Organization of Programming Languages
CS3200 / 5200N

Lecture 06

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Data Types

A data type defines a collection of data objects and a set of
predefined operations on those objects.

Primitive data types are those not defined in terms of other
data types:
— Some primitive data types are merely reflections of the hardware.
— Others require only a little non-hardware support for their
implementation.

User-defined types are created with flexible structure
defining operators (ALGOL 68).

Abstract data types separate the interface of a type (visible)
from the representation of that type (hidden).

Lecture 06

Primitive Data Types

Integers — almost always an exact reflection of the
hardware.

— Java’s signed integers: byte, short, int, long.
Floating Point — model real numbers, but only as
approximations.

— Support for two types: f1oat and double.
Complex — two floats, the real and the imaginary.

— Supported in Fortran and Python.

Boolean — two elements, true and false.

— Implemented as bits or bytes.

Character — stored as numeric codings.

— ASCII 8-bit encoding, UNICODE 16-bit encoding.
Lecture 06

Primitive Data Types

Rationals:
— represented as pairs of integers (Scheme, Common LISP):
 (rational? 6/10) => #t
Decimals:

— use a base-10 encoding to avoid round-off in financial arithmetic.
e Cobol, PL/I.

Lecture 06

Scalar Types

| —

* Scalar types (also simple types):
— All primitive types.
— Some user-defined types:
* Fixed-point:
— represented as integers, with position for decimal point:
» type Fixed Point is delta 0.01 digits 10;
 Enumerations:
— represented as small integers:
» type weekday is (sun, mon, tue, wed, thu, fri, sat);
* Subranges:
— subtype workday is weekday range mon . . fri;

Lecture 06

Composite Types

Records (structures)
Variant records (unions)
Arrays
— Strings (arrays of characters)
Sets
Pointers
Lists
Files

Lecture 06

Array Types

An array 1s an aggregate of homogeneous data elements in
which an individual element 1s 1dentified by its position in
the aggregate, relative to the first element.

Indexing 1s a mapping from indices to elements:

8 giay Wiame nd e < eiue, dL s ee— @ais etfenien't

Index range checking:
— C, C++, Perl, and Fortran do not specify range checking.
— Java, ML, C# specify range checking.

— In Ada, the default is to require range checking, but it can be
turned off.

Lecture 06

Array Categories

« Static: subscript ranges are statically bound and storage
allocation 1s static (before run-time)
— Advantage: efficiency — no dynamic allocation/deallocation.
— Example: arrays declared as static in C/C++ functions.

* Fixed Stack-Dynamic: subscript ranges are statically
bound, but the allocation 1s done at declaration time (at
run-time)

— Advantage: space efficiency — stack space 1s reused.

— Example: arrays declared in C/C++ functions without the static
modifier.

Lecture 06
R

Array Categories

e Conformant Arrays: array parameters where bounds are
symbolic names rather than constants:

— Pascal, Modula-2, Ada, C99.

 C only supports single dimensional conformant arrays.

function DotProduct(A, B: array[lower .. uper : integer] of real) : real;

void square(int n, double M[n][n]);

Lecture 06

Array Categories

|

« Stack-Dynamic: subscript ranges are dynamically bound

and the storage allocation 1s dynamic (at run-time):

— Advantage: flexibility — the size of an array need not be known
until the array 1s to be used.

— Example: Ada arrays, C99.

GEE(L 1 Siselien)i,

declare
L1 'Sl adgayy (168 Thlele) 'eny) ©F STkt e g iy
begin

end;

Lecture 06
4 08}

Implementation of Stack Dynamic Arrays

-- Ada:
procedure foo (size : integer) is
M : array (1..size, 1..size) of real;

begin

end foo;

// C99:
void foo(int size) {
double M[size] [size];

Bookkeeping

Return address

Arguments
and returns

Lecture 06

Variable-size

. part of the frame

Fixed-size part
of the frame

Array Categories

| —

* Fixed Heap-Dynamic: similar to fixed stack-dynamic 1.e.
subscript range and storage binding are fixed after
allocation:

— Binding 1s done when requested by the program.
— Storage 1s allocated from the heap.
— Examples:

« (C/C++ using malloc/free or new/delete.

* Fortran 95.

 In Java all arrays are fixed heap-dynamic.

« CH.

Lecture 06
12

Array Categories

| —

 Heap-dynamic: binding of subscript ranges and storage
allocation 1s dynamic and can change any number of times:

— Advantage: flexibility, as arrays can grow or shrink during program
execution.
— Examples:
¢ C#:
Arragilist inEList = Wmew Argesilist() ;
ERERENENINEAE 2 RN SE O o)

 Java has a similar class, but no subscripting (use methods get()/
set() instead).

 Perl, JavaScript, Python, Ruby

Lecture 06
13

Array Categories

e Static shape arrays:
— Static.
— Fixed Stack-Dynamic.
— Fixed Heap-Dynamic.

* Dynamic shape arrays:
— Conformant.
— Stack-Dynamic.
— Heap-Dynamic.

Lecture 06
14

Array Initialization

| —

* Some languages allow 1nitialization at the time of storage

allocation:

— C, C++, Java, C# example:

Tnt SBR[| A=l Sy, foses., S|

— Arrays of strings in C and C++

el gename's gl - = fBob” & Flake” @ Joe’d ;

— Java initialization of String objects:

S] N g iamels =8 Bob” ¥ Jda kel & Joeilie:

— Ada itialization using arrow operator:

Bunch : array (l1..5) of Integer := (1 => 17,
=8 3/ “oEhe¥s —Fal

Lecture 06
15

Heterogeneous Arrays

| —

* A heterogeneous array is one in which the elements need
not be of the same type.

e Supported by:
— Perl: any mixture of scalar types (numbers, strings, and references).
— JavaScript: dynamically typed language = any type.
— Python and Ruby: references to objects of any type

Lecture 06
16

Slices

* A slice 1s some substructure of an array:
— nothing more than a referencing mechanism.

— only useful in languages that have array operations.

e Fortran 95 (also Perl, Python, Ruby, restricted in Ada):

Integer, Dmmension (10) S:8 VechEE@r
Nt eger,: (Bhimensioms (3, ik o Mast
Figege gl DIMEns 1ol (Bhass, 13) #£:-Cube

Vector (3:6) isa four element array

Lecture 06
175

Slices Examples 1in Fortran 95

7
i i

o

i

T

NI

NNEANEN

Slices Examples in Fortran 95

matrix(3:6, 4:7) matrix(6:, 5)

T

mEEmEEmEEE

matrix(:4, 2:8:2) matrix(:, (/2, 5, 9/))

Implementation of Arrays

| —

« Two layout strategies:
1. contiguous locations.

2. row pointers.

1. Contiguous locations:
— Column major order (by columns) — used in Fortran.

— Row major order (by rows) — used in most languages.

— Sequential access to matrix elements will be faster 1f they are
accessed in the order in which they are stored:

 Why?

Lecture 06
20

Row vs. Column major order

Row-major order

Lecture 06

Column-major order

Implementation of Arrays

Row Pointer layout:

rows can be put anywhere in memory.

rows can have different lengths => jagged arrays.

can create arrays from existing rows, without copying.

no multiplications to compute addresses => fast on CISC machines.
* requires extra space for pointers.

used in Java and C:

 C supports both contiguous and row pointer arrays.

Lecture 06
22

Contiguous vs. Row Pointer layout in C

char days[][10] = { char *days[] = {
"Sunday", "Monday", "Tuesday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Wednesday", "Thursday",
"Friday", "Saturday" "Friday", "Saturday"
3 Y
days[2] [3] == ’s’; /x in Tuesday */ days[2] [3] == ’s’; /% in Tuesday */
Slu|n|d|aly o)
M{o|n|d|al|y | Stufn|d|aly M|{o|n
Tlul|e|s|d|a]|y - tdlaly Tlu|e|s|d|a
Wle|ld|n|e|s|d y . 4y | W|le|d|n|e|s|d|a
T|h|u|r|s|d|al|y 1y /| T|h|lufr]s|d|al|y
Flr|il|d|al|y TFlr|lifd|aly S|a
Sla|t|u|r|d|a]|y - tlu|r|dfal|y

Lecture 06
23

Implementation of Contiguous Arrays

e Access function maps subscript expressions to the address
of an element in the array.

* Single-Dimensional Arrays:
— implemented as a block of adjacent memory cells.

— access function for single-dimensioned arrays (row major):

ERy: aEEraywRes. . UlE oflel ettt ye ;
address(A[k]) =
address(A[L]) + (k— L) * element size

Lecture 06
1-24

Access Function for a Multi-Dimensioned
Array

AR arEay JB1 RN S of @E2EEANZ) Slode] ety pe;s
nh=U,-L, +1
address(Ali,j]) =
address(A[L;,L,]) + ((i — L;) * n + (j - L,)) * elem_size
1 2 e g1 ceeoon

1

2

i1

Implementation of Row Pointer Arrays

e Address calculation 1s straightforward:
— no multiplications needed.

— assume hardware provides an indexed addressing mode:
 R1=*R2[R3] (load instruction).

Y earray sl . JEEBE . of ROE. VU2 EReT “eliem 't ypey

Lecture 06
26

Character String Types

e Character Strings — values are sequences of characters.

* Typical operations:
— Assignment.
— Comparison.
— Concatenation.
— Substring reference.

— Pattern matching.

e Design issues:
— Is it a primitive type or just a special kind of array?
— Should the length of strings be static or dynamic?

Lecture 06
27

Strings 1n Programming Languages

| —

o @ andCgr:
— Implemented as null terminated char arrays.
— A library of functions in string. h that provide string operations.
— Many operations are inherently unsafe (ex: strcpy).
— C++ string class from the standard library 1s safer.

e Java (C# and Ruby):

— Primitive via the St ring class (immutable).
— Arrays via the StringBuilder class (mutable, w/ subscripting).
 StringBuffer for multithreading

e Fortran:
— Primitive type.

Lecture 06
28

Strings 1n Programming Languages

|

e Python:
— Primitive type that behaves like an array of characters:
* indexing, searching, replacement, character membership.
— Immutable.

e Pattern Matching:

— built-in for Perl, JavaScript, Ruby, and PHP, using regular
expressions.

— class libraries for C++, Java, Python, C#.

Lecture 06
29 |

String Length

Static Length — set when the string is created:
— Java String, C++ STL string , Ruby String, C# .NET.

Limited Dynamic Length — length can vary between 0
and a maximum set when the string 1s defined:

— C/C++ null terminated strings.

Dynamic Length — varying length with no maximum:

— JavaScript and Perl (overhead of dynamic allocation/deallocation).

Ada supports all three types:
— String, Bounded_String, Unbounded String.

Lecture 06
30

Ada Strings

* Static Length:
XWes tiifng geAda s@emmein dil I neSrgumepNe(iS)
XA e lul N

SEEET 1] jealgle” angexcep@ondrt. X haffilength #8606

* Dynamic Length:
X't Unbeiindes ys t ringis=
o Unbeunded ,Strimgiada . GEmmand@line . A gume rie (e

Xie: = “Fomaalceundesl. St nge(ke | 1 o)

Lecture 06

Record Types

A record 1s a possibly heterogeneous aggregate of data
elements in which the individual elements are i1dentified by
names.

A record type 1n Ada:

EyaeE pMRees Bvpc 1S piie C grgsl
FERR'S T s oSt T 1 N GagllilF.> 12 O)z
MiChasSiWe 1 ng ANl ;
o S W S Tatiin g o (F, S200:
HoUrgz Rategs Fleat:;

end record;

EMEPMREC: Emp Rk Iees

Lecture 06

32

Record Types

| —

« C, C++, C#: supported with the st ruct data type.
— In C++ structures are minor variations on classes.
— In C# structures are related to classes, but also quite different.
e structures are allocated on the stack (value types).
« class objects are allocated on the heap (reference types).
— In C++ and C# structures are also used for encapsulation.

« Python, Ruby: implemented as hashes.

Lecture 06
33

Records vs. Arrays

Arrays mostly used when:
— collection of data values is homogenous.
— values are process in the same way.
— order is important.

Records are used when:
— collection of data values is heterogeneous.
— values are not precessed in the same way.
— unordered.

Access to array elements 1s much slower than access to
record fields:

— array subscripts are dynamic.
— record field names are static.

Lecture 06
34

Unions: Free (Fortran, C/C++)

union flexType {
inti;
double d;
bool b;

}

union flexType ft;
ft.i=27;
float x = ft.i; // nonsense, no type checking possible.

Lecture 06
B35

Unions: Discriminated (Algol 68, Ada)

Include a type indicator called a tag, or discriminant.
type Figure (Form: Shape) is record
Filled: Boolean:;
Color: Colors;
case Form is
when Circle =>
Diameter: Float;
when Triangle =>
Left Side: Integer;
Right_Side: Integer;
Angle: Float;
when Rectangle =>
Side1: Integer;
Side2: Integer;
end case; end record;

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);

36 |
T

Unions: Discriminated (Algol 68, Ada)

Figure1 : Figure;
Figure2 : Figure(Form => Triangle);

Figure1 := (Filled => True,
Color => Blue,
Form => Rectangle,
Side1 => 12,
Side2 => 3);

if (Figure1.Diameter > 3.0) // => run-time type error.

Lecture 06
37

Pointer Types

« A pointer type variable has a range of values that consists
of memory addresses and a special value nil.
— Provide the power of indirect addressing.
— Provide a way to manage dynamic memory

* a pointer can be used to access a location in the area where
storage i1s dynamically created 1.e. the heap.

* variables that are dynamically allocated on the heap are heap-
dynamic variables.

« Pointer types are defined using a type operator:
EWC/CH: int ™ ptr = new, int;

Lecture 06
38

Pointer Operations

Two fundamental operations:
— assignment.
— dereferencing.

Assignment 1s used to set a pointer variable’s value to
some useful address:

— int *ptr = &counter; //indirect addressing.

— int *ptr = new int; //heap-dynamic variable.
Dereferencing yields the value stored at the location
represented by the pointer’s value

— (C++ uses an explicit operation via unary operator *:

j = *ptr; //sets]jto the value located at ptr

Lecture 06
39

ptr

Pointer Dereferencing

l 7080

7080

j

An anonymous
dynamic variable

The dereferencing operation j = *ptr;

Lecture 06

Problems with Pointers

* Dangling pointers:
— A pointer points to a heap-dynamic variable that has been
deallocated.

— Dangerous: the location may be assigned to other variables.

e Lost heap-dynamic variable:

— An allocated heap-dynamic variable that is no longer accessible to
the user program (often called garbage or memory leak):

» Pointer p1 i1s set to point to a newly created heap-dynamic
variable

» Pointer p1 i1s later set to point to another newly created heap-
dynamic variable, without deallocating the first one.

Lecture 06
41

Pointers in C/C++

| —

» Extremely flexible but must be used with care:

— Pointers can point at any variable regardless of when or where it
was allocated.

— Used for dynamic storage management and addressing.

— Explicit dereferencing (*) and address-of (&) operators.

— Domain type need not be fixed:
« void * can point to any type and can be type checked.
« void * cannot be de-referenced.

— Pointer arithmetic 1s possible.

Lecture 06
42

Pointer Arithmetic in C/C++

FilloaNe sfF T SO 08
B o ES Do
B = Sl

* (ot 5)#is equiyalent togstuf £ #5] and@p' 54
“wieari) 1Siequinvalent tofsit U £ fffae] and o[i3]

Lecture 06

43

Reference Types

« (C++ 1ncludes a special kind of pointer type called a
reference type that is used primarily for formal
parameters:

— Advantages of both pass-by-reference and pass-by-value.
— No arithmetic on references.

» Java extends C++’s reference variables and allows them to
replace pointers entirely:
— References are handles to objects, rather than being addresses.

e (C# includes both the references of Java and the pointers of
€

Lecture 06
44

Evaluation of Pointers & References

Problems due to dangling pointers and memory leaks.
Heap management can be complex and costly.

Pointers are analogous to goto's:
— goto’s widen the range of statements that can be executed next.
— pointers widen the range of cells that can be accessed by a variable.

Pointers or references are necessary for dynamic data
structures, so we can't design a language without them:
— pointers are essential for writing device drivers.

— references in Java and C# provide some of the capabilities of
pointers, without the hazards.

Lecture 06
45

Type Checking

Preliminary step: generalize the concept of operands and
operators to include:

— subprograms as operators, and parameters as operands;

— assignments as operators, and LHS & RHS as operands.

Type checking is the activity of ensuring that the operands
of an operator are of compatible types.

A compatible type is one that 1s either legal for the
operator, or 1s allowed under language rules to be
implicitly converted to a legal type:

— This automatic conversion , by compiler-generated code, is called
a coercion.

Lecture 05
46

Type Checking

A type error results from the application of an operator to
an operand of an inappropriate type.

Static type checking: if all type bindings are static, nearly
all type checking can be done statically (Ada, C/C++, Java).
Dynamic type checking: if type bindings are dynamic, type
checking must be dynamic (Javascript, PHP).

Strong typing: a programming language 1s strongly typed 1f
type errors are always detected.

— Done either at compile time or run time.

— Advantages: allows the detection of the misuses of variables that
result in type errors.

Lecture 05
47

Strong Typing: Language Examples

e C and C++ less strongly typed than Pascal or Ada:
— parameter type checking can be avoided;

— unions are not type checked.

* Ada 1s strongly typed:

— only exception: the UNCHECKED CONVERSION generic function
extracts the value of a variable of one type and uses it as 1f 1t were
of a different type.

— Java and C# are strongly typed 1n the same sense as Ada:
* types can be explicitely cast = may get type errors at run time.

ML 1s strongly typed, so are Lisp, Python and Ruby

Lecture 05
48

Strong Typing & Type Coercion

Coercion rules can weaken the strong typing considerably
1.e. loss in error detection capability:
— C++’s strong typing less effective compared to Ada’s.

Although Java has just half the assignment coercions of C+
18

— 1ts strong typing is more effective than that of C++.

— 1ts strong typing is still far less effective than that of Ada.

Lecture 05
49

Reading Assignment

Chapter 7 on Data Types (7.1 to 7.6)

Lecture 06

