
Organization of Programming Languages
CS3200 / 5200N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 06

Data Types

•  A data type defines a collection of data objects and a set of
predefined operations on those objects.

•  Primitive data types are those not defined in terms of other
data types:
–  Some primitive data types are merely reflections of the hardware.
–  Others require only a little non-hardware support for their

implementation.

•  User-defined types are created with flexible structure
defining operators (ALGOL 68).

•  Abstract data types separate the interface of a type (visible)
from the representation of that type (hidden).

2
Lecture 06

Primitive Data Types

•  Integers – almost always an exact reflection of the
hardware.
–  Java’s signed integers: byte,short,int,long.

•  Floating Point – model real numbers, but only as
approximations.
–  Support for two types: float and double.

•  Complex – two floats, the real and the imaginary.
–  Supported in Fortran and Python.

•  Boolean – two elements, true and false.
–  Implemented as bits or bytes.

•  Character – stored as numeric codings.
–  ASCII 8-bit encoding, UNICODE 16-bit encoding.

3
Lecture 06

Primitive Data Types

•  Rationals:
–  represented as pairs of integers (Scheme, Common LISP):

•  (rational? 6/10) => #t

•  Decimals:
–  use a base-10 encoding to avoid round-off in financial arithmetic.

•  Cobol, PL/I.

4
Lecture 06

 Scalar Types

•  Scalar types (also simple types):
–  All primitive types.
–  Some user-defined types:

•  Fixed-point:
–  represented as integers, with position for decimal point:

»  type Fixed_Point is delta 0.01 digits 10;
•  Enumerations:

–  represented as small integers:
»  type weekday is (sun, mon, tue, wed, thu, fri, sat);

•  Subranges:
–  subtype workday is weekday range mon . . fri;

5
Lecture 06

Composite Types

•  Records (structures)
•  Variant records (unions)
•  Arrays

–  Strings (arrays of characters)
•  Sets
•  Pointers
•  Lists
•  Files

6
Lecture 06

Array Types

•  An array is an aggregate of homogeneous data elements in
which an individual element is identified by its position in
the aggregate, relative to the first element.

•  Indexing is a mapping from indices to elements:
 array_name[index_value_list] → an element

•  Index range checking:
–  C, C++, Perl, and Fortran do not specify range checking.
–  Java, ML, C# specify range checking.
–  In Ada, the default is to require range checking, but it can be

turned off.

7
Lecture 06

Array Categories

•  Static: subscript ranges are statically bound and storage
allocation is static (before run-time)
–  Advantage: efficiency – no dynamic allocation/deallocation.
–  Example: arrays declared as static in C/C++ functions.

•  Fixed Stack-Dynamic: subscript ranges are statically
bound, but the allocation is done at declaration time (at
run-time)
–  Advantage: space efficiency – stack space is reused.
–  Example: arrays declared in C/C++ functions without the static

modifier.

8
Lecture 06

Array Categories

•  Conformant Arrays: array parameters where bounds are
symbolic names rather than constants:
–  Pascal, Modula-2, Ada, C99.

•  C only supports single dimensional conformant arrays.

 function DotProduct(A, B: array[lower .. uper : integer] of real) : real;

 void square(int n, double M[n][n]);

9
Lecture 06

Array Categories

•  Stack-Dynamic: subscript ranges are dynamically bound
and the storage allocation is dynamic (at run-time):
–  Advantage: flexibility – the size of an array need not be known

until the array is to be used.
–  Example: Ada arrays, C99.

Get(List_Len);
declare
 List: array(1. . List_len) of Integer;
 begin
 …

 end;

10
Lecture 06

Implementation of Stack Dynamic Arrays

11
Lecture 06

Array Categories

•  Fixed Heap-Dynamic: similar to fixed stack-dynamic i.e.
subscript range and storage binding are fixed after
allocation:
–  Binding is done when requested by the program.
–  Storage is allocated from the heap.
–  Examples:

•  C/C++ using malloc/free or new/delete.
•  Fortran 95.
•  In Java all arrays are fixed heap-dynamic.
•  C#.

12
Lecture 06

Array Categories

•  Heap-dynamic: binding of subscript ranges and storage
allocation is dynamic and can change any number of times:
–  Advantage: flexibility, as arrays can grow or shrink during program

execution.
–  Examples:

•  C#:
ArrayList intList = new ArrayList();
intList.add(nextOne);

•  Java has a similar class, but no subscripting (use methods get()/
set() instead).

•  Perl, JavaScript, Python, Ruby

13
Lecture 06

Array Categories

•  Static shape arrays:
–  Static.
–  Fixed Stack-Dynamic.
–  Fixed Heap-Dynamic.

•  Dynamic shape arrays:
–  Conformant.
–  Stack-Dynamic.
–  Heap-Dynamic.

14
Lecture 06

Array Initialization

•  Some languages allow initialization at the time of storage
allocation:
–  C, C++, Java, C# example:
int list [] = {4, 5, 7, 83}

–  Arrays of strings in C and C++
char *names [] = {“Bob”, “Jake”, “Joe”];
–  Java initialization of String objects:
String[] names = {“Bob”, “Jake”, “Joe”};

–  Ada initialization using arrow operator:
Bunch : array (1..5) of Integer := (1 => 17,
3 => 34, others => 0)

15
Lecture 06

Heterogeneous Arrays

•  A heterogeneous array is one in which the elements need
not be of the same type.

•  Supported by:
–  Perl: any mixture of scalar types (numbers, strings, and references).
–  JavaScript: dynamically typed language ⇒ any type.
–  Python and Ruby: references to objects of any type

16
Lecture 06

Slices

•  A slice is some substructure of an array:
–  nothing more than a referencing mechanism.
–  only useful in languages that have array operations.

•  Fortran 95 (also Perl, Python, Ruby, restricted in Ada):
Integer, Dimension (10) :: Vector

Integer, Dimension (3, 3) :: Mat

Integer, Dimension (3, 3, 3) :: Cube

Vector (3:6) is a four element array

17
Lecture 06

Slices Examples in Fortran 95

18
Lecture 06

Slices Examples in Fortran 95

Lecture 06
19

Implementation of Arrays

•  Two layout strategies:
1.  contiguous locations.
2.  row pointers.

1.  Contiguous locations:
–  Column major order (by columns) – used in Fortran.
–  Row major order (by rows) – used in most languages.

–  Sequential access to matrix elements will be faster if they are
accessed in the order in which they are stored:

•  Why?

20
Lecture 06

Row vs. Column major order

21
Lecture 06

Implementation of Arrays

•  Row Pointer layout:
–  rows can be put anywhere in memory.
–  rows can have different lengths => jagged arrays.
–  can create arrays from existing rows, without copying.
–  no multiplications to compute addresses => fast on CISC machines.

•  requires extra space for pointers.
–  used in Java and C:

•  C supports both contiguous and row pointer arrays.

22
Lecture 06

Contiguous vs. Row Pointer layout in C

23
Lecture 06

Implementation of Contiguous Arrays

•  Access function maps subscript expressions to the address
of an element in the array.

•  Single-Dimensional Arrays:
–  implemented as a block of adjacent memory cells.
–  access function for single-dimensioned arrays (row major):

 A : array (L..U) of elem_type;
 address(A[k]) =
 address(A[L]) + (k – L) * element_size

1-24
Lecture 06

Access Function for a Multi-Dimensioned
Array

A : array (L1..U1) of (L2..U2) of elem_type;
n = U2 – L2 + 1
address(A[i,j]) =

 address(A[L1,L2]) + ((i - L1) * n + (j – L2)) * elem_size

25

Implementation of Row Pointer Arrays

•  Address calculation is straightforward:
–  no multiplications needed.
–  assume hardware provides an indexed addressing mode:

•  R1 = *R2[R3] (load instruction).

 A : array (L1..U1) of (L2..U2) of elem_type;

26
Lecture 06

Character String Types

•  Character Strings – values are sequences of characters.
•  Typical operations:

–  Assignment.
–  Comparison.
–  Concatenation.
–  Substring reference.
–  Pattern matching.

•  Design issues:
–  Is it a primitive type or just a special kind of array?
–  Should the length of strings be static or dynamic?

27
Lecture 06

Strings in Programming Languages

•  C and C++:
–  Implemented as null terminated char arrays.
–  A library of functions in string.h that provide string operations.
–  Many operations are inherently unsafe (ex: strcpy).
–  C++ string class from the standard library is safer.

•  Java (C# and Ruby):
–  Primitive via the String class (immutable).
–  Arrays via the StringBuilder class (mutable, w/ subscripting).

• StringBuffer for multithreading

•  Fortran:
–  Primitive type.

28
Lecture 06

Strings in Programming Languages

•  Python:
–  Primitive type that behaves like an array of characters:

•  indexing, searching, replacement, character membership.
–  Immutable.

•  Pattern Matching:
–  built-in for Perl, JavaScript, Ruby, and PHP, using regular

expressions.
–  class libraries for C++, Java, Python, C#.

29
Lecture 06

String Length

•  Static Length – set when the string is created:
–  Java String, C++ STL string , Ruby String, C# .NET.

•  Limited Dynamic Length – length can vary between 0
and a maximum set when the string is defined:
–  C/C++ null terminated strings.

•  Dynamic Length – varying length with no maximum:
–  JavaScript and Perl (overhead of dynamic allocation/deallocation).

•  Ada supports all three types:
–  String, Bounded_String, Unbounded_String.

30
Lecture 06

Ada Strings

•  Static Length:
X: String := Ada.Command_Line.Argument(1);

X := “Hello!”;

 -- will raise an exception if X has length ≠ 6

•  Dynamic Length:
X: Unbounded_String :=

To_Unbounded_String(Ada.Command_Line.Argument(1))
;

X := To_Unbounded_String(“Hello!”);

31
Lecture 06

Record Types

•  A record is a possibly heterogeneous aggregate of data
elements in which the individual elements are identified by
names.

•  A record type in Ada:
 type Emp_Rec_Type is record
 First: String (1..20);

 Mid: String (1..10);

 Last: String (1..20);
 Hourly_Rate: Float;

 end record;

 Emp_Rec: Emp_Rec_Type;

32
Lecture 06

Record Types

•  C, C++, C#: supported with the struct data type.
–  In C++ structures are minor variations on classes.
–  In C# structures are related to classes, but also quite different.

•  structures are allocated on the stack (value types).
•  class objects are allocated on the heap (reference types).

–  In C++ and C# structures are also used for encapsulation.

•  Python, Ruby: implemented as hashes.

33
Lecture 06

Records vs. Arrays

•  Arrays mostly used when:
–  collection of data values is homogenous.
–  values are process in the same way.
–  order is important.

•  Records are used when:
–  collection of data values is heterogeneous.
–  values are not precessed in the same way.
–  unordered.

•  Access to array elements is much slower than access to
record fields:
–  array subscripts are dynamic.
–  record field names are static.

34
Lecture 06

Unions: Free (Fortran, C/C++)

 union flexType {

 int i;
 double d;
 bool b;

 }
 union flexType ft;
 ft.i = 27;
 float x = ft.i; // nonsense, no type checking possible.

35
Lecture 06

Unions: Discriminated (Algol 68, Ada)

•  Include a type indicator called a tag, or discriminant.

 type Figure (Form: Shape) is record
 Filled: Boolean;
 Color: Colors;
 case Form is
 when Circle =>
 Diameter: Float;
 when Triangle =>
 Left_Side: Integer;
 Right_Side: Integer;
 Angle: Float;
 when Rectangle =>
 Side1: Integer;
 Side2: Integer;
 end case; end record;

36

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);

Unions: Discriminated (Algol 68, Ada)

Figure1 : Figure;
Figure2 : Figure(Form => Triangle);

Figure1 := (Filled => True,

 Color => Blue,
 Form => Rectangle,
 Side1 => 12,
 Side2 => 3);

if (Figure1.Diameter > 3.0) // => run-time type error.

37
Lecture 06

Pointer Types

•  A pointer type variable has a range of values that consists
of memory addresses and a special value nil.
–  Provide the power of indirect addressing.
–  Provide a way to manage dynamic memory

•  a pointer can be used to access a location in the area where
storage is dynamically created i.e. the heap.

•  variables that are dynamically allocated on the heap are heap-
dynamic variables.

•  Pointer types are defined using a type operator:
–  C/C++: int *ptr = new int;

38
Lecture 06

Pointer Operations

•  Two fundamental operations:
–  assignment.
–  dereferencing.

•  Assignment is used to set a pointer variable’s value to
some useful address:
–  int *ptr = &counter; // indirect addressing.
–  int *ptr = new int; // heap-dynamic variable.

•  Dereferencing yields the value stored at the location
represented by the pointer’s value
–  C++ uses an explicit operation via unary operator *:

 j = *ptr; // sets j to the value located at ptr

39
Lecture 06

Pointer Dereferencing

40
Lecture 06

The dereferencing operation j = *ptr;

Problems with Pointers

•  Dangling pointers:
–  A pointer points to a heap-dynamic variable that has been

deallocated.
–  Dangerous: the location may be assigned to other variables.

•  Lost heap-dynamic variable:
–  An allocated heap-dynamic variable that is no longer accessible to

the user program (often called garbage or memory leak):
•  Pointer p1 is set to point to a newly created heap-dynamic

variable
•  Pointer p1 is later set to point to another newly created heap-

dynamic variable, without deallocating the first one.

41
Lecture 06

Pointers in C/C++

•  Extremely flexible but must be used with care:
–  Pointers can point at any variable regardless of when or where it

was allocated.
–  Used for dynamic storage management and addressing.
–  Explicit dereferencing (*) and address-of (&) operators.
–  Domain type need not be fixed:

• void * can point to any type and can be type checked.
• void * cannot be de-referenced.

–  Pointer arithmetic is possible.

42
Lecture 06

Pointer Arithmetic in C/C++

float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

43
Lecture 06

Reference Types

•  C++ includes a special kind of pointer type called a
reference type that is used primarily for formal
parameters:
–  Advantages of both pass-by-reference and pass-by-value.
–  No arithmetic on references.

•  Java extends C++’s reference variables and allows them to
replace pointers entirely:
–  References are handles to objects, rather than being addresses.

•  C# includes both the references of Java and the pointers of
C++.

44
Lecture 06

Evaluation of Pointers & References

•  Problems due to dangling pointers and memory leaks.
•  Heap management can be complex and costly.
•  Pointers are analogous to goto's:

–  goto’s widen the range of statements that can be executed next.
–  pointers widen the range of cells that can be accessed by a variable.

•  Pointers or references are necessary for dynamic data
structures, so we can't design a language without them:
–  pointers are essential for writing device drivers.
–  references in Java and C# provide some of the capabilities of

pointers, without the hazards.

45
Lecture 06

Type Checking

•  Preliminary step: generalize the concept of operands and
operators to include:
–  subprograms as operators, and parameters as operands;
–  assignments as operators, and LHS & RHS as operands.

•  Type checking is the activity of ensuring that the operands
of an operator are of compatible types.

•  A compatible type is one that is either legal for the
operator, or is allowed under language rules to be
implicitly converted to a legal type:
–  This automatic conversion , by compiler-generated code, is called

a coercion.

46
Lecture 05

Type Checking

•  A type error results from the application of an operator to
an operand of an inappropriate type.

•  Static type checking: if all type bindings are static, nearly
all type checking can be done statically (Ada, C/C++, Java).

•  Dynamic type checking: if type bindings are dynamic, type
checking must be dynamic (Javascript, PHP).

•  Strong typing: a programming language is strongly typed if
type errors are always detected.
–  Done either at compile time or run time.
–  Advantages: allows the detection of the misuses of variables that

result in type errors.

47
Lecture 05

Strong Typing: Language Examples

•  C and C++ less strongly typed than Pascal or Ada:
–  parameter type checking can be avoided;
–  unions are not type checked.

•  Ada is strongly typed:
–  only exception: the UNCHECKED_CONVERSION generic function

extracts the value of a variable of one type and uses it as if it were
of a different type.

–  Java and C# are strongly typed in the same sense as Ada:
•  types can be explicitely cast ⇒ may get type errors at run time.

•  ML is strongly typed, so are Lisp, Python and Ruby

48
Lecture 05

Strong Typing & Type Coercion

•  Coercion rules can weaken the strong typing considerably
i.e. loss in error detection capability:
–  C++’s strong typing less effective compared to Ada’s.

•  Although Java has just half the assignment coercions of C+
+:
–  its strong typing is more effective than that of C++.
–  its strong typing is still far less effective than that of Ada.

49
Lecture 05

Reading Assignment

 Chapter 7 on Data Types (7.1 to 7.6)

50
Lecture 06

