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Names, Bindings, and Scopes

• A name is a symbolic identifier used to refer to an object:
– Variables, constants, operations, types, …
– Names are essential for abstraction:

• process abstraction, e.g. subroutines.
• data abstraction, e.g. classes.

• A binding is an association, such as:
– between a name and an object (e.g. variable).
– between a question and an answer (e.g. what sorting algorithm?).

• The scope of a name binding is that region of the program 
in which the binding is active:
– scoping rules define this region.
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Binding Time

• Binding time is the time at which a binding takes place:
– Language design time – bind operator symbols to operations.
– Language implementation time – bind floating point type to a 

representation.
– Program writing time – choose algorithms, data structures, names.
– Compile time – bind a variable to a type in C or Java.
– Link time – bind a name in one module to an object in another 

module.
– Load time – bind a C or C++ static variable to a memory cell.
– Runtime – bind a nonstatic local variable to a memory cell.

• Example: count = count + 1;
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Bindings: Static vs. Dynamic

• There are 2 types of bindings: static and dynamic.

• A binding is static if it first occurs before run time and 
remains unchanged throughout program execution.

• A binding is dynamic if it first occurs during execution or 
can change during the execution of the program.

4
Lecture 05



The Type

• The type of a variable determines:
– The set of values that the variable can store.
– The set of operations that are defined on these values.

• For example, the int primitive type in Java:
– specifies the range [–2147483648,  2147483648].
– operations such as addition, substraction, multiplication, division 

and modulo.
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Static Type Binding

• Explicit declaration – a program statement used for 
declaring the types of variables
– Most programming languages (C/C++, Java, …)
– In C/C++:

• declarations only specify types and other attributes;
• definitions specify attributes and cause storage allocation.

• Implicit declaration – a default mechanism for specifying 
types of variables 
– In PERL, prefixes define types: any name beginning with $ is a 

scalar (numeric or string), @ is an array, % is a hash structure.
– In ML, types are implicitly associated using type inference.
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Dynamic Type Binding

• The variable is associated with a type every time it is 
assigned a value through an assignment statement.

• Examples (Javascript):
list = [2, 4.33, 6, 8];
list = 17.3;

• Advantage: flexibility (generic program units).
• Disadvantages: 

– Usually purely interpreted ⇒ slow execution.
– Costly implementation of dynamic type checking.
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Binding Times

• Early binding times are associated with greater efficiency:
– Compiled languages tend to have early binding times.

• generate memory layout for global variables, efficient code to 
access them.

• static type checking.

• Later binding times are associated with greater flexibility:
– Interpreted languages tend to have later binding times.

• allow a variable name to refer to objects of multiple types:
– generic subroutines.

• dynamic type checking.
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Key Events & Lifetimes

• When discussing bindings, important to distinguish names 
from objects they refer to.

• Key events:
– creation of objects.
– creation of bindings.
– references to objects (which use bindings).
– deactivation and reactivation of  bindings (temporary unusable).
– destruction of bindings.
– destruction of objects.
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Key Events & Lifetimes

• The lifetime of a name-object binding is the period of 
time between the creation and the destruction of this 
binding.

• The lifetime of an object is the time between the creation 
and destruction of an object. 
– Name-object binding lifetime and object lifetime do not 

necessarily coincide.
• Bindings may outlive objects:

– dangling references.
• Objects may outlive bindings:

– memory leaks.
– reference parameters.
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Object Lifetime and Storage Management

• Object lifetimes corespond to 3 principal storage allocation 
mechanisms:
– Static allocation:

• code, global variables, static or own variables, explicit constants.
– Stack-based allocation:

• parameters, local variables, temporary values.
– Heap-based allocation.

• Depending on their lifetime, 4 categories of variables:
1. Static.
2. Stack-Dynamic.
3. Explicit Heap-Dynamic.
4. Implicit Heap-Dynamic.
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Static Variables

• A static variable is bound to a memory cell before execution 
begins and remains bound to the same memory cell 
throughout execution.
– Example:  C and C++ static variables, global variables.

Fortran local variables (before Fortran 90).

int  myFunction() {
static int count = 0;
…
count++;
return count;

}
12

Lecture 05



Static Variables

• Advantages: 
– efficiency: direct addressing, no run-time overhead for allocation 

& deallocation.
– history-sensitive : maintain values between successive function 

calls.

• Disadvantages: 
– lack of flexibility (no recursion).
– storage cannot be shared among variables.
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Stack-Dynamic Variables

• Stack-dynamic = storage is allocated & deallocated in 
last-in first-out order, from the run-time stack.
– usually in conjunction with subroutine calls and returns.

– Example: local variables in C subprograms and Java methods.

int  factorial(int n) {
int result = 1;
for (int i = 2; i ≤ n; i++)

result ∗= i;
return result;

}
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Stack-Dynamic Variables

• Advantages:
– Allows recursion; 
– Conserves storage.

• Disadvantages: 
– Overhead of allocation and deallocation.
– Subprograms cannot be history sensitive.
– Inefficient references (indirect addressing).
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Stack-based Allocation

• Each instance of a subroutine has its own frame, or 
activation record, on the run-time stack:
– arguments and return values.
– local variables and temporary values.
– bookkeeping information (e.g., saved registers, static link).

• Addresses computed relative to the stack pointer (sp) or
frame pointer (fp):
– fixed OFFSETS determined at compile time.
– frame pointer set to point to a known location within  frame.
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Stack-based Allocation

• Stack maintenance through:
– calling sequence:

• code executed by the caller, immediately before & after the 
call.

– prologue & epilogue:
• code executed by the callee, at the beginning & the end of the 

subroutine.
– more details in PLP 8.2
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Stack-based Allocation
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Explicit Heap-Dynamic Variables

• Explicit heap-dynamic variables are allocated and 
deallocated from the heap by explicit directives, specified 
by the programmer, which take effect during execution:
– The actual variables are nameless.
– Referenced only through pointers or references, e.g. dynamic 

objects in C++ (via new and delete), all objects in Java.
int *intNode; // create the pointer, stack-dynamic.
…
intNode = new int; // create the heap-dynamic variable.
…
delete intNode; // deallocate the heap-dynamic variable.

19
Lecture 05



Explicit Heap-Dynamic Variables

• Advantages: 
– Enable the specification and construction of  dynamic structures 

(linked lists & trees) that grow and shrink during the execution.

• Disadvantages: 
– Unreliable: difficult to use pointers & references correctly.
– Innefficient: heap managemenet is costly and complicated.
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Implicit Heap-Dynamic Variables

• Implicit heap-dynamic variables – allocation and 
deallocation caused by assignment statements:
– All their attributes (e.g. type) are bound every time they are assigned.
– Examples: strings and arrays in Perl, variables in JavaScript & PHP.

list = [2, 4.33, 6, 8];

list = 17.3;

• Advantages: flexibility (generic code)
• Disadvantages: 

– Inefficient, because all attributes are dynamic.
– Loss of error detection by compiler.
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Heap-based Allocation

• Storage management algorithms:
– maintain one free list (linear cost):

• first fit algorithm
• best fit algorithm

– divide heap into multiple free lists, one for each standard size:
• static division.
• dynamic division:

– buddy system:
» split block of size 2k+1 into two blocs of size 2k

– Fibonnacci heap:
» split block of size Fn into two blocs of size Fn-1, Fn-2.
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Heap-based Allocation

• Need to compact the heap to reduce external 
fragmentation.

• Garbage collection eliminates manual deallocation errors:
– dangling references.
– memory leaks.

• More details in PLP 7.7.2 and 7.7.3.
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Heap-based Allocation
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Scope

• The scope of a variable is the range of statements over 
which it is visible:
– Variable v is visible in statement s if v can be referenced in s.

• The scope rules of a language determine how occurrences 
of names are associated with variables:
– static scoping.
– dynamic scoping.

• Two types of variables:
– local variables: declared inside the program unit/block.
– nonlocal variable: visible, but declared outside the program unit.
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Static Scope

• Introduced in ALGOL 60 as a method of binding names to 
nonlocal variables:
– To connect a name reference to a variable, you (or the compiler) 

must find the declaration.
– Search process: search declarations, first locally, then in 

increasingly larger enclosing scopes, until one is found for the 
given name.

• Two ways of creating nested static scopes:
– Nested subprogram definitions (e.g., Ada, JavaScript, and PHP).
– Nested blocks.

• Given a specific scope:
– Enclosing static scopes are called its static ancestors;
– The nearest static ancestor is called its static parent.
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Static Scope: Subprograms

procedure Big is
X: Integer;
procedure SUB1 is

X: Integer; 
begin  -- of SUB1
...
end;  -- of SUB1

procedure SUB2 is
begin  -- of SUB2
… X …
end;  -- of SUB2

begin  -- of Big
...
end;  -- of Big
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Big calls Sub1
Sub1 calls Sub2
Sub2 uses X
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Implementation: Static Chains

28
Lecture 05



Static Scope: Blocks

• Blocks – a method of creating (nested) static scopes inside 
program units (introduced in ALGOL 60).

• Examples:
– C-based languages:

while (...) {
int index;
...

}

– Ada:   
declare Temp : Float;
begin
...

end
29
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Static Scope

• Variables can be hidden from a unit by having a "closer" 
variable with the same name:
– creates “holes” in the scope.

• C++ and Ada allow access to these "hidden" variables:
– In Ada:  unit.name
– In C++: class_name::name
– In Python: global name
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Declaration Order

• If object x is declared somewhere within block B, does the 
scope of x include the portion of B before the declaration?

• Declaration order rules:
– Algol 60, LISP (early languages):

• all declarations appear at the beginning of their scope.
– Pascal:

• names must be declared before they are used.
– the scope is still the entire block => subtle interactions.

– Ada, C, C++, Java:
• the scope is from the declaration to the end of the block (w/o 

holes).
31
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Declaration Order

• Declaration order rules:
– C++ and Java relax the rules in many cases:

• members of a class are visible inside all class members.
• classes in Java can be declared in any order.

– Modula-3:
• the scope is the entire block (minus holes) => can use a 

variable before declaring it.
– Scheme is very flexible:

• let
• let* (declaration-to-end-of-block semantics)
• letrec (whole-bloc semantics)
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Static Scope: Evaluation 

MAIN can call A and B
A can call C and D
B can call A and E
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Static Scope: Evaluation
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Static Scope: Evaluation

• Suppose the specification is changed so that D must now 
access some data in B.

• Solutions:
– Put D in B (but then C can no longer call it and D cannot access 

A's variables).
– Move the data from B that D needs to MAIN (but then all 

procedures can access them).

• Same problem for procedure access as for data access.
• Overall: static scoping often encourages many globals.
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Dynamic Scope

• Static Scope: names are associated to variables based on 
their textual layout (spatial).

• Dynamic Scope: names are associated to variables based 
on calling sequences of program units (temporal).
– References to variables are connected to declarations by searching 

back through the chain of subprogram calls that forced execution 
to this point.
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Dynamic Scope Example

procedure Big is
X: Integer;
procedure SUB1 is

X: Integer; 
begin  -- of SUB1
...
end;  -- of SUB1

procedure SUB2 is
begin  -- of SUB2
… X …
end;  -- of SUB2

begin  -- of Big
...
end;  -- of Big
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Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

Lecture 05



Typical Stack Frame
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Dynamic Scope: Implementation
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Dynamic Scope: Evaluation

• Advantages: 
– convenience: called subprogram is executed in the context of the 

caller ⇒ no need to pass variables in the caller as parameters.

• Disadvantages: 
– poor readability

• virtually impossible for a human reader to determine the 
meaning of references to nonlocal variables.

– less reliable programs than with static scoping.
– execution is slower than with static scoping.
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Referencing Environments

• The referencing environment of a statement is the 
collection of all names that are visible in the statement:
– In a static-scoped language, it is the local variables plus all of the 

visible variables in all of the enclosing scopes.
– In a dynamic-scoped language, the referencing environment is the 

local variables plus all visible variables in all active subprograms:
• A subprogram is active if its execution has begun but has not 

yet terminated.
– Variables in enclosing scopes/active subprograms can be hidden 

by variables with same name.
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Referencing Environments
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Binding Rules & Closures

• Some languages allow using subroutines as parameters.
• When should the scope rule be applied?

– When the subroutine is passed as parameter:
⇒ deep binding

– When the subroutine is called:
⇒ shallow binding

• Deep binding is default in static scoping: 
– create an explicit representation of the referencing environment.
– bundle it with a reference to the subroutine.
=> a closure.
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44

program main(input, output);
procedure A(I: integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (* A *)
if I > 1 then

P
else

A(2, B);
end

procedure C;
begin
end;

begin (* main *)
A(1, C);

end.

Deep Binding (Pascal)

Deep Binding => ?
Shallow Binding => ?



First-Class Values and Unlimited Extent

• First-class values can be:
– passed as parameter;
– returned from a subroutine;
– assigned into a variable.

• Functions are first-class values in functional PLs.

• Scheme is a functional PL:
– functions are first-class values & scopes may be nested.
⇒ functions may outlive the execution of the scope in which they 

were declared => local objects need to have unlimited extent.
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Unlimited Extent

• Unlimited extent = lifetime continues indefinitely:
– space reclaimed by garbage collector.

• space generally allocated on the heap.

1. (define plus-x (lambda (x)
2. (lambda (y) (+ x y))))
3. …
4. (let ((f (plus-x 2)))
5. (f 3))
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Separate Compilation

• Separately-compiled files in C provide a sort of poor 
person's modules:
– Rules for how variables work with separate compilation are messy.

• Language has been jerry-rigged to match the linker.
– Static on a function or variable outside a function means it is 

usable only in the current source file
• Different notion from the static variables inside a function.

– Extern on a variable or function means that it is declared in 
another source file   

• Functions headers without bodies are extern by default.    
– Extern declarations are interpreted as forward declarations if a 

later declaration overrides them.
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