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Control Flow

e Control flow = the flow of control, or execution sequence,
In a program.

* Levels of control flow:
1. Within expressions.
2. Among program statements.
3. Among program units.
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Expressions

« Expressions are the fundamental means of specifying
computations in a programming language:
1. Arithmetic expressions.
2. Relational expressions.
3. Boolean expressions.

» The control flow in expression evaluation 1s determined by:
1. The order of operator evaluation:
e Associativity;
* Precedence.

2. The order of operand evaluation.
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Arithmetic Expressions

|

e Arithmetic evaluation was one of the motivations for the
development of the first programming languages.

« Arithmetic expressions consist of:
— operators;
* unary, binary.
— operands;
— parentheses;
— function calls;
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Arithmetic Expressions: Design Issues

Operator precedence rules?
Operator associativity rules?
Operator overloading?

Order of operand evaluation?

Operand evaluation side effects?

Type mixing in expressions?
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Operator Precedence Rules

| —

« The operator precedence rules for expression evaluation
define the order in which “adjacent” operators of different
precedence levels are evaluated.

» Typical precedence levels:
— parentheses;
— unary operators;
— ** (where supported by the language);
N *, /
2
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Operator Associativity Rules

* The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated.

» Typical associativity rules:
— Left to right, except **, which 1s right to left.

* Precedence and associativity rules can be overriden with
parentheses:

— When unsure, some programmers use parantheses = reduced
readability.

— Know thy language, its operators and their precedence rules!
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Operator Overloading

Operator overloading = the use of an operator for more
than one purpose.

Some are common (e.g., + for int and float).

Some are potential trouble (e.g., *, & 1n C and C++):
— Loss of readability.
— Loss of compiler error detection:
 omission of an operand should be a detectable error
— Can be avoided by introduction of new symbols:
* e.g., Pascal’sdiv for integer division.

Lecture 07




Operator Overloading

« (C++, Ada, Fortran 95, and C# allow user-defined
overloaded operators.

— Problem: users can define nonsense operations.

* In Ruby, all arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and bit-wise
logic operators, are implemented as methods:

— These operators can all be overriden by application programs.
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Operands Evaluation & Evaluation Order

| —

1. Varnables:
—  fetch the value from memory.
2. Constants:
— sometimes a fetch from memory;
— sometimes the constant is in the machine language instruction.
3. Parenthesized expressions:
— evaluate all operands and operators first.
4. Function calls:

— potential for side effects = operand evaluation order is
relevant.
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Functional Side Effects

Functional side effects: when a function changes a two-
way parameter or a non-local variable.

Problem with functional side effects:

— When a function referenced in an expression alters another
operand of the expression:

a Sl
e dlEume NEhR CF Tun,  dhiEinge sy 1 @5 parame Feis s/

b ="let. UL
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Functional Side Effects: Possible Solutions

Write the language definition to disallow functional side
effects:

— No two-way parameters in functions

— No non-local references in functions

— Advantage: it works!

— Disadvantage: inflexibility of one-way parameters and lack of non-

local references

Write the language definition to demand that operand
evaluation order be fixed

— Disadvantage: limits some compiler optimizations

— Java requires that operands appear to be evaluated in left-to-right
order
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Referential Transparency

Referential Transparency: an expression can be substituted
with its value, without changing the effects of the program.

— Functional side effects violate referential transparency.

Advantages of referential transparency:

— Program semantics is much easier to understand.

Programs written in functional programming languages are
referential transparent:
— no variables = functions cannot have state.

— value of function depends only on its parameters and global constants.
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Type Conversions

A narrowing conversion is one that converts an object to
a type that cannot include all of the values of the original
typeiete.  Rifeiels {0 THmyE

A widening conversion is one in which an object 1s
converted to a type that can include at least approximations
to all of the values of the original type e.g., int to

IFILOEHE -

Implicit type conversions 1.€. coercions.

Explicit type conversions 1.€. casts in C/C++/Java:
—NE T ( Lmle )Saulsn] c

— Ada: Float (Sum) Lecture 07 )
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Mixed-Mode Expressions

A mixed-mode expression is one that has operators with
operands of different types.

— Type coercions are used in mixed-mode expressions to convert all
operands to the same type.

« Disadvantage of coercions:

— They decrease the type error detection ability of the compiler.

e Scenarios:

— All numeric types are coerced in expressions, using widening
conversions (most languages).

— In Ada, there are virtually no coercions in expressions.
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Relational Expressions

* Relational Expressions
— Use relational operators and operands of various types.
— Evaluate to some Boolean representation.
— Always lower precedence than the arithmetic operators.

— Operator symbols used vary somewhat among languages (!=, /
— A NS S T

» JavaScript and PHP have two additional relational
operator, === and ! ==:
— Similar to their cousins, == and ! =, except that they do not coerce
their operands.
— Ex:“7’=7vs. “7"==1.
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Boolean Expressions

* Boolean Expressions
— Operands are Boolean and the result is Boolean.

— Example operators:

FORTRAN 77 FORTRAN 90 C Ada
.AND. and && and
. ORSE @), ] N
SN O T n'efe ! not
S OpE
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Boolean Expressions in C/C++

e C versions prior to C99 have no Boolean type:

— use int type with 0 for false and nonzero for true.

e Odd characteristic of C/C++ boolean expressions:

— arithmetic expressions can be used for Boolean expressions.

— a < b < c isalegal expression, but the result is not what you
might expect:

 Left operator is evaluated, producing O or 1.

* The evaluation result is then compared with the third operand.

« Disadvantages:
— loss 1n readability.
— loss in type error detection.
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Short-Circuit Evaluation

e The result of an expressions is determined without
evaluating all of the operands and/or operators:

—s BExainple;, e ) * b/ 183-1)
 if a 18 zero, there is no need to evaluate (b/13-1) .

 Problem with non-short-circuit evaluation:

index = 0O;

while (index < length && LIST[index] != wvalue)
index++;

— When index = length, LIST[index] will cause an

indexing problem (assuming LIST has 1length elements).
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Short-Circuit Evaluation

e (C,C++, and Java:
— use short-circuit evaluation for the usual Boolean ops (&&, | |).

— provide bitwise Boolean operators that are not short circuit (&, |).

e Ada:

— programmer can specify either:

» short-circuit is specified with and then and or else.

» Short-circuit evaluation + side effects = subtle errors:
L *Examplec: (el DS |l (SRR 5/ #3)

Lecture 07
20




Simple Assignment Statements

The general syntax:

<l g v i < ISR g Il OEeT iNeT > <eispie S SIon>

The assignment operator:
= FORTRAN, BASIC, the C-based languages
:= ALGOLs, Pascal, Ada

Operator sign ‘=° can be bad when 1t 1s overloaded for the

relational operator for equality (that’s why the C-based
languages use == as the relational operator)
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Assignments with Conditional Targets

Conditional targets (C++, Perl):

Flag” gaaeerls Slsmbt o sy — g0

Equivalent to:

NG (£ 1%

seota = - 07
else

subteta 'l ;
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Compound Assignment Operators

e A shorthand method of specifying a commonly needed
form of assignment:

= o S@BEF D
e Introduced in ALGOL 68, adopted by C based languages.
« Example:

Che— TR

1s written as
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Unary Assignment Operators

| —

* Unary assignment operators combine increment and
decrement operations with assignment.

* Perl, JavaScript, in C—based languages.
e Examples:

sum = ++count (count incremented, count assigned to sum).
sum = count++ (count assigned to sum, count incremented).

count++ (count incremented)
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Assignments as Expressions

| —

e Perl, JavaScript, and C—based: the assignment statement
produces a result that can be used as an expression.

« Examples:

— whelsEe™ ( (clg=" getchiar () [ =AEQEI! . . 4

e ch = getchar () iscarried out; the result (assigned to
ch) 1s used as a conditional value for the whi1e statement.

* Problems:
—Flossiof erromdetection: i £ @@=y ) nsteadiof 1.f » (XE== V)
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List Assignments

 List assignment: multiple source, multiple target.

e Perl, Python, Ruby support list assignments:

Coiilit s, S SsEcomd, Sthiw'dy .= §2 08 304 8808;

(5F 1 r Sy SISE cond )= IR(Sis'e conl, @S 1 BT,
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Mixed-Mode Assignments

Assignment statements can also be mixed-mode, for
example:

NESS, 16k

I 1 oaissser

gii=t / b
In Fortran, C, and C++, any numeric type value can be
assigned to any numeric type variable.

In Java, only widening assignment coercions are allowed.
In Ada, there 1s no assignment coercion.
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Reading Assignment

@haptel .
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