Organization of Programming Languages
CS3200 / 5200N

Lecture 07

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Control Flow

e Control flow = the flow of control, or execution sequence,
In a program.

* Levels of control flow:
1. Within expressions.
2. Among program statements.
3. Among program units.

Lecture 07

Expressions

« Expressions are the fundamental means of specifying
computations in a programming language:
1. Arithmetic expressions.
2. Relational expressions.
3. Boolean expressions.

» The control flow in expression evaluation 1s determined by:
1. The order of operator evaluation:
e Associativity;
* Precedence.

2. The order of operand evaluation.

Lecture 07

Arithmetic Expressions

|

e Arithmetic evaluation was one of the motivations for the
development of the first programming languages.

« Arithmetic expressions consist of:
— operators;
* unary, binary.
— operands;
— parentheses;
— function calls;

Lecture 07

Arithmetic Expressions: Design Issues

Operator precedence rules?
Operator associativity rules?
Operator overloading?

Order of operand evaluation?

Operand evaluation side effects?

Type mixing in expressions?

Lecture 07

Operator Precedence Rules

| —

« The operator precedence rules for expression evaluation
define the order in which “adjacent” operators of different
precedence levels are evaluated.

» Typical precedence levels:
— parentheses;
— unary operators;
— ** (where supported by the language);
N *, /
2

Lecture 07

Operator Associativity Rules

* The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated.

» Typical associativity rules:
— Left to right, except **, which 1s right to left.

* Precedence and associativity rules can be overriden with
parentheses:

— When unsure, some programmers use parantheses = reduced
readability.

— Know thy language, its operators and their precedence rules!

Lecture 07

Operator Overloading

Operator overloading = the use of an operator for more
than one purpose.

Some are common (e.g., + for int and float).

Some are potential trouble (e.g., *, & 1n C and C++):
— Loss of readability.
— Loss of compiler error detection:
 omission of an operand should be a detectable error
— Can be avoided by introduction of new symbols:
* e.g., Pascal’sdiv for integer division.

Lecture 07

Operator Overloading

« (C++, Ada, Fortran 95, and C# allow user-defined
overloaded operators.

— Problem: users can define nonsense operations.

* In Ruby, all arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and bit-wise
logic operators, are implemented as methods:

— These operators can all be overriden by application programs.

Lecture 07

Operands Evaluation & Evaluation Order

| —

1. Varnables:
— fetch the value from memory.
2. Constants:
— sometimes a fetch from memory;
— sometimes the constant is in the machine language instruction.
3. Parenthesized expressions:
— evaluate all operands and operators first.
4. Function calls:

— potential for side effects = operand evaluation order is
relevant.

Lecture 07
10

Functional Side Effects

Functional side effects: when a function changes a two-
way parameter or a non-local variable.

Problem with functional side effects:

— When a function referenced in an expression alters another
operand of the expression:

a Sl
e dlEume NEhR CF Tun, dhiEinge sy 1 @5 parame Feis s/

b ="let. UL

Lecture 07
11

Functional Side Effects: Possible Solutions

Write the language definition to disallow functional side
effects:

— No two-way parameters in functions

— No non-local references in functions

— Advantage: it works!

— Disadvantage: inflexibility of one-way parameters and lack of non-

local references

Write the language definition to demand that operand
evaluation order be fixed

— Disadvantage: limits some compiler optimizations

— Java requires that operands appear to be evaluated in left-to-right
order

Lecture 07
12

Referential Transparency

Referential Transparency: an expression can be substituted
with its value, without changing the effects of the program.

— Functional side effects violate referential transparency.

Advantages of referential transparency:

— Program semantics is much easier to understand.

Programs written in functional programming languages are
referential transparent:
— no variables = functions cannot have state.

— value of function depends only on its parameters and global constants.

Lecture 07
13

Type Conversions

A narrowing conversion is one that converts an object to
a type that cannot include all of the values of the original
typeiete. Rifeiels {0 THmyE

A widening conversion is one in which an object 1s
converted to a type that can include at least approximations
to all of the values of the original type e.g., int to

IFILOEHE -

Implicit type conversions 1.€. coercions.

Explicit type conversions 1.€. casts in C/C++/Java:
—NE T (Lmle)Saulsn] c

— Ada: Float (Sum) Lecture 07)
4

Mixed-Mode Expressions

A mixed-mode expression is one that has operators with
operands of different types.

— Type coercions are used in mixed-mode expressions to convert all
operands to the same type.

« Disadvantage of coercions:

— They decrease the type error detection ability of the compiler.

e Scenarios:

— All numeric types are coerced in expressions, using widening
conversions (most languages).

— In Ada, there are virtually no coercions in expressions.

Lecture 07
15

Relational Expressions

* Relational Expressions
— Use relational operators and operands of various types.
— Evaluate to some Boolean representation.
— Always lower precedence than the arithmetic operators.

— Operator symbols used vary somewhat among languages (!=, /
— A NS S T

» JavaScript and PHP have two additional relational
operator, === and ! ==:
— Similar to their cousins, == and ! =, except that they do not coerce
their operands.
— Ex:“7’=7vs. “7"==1.

Lecture 07
16

Boolean Expressions

* Boolean Expressions
— Operands are Boolean and the result is Boolean.

— Example operators:

FORTRAN 77 FORTRAN 90 C Ada
.AND. and && and
. ORSE @),] N
SN O T n'efe ! not
S OpE
Lecture 07

4.7
e

Boolean Expressions in C/C++

e C versions prior to C99 have no Boolean type:

— use int type with 0 for false and nonzero for true.

e Odd characteristic of C/C++ boolean expressions:

— arithmetic expressions can be used for Boolean expressions.

— a < b < c isalegal expression, but the result is not what you
might expect:

 Left operator is evaluated, producing O or 1.

* The evaluation result is then compared with the third operand.

« Disadvantages:
— loss 1n readability.
— loss in type error detection.

Lecture 07
18

Short-Circuit Evaluation

e The result of an expressions is determined without
evaluating all of the operands and/or operators:

—s BExainple;, e) * b/ 183-1)
 if a 18 zero, there is no need to evaluate (b/13-1) .

 Problem with non-short-circuit evaluation:

index = 0O;

while (index < length && LIST[index] != wvalue)
index++;

— When index = length, LIST[index] will cause an

indexing problem (assuming LIST has 1length elements).

Lecture 07
19

Short-Circuit Evaluation

e (C,C++, and Java:
— use short-circuit evaluation for the usual Boolean ops (&&, | |).

— provide bitwise Boolean operators that are not short circuit (&, |).

e Ada:

— programmer can specify either:

» short-circuit is specified with and then and or else.

» Short-circuit evaluation + side effects = subtle errors:
L *Examplec: (el DS |l (SRR 5/ #3)

Lecture 07
20

Simple Assignment Statements

The general syntax:

<l g v i < ISR g Il OEeT iNeT > <eispie S SIon>

The assignment operator:
= FORTRAN, BASIC, the C-based languages
:= ALGOLs, Pascal, Ada

Operator sign ‘=° can be bad when 1t 1s overloaded for the

relational operator for equality (that’s why the C-based
languages use == as the relational operator)

Lecture 07
21

Assignments with Conditional Targets

Conditional targets (C++, Perl):

Flag” gaaeerls Slsmbt o sy — g0

Equivalent to:

NG (£ 1%

seota = - 07
else

subteta 'l ;

Lecture 07

22

Compound Assignment Operators

e A shorthand method of specifying a commonly needed
form of assignment:

= o S@BEF D
e Introduced in ALGOL 68, adopted by C based languages.
« Example:

Che— TR

1s written as

Lecture 07
234

Unary Assignment Operators

| —

* Unary assignment operators combine increment and
decrement operations with assignment.

* Perl, JavaScript, in C—based languages.
e Examples:

sum = ++count (count incremented, count assigned to sum).
sum = count++ (count assigned to sum, count incremented).

count++ (count incremented)

Lecture 07
24

Assignments as Expressions

| —

e Perl, JavaScript, and C—based: the assignment statement
produces a result that can be used as an expression.

« Examples:

— whelsEe™ ((clg=" getchiar () [=AEQEI! . . 4

e ch = getchar () iscarried out; the result (assigned to
ch) 1s used as a conditional value for the whi1e statement.

* Problems:
—Flossiof erromdetection: i £ @@=y) nsteadiof 1.f » (XE== V)

Lecture 07

List Assignments

 List assignment: multiple source, multiple target.

e Perl, Python, Ruby support list assignments:

Coiilit s, S SsEcomd, Sthiw'dy .= §2 08 304 8808;

(5F 1 r Sy SISE cond)= IR(Sis'e conl, @S 1 BT,

Lecture 07
26

Mixed-Mode Assignments

Assignment statements can also be mixed-mode, for
example:

NESS, 16k

I 1 oaissser

gii=t / b
In Fortran, C, and C++, any numeric type value can be
assigned to any numeric type variable.

In Java, only widening assignment coercions are allowed.
In Ada, there 1s no assignment coercion.

Lecture 07
27

Reading Assignment

@haptel .

Lecture 07

