
Organization of Programming Languages
CS320/520N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 05



Names, Bindings, and Scopes

• A name is a symbolic identifier used to refer to an object:
– Variables, constants, operations, types, …
– Names are essential for abstraction:

• process abstraction, e.g. subroutines.
• data abstraction, e.g. classes.

• A binding is an association, such as:
– between a name and an object (e.g. variable).
– between a question and an answer (e.g. what sorting algorithm?).

• The scope of a name binding is that region of the program 
in which the binding is active:
– scoping rules define this region.

2
Lecture 05



Binding Time

• Binding time is the time at which a binding takes place:
– Language design time – bind operator symbols to operations.
– Language implementation time – bind floating point type to a 

representation.
– Program writing time – choose algorithms, data structures, names.
– Compile time – bind a variable to a type in C or Java.
– Link time – bind a name in one module to an object in another 

module.
– Load time – bind a C or C++ static variable to a memory cell.
– Runtime – bind a nonstatic local variable to a memory cell.

• Example: count = count + 1;

3
Lecture 05



Bindings: Static vs. Dynamic

• There are 2 types of bindings: static and dynamic.

• A binding is static if it first occurs before run time and 
remains unchanged throughout program execution.

• A binding is dynamic if it first occurs during execution or 
can change during the execution of the program.

4
Lecture 05



The Type

• The type of a variable determines:
– The set of values that the variable can store.
– The set of operations that are defined on these values.

• For example, the int primitive type in Java:
– specifies the range [–2147483648,  2147483648].
– operations such as addition, substraction, multiplication, division 

and modulo.

5
Lecture 05



Static Type Binding

• Explicit declaration – a program statement used for 
declaring the types of variables
– Most programming languages (C/C++, Java, …)
– In C/C++:

• declarations only specify types and other attributes;
• definitions specify attributes and cause storage allocation.

• Implicit declaration – a default mechanism for specifying 
types of variables 
– In PERL, prefixes define types: any name beginning with $ is a 

scalar (numeric or string), @ is an array, % is a hash structure.
– In ML, types are implicitly associated using type inference.

6
Lecture 05



Dynamic Type Binding

• The variable is associated with a type every time it is 
assigned a value through an assignment statement.

• Examples (Javascript):
list = [2, 4.33, 6, 8];
list = 17.3;

• Advantage: flexibility (generic program units).
• Disadvantages: 

– Usually purely interpreted ⇒ slow execution.
– Costly implementation of dynamic type checking.

7
Lecture 05



Binding Times

• Early binding times are associated with greater efficiency:
– Compiled languages tend to have early binding times.

• generate memory layout for global variables, efficient code to 
access them.

• static type checking.

• Later binding times are associated with greater flexibility:
– Interpreted languages tend to have later binding times.

• allow a variable name to refer to objects of multiple types:
– generic subroutines.

• dynamic type checking.

8
Lecture 05



Key Events & Lifetimes

• When discussing bindings, important to distinguish names 
from objects they refer to.

• Key events:
– creation of objects.
– creation of bindings.
– references to objects (which use bindings).
– deactivation and reactivation of  bindings (temporary unusable).
– destruction of bindings.
– destruction of objects.

9
Lecture 05



Key Events & Lifetimes

• The lifetime of a name-object binding is the period of 
time between the creation and the destruction of this 
binding.

• The lifetime of an object is the time between the creation 
and destruction of an object. 
– Name-object binding lifetime and object lifetime do not 

necessarily coincide.
• Bindings may outlive objects:

– dangling references.
• Objects may outlive bindings:

– memory leaks.
– reference parameters.

10
Lecture 05



Object Lifetime and Storage Management

• Object lifetimes corespond to 3 principal storage allocation 
mechanisms:
– Static allocation:

• code, global variables, static or own variables, explicit constants.
– Stack-based allocation:

• parameters, local variables, temporary values.
– Heap-based allocation.

• Depending on their lifetime, 4 categories of variables:
1. Static.
2. Stack-Dynamic.
3. Explicit Heap-Dynamic.
4. Implicit Heap-Dynamic.

11
Lecture 05



Static Variables

• A static variable is bound to a memory cell before execution 
begins and remains bound to the same memory cell 
throughout execution.
– Example:  C and C++ static variables, global variables.

Fortran local variables (before Fortran 90).

int  myFunction() {
static int count = 0;
…
count++;
return count;

}
12

Lecture 05



Static Variables

• Advantages: 
– efficiency: direct addressing, no run-time overhead for allocation 

& deallocation.
– history-sensitive : maintain values between successive function 

calls.

• Disadvantages: 
– lack of flexibility (no recursion).
– storage cannot be shared among variables.

13
Lecture 05



Stack-Dynamic Variables

• Stack-dynamic = storage is allocated & deallocated in 
last-in first-out order, from the run-time stack.
– usually in conjunction with subroutine calls and returns.

– Example: local variables in C subprograms and Java methods.

int  factorial(int n) {
int result = 1;
for (int i = 2; i ≤ n; i++)

result ∗= i;
return result;

}

14
Lecture 05



Stack-Dynamic Variables

• Advantages:
– Allows recursion; 
– Conserves storage.

• Disadvantages: 
– Overhead of allocation and deallocation.
– Subprograms cannot be history sensitive.
– Inefficient references (indirect addressing).

15
Lecture 05



Stack-based Allocation

• Each instance of a subroutine has its own frame, or 
activation record, on the run-time stack:
– arguments and return values.
– local variables and temporary values.
– bookkeeping information (e.g., saved registers, static link).

• Addresses computed relative to the stack pointer (sp) or
frame pointer (fp):
– fixed OFFSETS determined at compile time.
– frame pointer set to point to a known location within  frame.

16
Lecture 05



Stack-based Allocation

• Stack maintenance through:
– calling sequence:

• code executed by the caller, immediately before & after the 
call.

– prologue & epilogue:
• code executed by the callee, at the beginning & the end of the 

subroutine.
– more details in PLP 8.2

17
Lecture 05



Stack-based Allocation

18
Lecture 05



Explicit Heap-Dynamic Variables

• Explicit heap-dynamic variables are allocated and 
deallocated from the heap by explicit directives, specified 
by the programmer, which take effect during execution:
– The actual variables are nameless.
– Referenced only through pointers or references, e.g. dynamic 

objects in C++ (via new and delete), all objects in Java.
int *intNode; // create the pointer, stack-dynamic.
…
intNode = new int; // create the heap-dynamic variable.
…
delete intNode; // deallocate the heap-dynamic variable.

19
Lecture 05



Explicit Heap-Dynamic Variables

• Advantages: 
– Enable the specification and construction of  dynamic structures 

(linked lists & trees) that grow and shrink during the execution.

• Disadvantages: 
– Unreliable: difficult to use pointers & references correctly.
– Innefficient: heap managemenet is costly and complicated.

20
Lecture 05



Implicit Heap-Dynamic Variables

• Implicit heap-dynamic variables – allocation and 
deallocation caused by assignment statements:
– All their attributes (e.g. type) are bound every time they are assigned.
– Examples: strings and arrays in Perl, variables in JavaScript & PHP.

list = [2, 4.33, 6, 8];

list = 17.3;

• Advantages: flexibility (generic code)
• Disadvantages: 

– Inefficient, because all attributes are dynamic.
– Loss of error detection by compiler.

21
Lecture 05



Heap-based Allocation

• Storage management algorithms:
– maintain one free list (linear cost):

• first fit algorithm
• best fit algorithm

– divide heap into multiple free lists, one for each standard size:
• static division.
• dynamic division:

– buddy system:
» split block of size 2k+1 into two blocs of size 2k

– Fibonnacci heap:
» split block of size Fn into two blocs of size Fn-1, Fn-2.

22
Lecture 05



Heap-based Allocation

• Need to compact the heap to reduce external 
fragmentation.

• Garbage collection eliminates manual deallocation errors:
– dangling references.
– memory leaks.

• More details in PLP 7.7.2 and 7.7.3.

23
Lecture 05



Heap-based Allocation

24
Lecture 05



Scope

• The scope of a variable is the range of statements over 
which it is visible:
– Variable v is visible in statement s if v can be referenced in s.

• The scope rules of a language determine how occurrences 
of names are associated with variables:
– static scoping.
– dynamic scoping.

• Two types of variables:
– local variables: declared inside the program unit/block.
– nonlocal variable: visible, but declared outside the program unit.

25
Lecture 05



Static Scope

• Introduced in ALGOL 60 as a method of binding names to 
nonlocal variables:
– To connect a name reference to a variable, you (or the compiler) 

must find the declaration.
– Search process: search declarations, first locally, then in 

increasingly larger enclosing scopes, until one is found for the 
given name.

• Two ways of creating nested static scopes:
– Nested subprogram definitions (e.g., Ada, JavaScript, and PHP).
– Nested blocks.

• Given a specific scope:
– Enclosing static scopes are called its static ancestors;
– The nearest static ancestor is called its static parent.

26
Lecture 05



Static Scope: Subprograms

procedure Big is
X: Integer;
procedure SUB1 is

X: Integer; 
begin  -- of SUB1
...
end;  -- of SUB1

procedure SUB2 is
begin  -- of SUB2
… X …
end;  -- of SUB2

begin  -- of Big
...
end;  -- of Big

27

Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

Lecture 05



Implementation: Static Chains

28
Lecture 05



Static Scope: Blocks

• Blocks – a method of creating (nested) static scopes inside 
program units (introduced in ALGOL 60).

• Examples:
– C-based languages:

while (...) {
int index;
...

}

– Ada:   
declare Temp : Float;
begin
...

end
29

Lecture 05



Static Scope

• Variables can be hidden from a unit by having a "closer" 
variable with the same name:
– creates “holes” in the scope.

• C++ and Ada allow access to these "hidden" variables:
– In Ada:  unit.name
– In C++: class_name::name
– In Python: global name

30
Lecture 05



Declaration Order

• If object x is declared somewhere within block B, does the 
scope of x include the portion of B before the declaration?

• Declaration order rules:
– Algol 60, LISP (early languages):

• all declarations appear at the beginning of their scope.
– Pascal:

• names must be declared before they are used.
– the scope is still the entire block => subtle interactions.

– Ada, C, C++, Java:
• the scope is from the declaration to the end of the block (w/o 

holes).
31

Lecture 05



Declaration Order

• Declaration order rules:
– C++ and Java relax the rules in many cases:

• members of a class are visible inside all class members.
• classes in Java can be declared in any order.

– Modula-3:
• the scope is the entire block (minus holes) => can use a 

variable before declaring it.
– Scheme is very flexible:

• let
• let* (declaration-to-end-of-block semantics)
• letrec (whole-bloc semantics)

32
Lecture 05



Static Scope: Evaluation 

MAIN can call A and B
A can call C and D
B can call A and E

33
Lecture 05

MAINMAIN

E

A

C

D

B

A B

C D E



Static Scope: Evaluation

34
Lecture 05

MAIN MAIN

A B

C D E

A

C

B

ED



Static Scope: Evaluation

• Suppose the specification is changed so that D must now 
access some data in B.

• Solutions:
– Put D in B (but then C can no longer call it and D cannot access 

A's variables).
– Move the data from B that D needs to MAIN (but then all 

procedures can access them).

• Same problem for procedure access as for data access.
• Overall: static scoping often encourages many globals.

35
Lecture 05



Dynamic Scope

• Static Scope: names are associated to variables based on 
their textual layout (spatial).

• Dynamic Scope: names are associated to variables based 
on calling sequences of program units (temporal).
– References to variables are connected to declarations by searching 

back through the chain of subprogram calls that forced execution 
to this point.

36
Lecture 05



Dynamic Scope Example

procedure Big is
X: Integer;
procedure SUB1 is

X: Integer; 
begin  -- of SUB1
...
end;  -- of SUB1

procedure SUB2 is
begin  -- of SUB2
… X …
end;  -- of SUB2

begin  -- of Big
...
end;  -- of Big

37

Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

Lecture 05



Typical Stack Frame

38
Lecture 05



Dynamic Scope: Implementation

39
Lecture 05



Dynamic Scope: Evaluation

• Advantages: 
– convenience: called subprogram is executed in the context of the 

caller ⇒ no need to pass variables in the caller as parameters.

• Disadvantages: 
– poor readability

• virtually impossible for a human reader to determine the 
meaning of references to nonlocal variables.

– less reliable programs than with static scoping.
– execution is slower than with static scoping.

40
Lecture 05



Referencing Environments

• The referencing environment of a statement is the 
collection of all names that are visible in the statement:
– In a static-scoped language, it is the local variables plus all of the 

visible variables in all of the enclosing scopes.
– In a dynamic-scoped language, the referencing environment is the 

local variables plus all visible variables in all active subprograms:
• A subprogram is active if its execution has begun but has not 

yet terminated.
– Variables in enclosing scopes/active subprograms can be hidden 

by variables with same name.

41
Lecture 05



Referencing Environments

42
Lecture 05

{A1, X, P2, A2, P3, A3, P4}



Binding Rules & Closures

• Some languages allow using subroutines as parameters.
• When should the scope rule be applied?

– When the subroutine is passed as parameter:
⇒ deep binding

– When the subroutine is called:
⇒ shallow binding

• Deep binding is default in static scoping: 
– create an explicit representation of the referencing environment.
– bundle it with a reference to the subroutine.
=> a closure.

43
Lecture 05



44

program main(input, output);
procedure A(I: integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (* A *)
if I > 1 then

P
else

A(2, B);
end

procedure C;
begin
end;

begin (* main *)
A(1, C);

end.

Deep Binding (Pascal)

Deep Binding => ?
Shallow Binding => ?



First-Class Values and Unlimited Extent

• First-class values can be:
– passed as parameter;
– returned from a subroutine;
– assigned into a variable.

• Functions are first-class values in functional PLs.

• Scheme is a functional PL:
– functions are first-class values & scopes may be nested.
⇒ functions may outlive the execution of the scope in which they 

were declared => local objects need to have unlimited extent.

45
Lecture 05



Unlimited Extent

• Unlimited extent = lifetime continues indefinitely:
– space reclaimed by garbage collector.

• space generally allocated on the heap.

1. (define plus-x (lambda (x)
2. (lambda (y) (+ x y))))
3. …
4. (let ((f (plus-x 2)))
5. (f 3))

46
Lecture 05



Separate Compilation

• Separately-compiled files in C provide a sort of poor 
person's modules:
– Rules for how variables work with separate compilation are messy.

• Language has been jerry-rigged to match the linker.
– Static on a function or variable outside a function means it is 

usable only in the current source file
• Different notion from the static variables inside a function.

– Extern on a variable or function means that it is declared in 
another source file   

• Functions headers without bodies are extern by default.    
– Extern declarations are interpreted as forward declarations if a 

later declaration overrides them.

47
Lecture 05


	Organization of Programming Languages�CS320/520N
	Names, Bindings, and Scopes
	Binding Time
	Bindings: Static vs. Dynamic
	The Type
	Static Type Binding
	Dynamic Type Binding
	Binding Times
	Key Events & Lifetimes
	Key Events & Lifetimes
	Object Lifetime and Storage Management
	Static Variables
	Static Variables
	Stack-Dynamic Variables
	Stack-Dynamic Variables
	Stack-based Allocation
	Stack-based Allocation
	Stack-based Allocation
	Explicit Heap-Dynamic Variables
	Explicit Heap-Dynamic Variables
	Implicit Heap-Dynamic Variables
	Heap-based Allocation
	Heap-based Allocation
	Heap-based Allocation
	Scope
	Static Scope
	Static Scope: Subprograms
	Implementation: Static Chains
	Static Scope: Blocks
	Static Scope
	Declaration Order
	Declaration Order
	Static Scope: Evaluation 
	Static Scope: Evaluation
	Static Scope: Evaluation
	Dynamic Scope
	Dynamic Scope Example
	Typical Stack Frame
	Dynamic Scope: Implementation
	Dynamic Scope: Evaluation
	Referencing Environments
	Referencing Environments
	Binding Rules & Closures
	Slide Number 44
	First-Class Values and Unlimited Extent
	Unlimited Extent
	Separate Compilation

