
Organization of Programming Languages
CS3200 / 5200N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 07

Control Flow

•  Control flow = the flow of control, or execution sequence,
in a program.

•  Levels of control flow:
1.  Within expressions.
2.  Among program statements.
3.  Among program units.

2
Lecture 07

Expressions

•  Expressions are the fundamental means of specifying
computations in a programming language:
1.  Arithmetic expressions.
2.  Relational expressions.
3.  Boolean expressions.

•  The control flow in expression evaluation is determined by:
1.  The order of operator evaluation:

•  Associativity;
•  Precedence.

2.  The order of operand evaluation.

3
Lecture 07

Arithmetic Expressions

•  Arithmetic evaluation was one of the motivations for the
development of the first programming languages.

•  Arithmetic expressions consist of:
–  operators;

•  unary, binary.
–  operands;
–  parentheses;
–  function calls;

4
Lecture 07

Arithmetic Expressions: Design Issues

•  Operator precedence rules?
•  Operator associativity rules?
•  Operator overloading?

•  Order of operand evaluation?
•  Operand evaluation side effects?

•  Type mixing in expressions?

5
Lecture 07

Operator Precedence Rules

•  The operator precedence rules for expression evaluation
define the order in which “adjacent” operators of different
precedence levels are evaluated.

•  Typical precedence levels:
–  parentheses;
–  unary operators;
–  ** (where supported by the language);
–  *, /
–  +, –

6
Lecture 07

Operator Associativity Rules

•  The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated.

•  Typical associativity rules:
–  Left to right, except **, which is right to left.

•  Precedence and associativity rules can be overriden with
parentheses:
–  When unsure, some programmers use parantheses ⇒ reduced

readability.
–  Know thy language, its operators and their precedence rules!

7
Lecture 07

Operator Overloading

•  Operator overloading = the use of an operator for more
than one purpose.

•  Some are common (e.g., + for int and float).

•  Some are potential trouble (e.g., *,& in C and C++):
–  Loss of readability.
–  Loss of compiler error detection:

•  omission of an operand should be a detectable error
–  Can be avoided by introduction of new symbols:

•  e.g., Pascal’s div for integer division.

8
Lecture 07

Operator Overloading

•  C++, Ada, Fortran 95, and C# allow user-defined
overloaded operators.
–  Problem: users can define nonsense operations.

•  In Ruby, all arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and bit-wise
logic operators, are implemented as methods:
–  These operators can all be overriden by application programs.

9
Lecture 07

Operands Evaluation & Evaluation Order

1.  Variables:
–  fetch the value from memory.

2.  Constants:
–  sometimes a fetch from memory;
–  sometimes the constant is in the machine language instruction.

3.  Parenthesized expressions:
–  evaluate all operands and operators first.

4.  Function calls:
–  potential for side effects ⇒ operand evaluation order is

relevant.

10
Lecture 07

Functional Side Effects

•  Functional side effects: when a function changes a two-
way parameter or a non-local variable.

•  Problem with functional side effects:
–  When a function referenced in an expression alters another

operand of the expression:

 a = 10;
 /* assume that fun changes its parameter */
 b = a + fun(a);

11
Lecture 07

Functional Side Effects: Possible Solutions

1.  Write the language definition to disallow functional side
effects:
–  No two-way parameters in functions
–  No non-local references in functions
–  Advantage: it works!
–  Disadvantage: inflexibility of one-way parameters and lack of non-

local references

2.  Write the language definition to demand that operand
evaluation order be fixed
–  Disadvantage: limits some compiler optimizations
–  Java requires that operands appear to be evaluated in left-to-right

order

12
Lecture 07

Referential Transparency

•  Referential Transparency: an expression can be substituted
with its value, without changing the effects of the program.
–  Functional side effects violate referential transparency.

•  Advantages of referential transparency:
–  Program semantics is much easier to understand.

•  Programs written in functional programming languages are
referential transparent:
–  no variables ⇒ functions cannot have state.
–  value of function depends only on its parameters and global constants.

13
Lecture 07

Type Conversions

•  A narrowing conversion is one that converts an object to
a type that cannot include all of the values of the original
type e.g., float to int.

•  A widening conversion is one in which an object is
converted to a type that can include at least approximations
to all of the values of the original type e.g., int to
float.

•  Implicit type conversions i.e. coercions.
•  Explicit type conversions i.e. casts in C/C++/Java:

–  C: (int)angle
–  Ada: Float (Sum)

14
Lecture 07

Mixed-Mode Expressions

•  A mixed-mode expression is one that has operators with
operands of different types.
–  Type coercions are used in mixed-mode expressions to convert all

operands to the same type.

•  Disadvantage of coercions:
–  They decrease the type error detection ability of the compiler.

•  Scenarios:
–  All numeric types are coerced in expressions, using widening

conversions (most languages).
–  In Ada, there are virtually no coercions in expressions.

15
Lecture 07

Relational Expressions

•  Relational Expressions
–  Use relational operators and operands of various types.
–  Evaluate to some Boolean representation.
–  Always lower precedence than the arithmetic operators.
–  Operator symbols used vary somewhat among languages (!=, /
=, .NE., <>, #).

•  JavaScript and PHP have two additional relational
operator, === and !==:
–  Similar to their cousins, == and !=, except that they do not coerce

their operands.
–  Ex: “7” == 7 vs. “7” === 7.

16
Lecture 07

Boolean Expressions

•  Boolean Expressions
–  Operands are Boolean and the result is Boolean.
–  Example operators:

FORTRAN 77 FORTRAN 90 C Ada
 .AND. and && and
 .OR. or || or

 .NOT. not ! not

 xor

17
Lecture 07

Boolean Expressions in C/C++

•  C versions prior to C99 have no Boolean type:
–  use int type with 0 for false and nonzero for true.

•  Odd characteristic of C/C++ boolean expressions:
–  arithmetic expressions can be used for Boolean expressions.
–  a < b < c is a legal expression, but the result is not what you

might expect:
•  Left operator is evaluated, producing 0 or 1.
•  The evaluation result is then compared with the third operand.

•  Disadvantages:
–  loss in readability.
–  loss in type error detection.

18
Lecture 07

Short-Circuit Evaluation

•  The result of an expressions is determined without
evaluating all of the operands and/or operators:
–  Example: (13*a)*(b/13–1)

•  if a is zero, there is no need to evaluate (b/13-1) .

•  Problem with non-short-circuit evaluation:
index = 0;
while (index < length && LIST[index] != value)
 index++;
–  When index = length, LIST[index] will cause an

indexing problem (assuming LIST has length elements).

19
Lecture 07

Short-Circuit Evaluation

•  C, C++, and Java:
–  use short-circuit evaluation for the usual Boolean ops (&&, ||).
–  provide bitwise Boolean operators that are not short circuit (&, |).

•  Ada:
–  programmer can specify either:

•  short-circuit is specified with and then and or else.

•  Short-circuit evaluation + side effects ⇒ subtle errors:
–  Example: (a > b) || (b++ / 3)

20
Lecture 07

Simple Assignment Statements

•  The general syntax:
<target_var> <assign_operator> <expression>

•  The assignment operator:
= FORTRAN, BASIC, the C-based languages
:= ALGOLs, Pascal, Ada

•  Operator sign ‘=‘ can be bad when it is overloaded for the
relational operator for equality (that’s why the C-based
languages use == as the relational operator)

21
Lecture 07

Assignments with Conditional Targets

•  Conditional targets (C++, Perl):

 flag ? total : subtotal = 0;

 Equivalent to:

if (flag)
 total = 0;

else

 subtotal = 0;

22
Lecture 07

Compound Assignment Operators

•  A shorthand method of specifying a commonly needed
form of assignment:

 a = a <op> b
•  Introduced in ALGOL 68, adopted by C based languages.
•  Example:

a = a + b

is written as

a += b

23
Lecture 07

Unary Assignment Operators

•  Unary assignment operators combine increment and
decrement operations with assignment.

•  Perl, JavaScript, in C–based languages.
•  Examples:

sum = ++count (count incremented, count assigned to sum).
sum = count++ (count assigned to sum, count incremented).
count++ (count incremented)

24
Lecture 07

Assignments as Expressions

•  Perl, JavaScript, and C–based: the assignment statement
produces a result that can be used as an expression.

•  Examples:
–  while ((ch = getchar())!= EOF){…}

• ch = getchar() is carried out; the result (assigned to
ch) is used as a conditional value for the while statement.

–  a = b = 0

•  Problems:
–  loss of error detection: if (x=y) instead of if (x == y)

25
Lecture 07

List Assignments

•  List assignment: multiple source, multiple target.

•  Perl, Python, Ruby support list assignments:

 ($first, $second, $third) = (20, 30, 40);

 ($first, $second) = ($second, $first);

26
Lecture 07

Mixed-Mode Assignments

•  Assignment statements can also be mixed-mode, for
example:
int a, b;

float c;

c = a / b;

•  In Fortran, C, and C++, any numeric type value can be
assigned to any numeric type variable.

•  In Java, only widening assignment coercions are allowed.
•  In Ada, there is no assignment coercion.

27
Lecture 07

Reading Assignment

Chapter 7.

28
Lecture 07

