can be written to encode semantic rules.
Why i1s this useful?

Lecture 03 |
38|
T —

Syntax vs. Semantics

The CFG specification 1s used to build a Syntactic
Analyzer.

The Syntactic Analyzer verifies that the input 1s a
syntactically correct program.

The Syntactic Analyzer generates a parse tree that 1s used
in Intermediate Code Generation to eventually generate
semantically correct machine code.

Hence, the need for parse trees that are both syntactically
correct and semantically correct.

Lecture 03
33

The “Dangling Else” Ambiguity

Initial grammar rules for the i f-then-else statement :
<'ifsg.S tge> - BEFE<] ogiElexpr> thenssstmt>
| if <logic expr> then <stmt> else <stmt>

<stmt> - <if stmt>
| <other Stmt>

Why 1s this grammar ambiguous?

Grammar can be rewritten to reflect semantic constraints
on the i f-then-else statement (Example 2.32).

Lecture 03
34

Extended BNF

e Optional parts are placed 1n brackets []
Spwecygsl| | Bt isdlem U [2 <ERspT | 1 1 iin) "

« Alternative parts of RHSs are placed inside parentheses
and separated via vertical bars
<EEWRnT> - SSEernmbe(-r | —) Jeonst

» Repetitions (0 or more) are placed inside braces { }
<ldent> - letter {letter|digit}

Lecture 03
B35

BNF vs. EBNF

e BNF
el SRl Codlone >l e << Tehe >
AScexXpro@e <perm=
eI
EET >SS SEe T i < BaEiROT >
St rms g/ <felok o

W< T acEer>
« EBNF
SeXpProfes . <EBermigs {x(T ¥ T wmerm>
S[Ec > RSt actom Tl B8 Sfacksori)

Lecture 03
36

Syntactic Analysis: The Problem

| —

« Syntactic Analysis (Parsing) = a computing problem:
— Input:
* a context free grammar.
 asequence of tokens.
— Output:
« YES if the input can be generated by the CFG.
— The parse tree = need unambiguous grammar.
* NO if the input cannot be generated by the CFG.

— Find all syntax errors; for each, produce an appropriate
diagnostic message and recover quickly.

Lecture 03
37

Syntactic Analysis: The Algorithms

Syntactic Analyzer (Parser) = an algorithm/program that
solves the syntactic analysis problem.

Time Complexity of syntactic parsing algorithms:
— Parsers that work for any unambiguous CFG are complex and
inefficient — O(n’):
¢ Cocke-Younger-Kasami (CYK) bottom-up parsing algorithm.
— Compilers use parsers that only work for a subset of all
unambiguous CFG grammars, but do it in linear time — O(n):
Two categories of parsers:
— Top-down (LL)
— Bottom-up (LR)

Lecture 03
38

Top-down Parsers

Top down — produce the parse tree, beginning at the root:
— Traces or builds the parse tree in preorder.
— Most common are LL(k):
 L: aleft-to-right scanning of the input.
» L: corresponds to a leftmost derivation.

 k: number of lookahead symbols.

— (@iven a sentential form, xAa , the parser must choose the correct
A-rule to get the next sentential form in the leftmost derivation,
using only the first k tokens produced by A.

— Useful parsers look only one token ahead in the input = LL(1).

Lecture 03
39

Top-down Parsers

| —

e The most common top-down parsing algorithms:

— Recursive Descent — a coded implementation, based directly on
the BNF description of the language.

— Table driven implementation — a parsing table 1s used to
implement the BNF rules.
* Implementation Methods:
— Manually coded.
— Generated automatically:
 ANTLR i1s an LL(*) parser generator [www.antlr.org].
« JavaCC 1s an LL(k) parser generator [javacc.dev.java.net]

Lecture 03
40

Bottom-up Parsing

* Bottom up — produce the parse tree, beginning at the leaves:

— Most common are LR(k):
 L: aleft-to-right scanning of the input.
» R: corresponds to the reverse of a rightmost derivation.

* k: number of lookahead symbols.

— @Given a right sentential form, o, determine what substring of . is the
right-hand side of the rule in the grammar that must be reduced to
produce the previous sentential form in the right derivation.

— Useful parsers look only one token ahead in the input = LR(1).

* LR Parser generators:
— yacc (Stephen Johnson for UNIX) ,

— bison (GNU version of yacc).
Lecture 03
41

Recursive Descent Parsing

* Assume we have a lexical analyzer named 1ex (), which puts
the next token code in nextToken.

e There 1s a subprogram for each nonterminal in the grammar,

which can parse sentences that can be generated by that
nonterminal.

* The coding process when there 1s only one RHS:
— For each terminal symbol in the RHS, compare it with nextToken;
» 1f they match, continue;
» ¢lse there 1s an error.

— For each nonterminal symbol in the RHS, call its associated parsing
subprogram => problem if grammar is Left Recursive.

Lecture 03
42

Recursive Descent Parsing

e Left Recursive grammar:

Se XN e < cpalpic> SEMset eI,
SSe xpT - <terme
| <term>

<temmEger= < EchaniE “8< FAEto s
E<Ferm> J/a Facic@r >
3T actoue

= P -Teiolelar - 1 Tl

e Cannot do recursive descent parsing:
zoideexpr B {1 expre () /9. J = infifiitc recursigi

Lecture 03
43

Recursive Descent Parsing

* An expression grammar that has no left recursion:
e > <FEorm>sSRGH 3 J=) @SFeTm >
SEerin> —Sustrefe tor Nal(* | TARs< f agiFor>"
<fTactge— s “|FEcxpr>)

» Added support for parantheses.

» Left recursion can be eliminated automatically for any
CFG.

Lecture 03
44 |

<expr> — <term> {(+ | —-) <term>}

volid expr () {
[P eac dFlie:. ket FeiEny S/

BRI ;

/* ASlEeNg as ShieMRext Coken s+ Ecns—, a1l
lex to get the next token, and parse the
next fEerm &4

while (nextToken == PLUS ||
nextToken == MINUS) {
lex () ;
term() ;
}
}
Lecture 03

45

Recursive Descent Parsing

Convention: Every parsing routine leaves the next token in
nextToken.

A nonterminal that has more than one RHS requires an
initial process to determine which RHS 1t 1s to parse:

— The correct RHS 1s chosen on the basis of the next token of input
(the lookahead).

* The next token is compared with the first token that can be
generated by each RHS until a match 1s found.

 If no match 1s found, output a syntax error.

Lecture 03
46

<factor> — 1d| (Kexpr>)

ol WECYe | (o)e I
/* Determine which RHS */
if (nextToken) == ID)
[FIFO A W S idis st ol 1 exat/
T ey
else 1if (nextToken == LEFT PAREN) {
lex () ; 1
expE();
if (nextToken == RIGHT PAREN)
lex () ; i
else
error () ;
}
ellfSle. crrom@E-y /< BNen wher SR SEmSECacE T4y

}

Lecture 03
47

The LL Grammars

| —

 The Left Recursion problem:

— If a grammar has left recursion, either direct or indirect, it cannot
be the basis for a top-down parser.

— A grammar can be modified to remove direct left recursion.
For each nonterminal A,
1. Group the A-rulesas A - Aoy | ... [Aa,| B |Bs]--- | By
where none of the s begins with A
2. Replace the original A-rules with:
AN, AT, A0

AR A |3 SR 0BA T [Fe
— [Aho et al., 1986] give an algorithm to remove left recursion from
any CFG.
Lecture 03

48
e

Eliminating Left Recursion

e Left Recursive grammar:
<eXpiae e cXpis . - Siisesrm -
ES < pr>t SCerm>
F Seerme
<Cermagss<T1 crm e = <f o cEor>
<S>,/ <fEaecteorns
[<$@aCC orz
GEC(Tdela -~

« Exercise: Transform into an equivalent grammar w/o left
recursion.

Lecture 03
49

The LL Grammars

* The lack of Pairwise Disjointness:

— The inability to determine the correct RHS on the basis of one
token of lookahead

— Def: FIRST(a) = {a | a =>. ap} }, where =>. means zero or more
derivation steps.

— [Aho et al., 1986] give an algorithm to compute FIRST(a).
e Pairwise Disjointness Test:

— For each nonterminal A in the grammar that has more than one
RHS, for each pair of rules, A — o, and A — a, 1t must be true
that:

FIRST(cy) N FIRST(ct) = ¢

Lecture 03
50

LL Grammars: Pairwise Disjointness

Example:

A — aB | bAb | Bb

B—=cB | d

Example:

<variable> — identifier | identifier [<expr>]

Pairwise Disjointness hard to solve in general case.
In some cases, Left Factoring can solve the problem.

Lecture 03
5T

LL Grammars: Left Factoring

Replace:
<vagiable>y—> identifier |

1dentvi il [\ Sexpr @b] ’

With:
<variable> — identifier <new>
sSnew> =t | S <expme Y]
or

<vaimita DI . —@Skdent i tams [V fexpires sifen s Sk |
(the outer brackets are metasymbols of EBNF)

Lecture 03
52

Readings & Exercises

« Reading assignment:
— Chapter 2: Programming Language Syntax:
 Intro from 2, then 2.1;
* Intro from 2.2;
eSS ntro. from 2¥8then®2:3 .18 232

 Exercises:
=Sl 2.350. 9% 418l 2" 1252 .13, 2. 13 a=d), 227

Lecture 03
53

Summary

Generative Grammars
— Regular Grammars (RG) for lexical analysis.
— Context Free Grammars (CFG) for syntactic analysis.

Lexical Analysis
— RG@G, Regular Expressions.
— Implementation: Finite State Automata (FSA).

Syntactic Analysis:
— CFGs specified using BNF.
— Implementation:
e Top-down parsing (e.g. Recursive Descent).

* Bottom-up Parsing.

Lecture 03
54

Finite State Automata

* A deterministic FSA is a tuple (Z,S,s,,0,F):
— 2 is the input alphabet (a finite set of symbols).
— S 1s a finite set of states.
— S,ES 1s the 1nitial state.
— 0:SxXZ—S is the state—transition function.
— FCS is the set of final states.

Lecture 03
55

FSA: Representation & Implementation

 An FSA can be represented using transition diagrams.

* An FSA for recognizing integer literals, identifiers, and
reserved words:

— When recognizing an identifier, all uppercase and lowercase letters
are equivalent = use a character class that includes all letters
(Letter).

— When recognizing an integer literal, all digits are equivalent = use
a digit class (Digit).

— Use a table lookup to determine whether a possible identifier 1s in
fact a reserved word.

Lecture 03
56

Transition Diagrams

1 1

QTN

@

Lecture 03

Transition Diagrams

Letter/Digit

addChar; getChar

> return lookup (1lexeme)

Letter
<E§§E;>addChar; getChar

Digit
> @ » return Int Lit
addChar; getChar -

addChar; getChar
Lecture 03

Syntax vs. Semantics

Syntax: specifies the form or structure of the expressions,

statements, and program units.

— <SBiESTmt > SEEE. <] ogdcBiexpr> then <stmE>

=2 <Jf stmEs-, WL <logicexpr> thEn <sitmt> elEe™<stmE>
- <whgisfelstmt>#. while (<logic§expr>) <stmis

Semantics: the meaning of the expressions, statements,
and program units.
— what is the meaning of the Java while statement above?

Syntax vs. Semantics:
— semantics should follow directly from syntax.
— formal specification easier for syntax than for semantics

Lecture 03
59

