
Organization of Programming Languages
CS3200 / 5200N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 08

Control Flow

•  Control flow = the flow of control, or execution sequence,
in a program.

•  Levels of control flow:
1.  Within expressions.
2.  Among program statements.
3.  Among program units.

2
Lecture 08

Structured Control Flow

•  A program is called structured if the flow of control is
evident from the syntactic/static structure of the program.

•  Structured programming allows the programmer to be
able to reason about the behaviour of a program by just
analyzing the program text:
–  Eliminates some of the complexity that arises when programs

become large.
–  Common patterns of control flow that are used over and over by

the programmers are integrated in special control statements in the
language:

•  selection statements.
•  iteration statements.

3
Lecture 08

Selection Statements

•  A selection statement provides the means of choosing
between two or more paths of execution.

•  Two general categories:
–  Two-way selectors (if-then-else)
–  Multiple-way selectors (switch or case).

4
Lecture 08

Two-Way Selection Statements

•  General form:
 if control_expression then
 clause

 else

 clause

•  Nested selectors: which if is paired with the else?
 if (sum == 0)

 if (count == 0)

 result = 0;

 else

 result = 1;

1-5
Lecture 08

Nested Selectors

•  Static semantics rule (C/C++/Java/C#):
–  else matches with the nearest if.

•  To force an alternative semantics, compound statements
may be used:
 if (sum == 0) {

 if (count == 0)

 result = 0;

 }

 else result = 1;

•  Perl requires that all then & else clauses to be compound.

6
Lecture 08

7

Nested Selectors

•  Statement sequences as clauses: Ruby

 if sum == 0 then

 if count == 0 then

 result = 0

 else
 result = 1

 end

 end

Lecture 08

8

Nesting Selectors

•  Statement sequences as clauses: Python

 if sum == 0:
 if count == 0:

 result = 0

 else:
 result = 1

Lecture 08

Multiple-Way Selection Statements

•  Allow the selection of one of any number of statements or
statement groups.

•  C/C++/Java:
 switch (expression) {
 case const_expr_1: stmt_1;

 …

 case const_expr_n: stmt_n;

 [default: stmt_n+1]
 }

•  C# disallows the implicit execution of more than one
segment (need explicit break or goto).

9
Lecture 08

Multiple-Way Selection Statements: C/C++/
Java

•  Control is allowed to fall through more than one segment:

switch (index) {

 case 1:
 case 3: odd++;

 break;

 case 2:

 case 4: even++;

 break;
 default: cout << “Unknown index “ << index;

}

10
Lecture 08

Multiple-Way Selection Statements: C#

•  Need explicit transfer control through break or goto:

switch (value) {

 case -1: negatives++;
 break;

 case 0: zeros++;

 goto case 1;

 case 1: positives++;

 break;
 default: Console.WriteLine(“Unexpected value”);

}

•  Control and case expressions can also be strings.

11
Lecture 08

Multiple-Way Selection Statements: C/C++/
Java

•  No restriction on placement of case expressions in C/C++:

switch (x)

 default:
 if (prime(x))

 case 2: case 3: case 5: case 7:

 process_prime(x);

 else

 case 4: case 6: case 8: case 9: case 10:
 process_composite(x);

•  Case expressions allowed to appear only at top level in Java.

12
Lecture 08

Multiple-Way Selection Statements: Ada

•  Ada’s case is more reliable than C’s switch:
–  once a segment execution is completed, control is passed to the

first statement after the case statement.
–  choice lists need to be exhaustive.

•  Can use subranges 10 .. 20, or disjunctions 10 | 15 | 20.

 case expression is
 when choice_list => stmt_sequence;
 …
 when choice_list => stmt_sequence;
 [when others => stmt_sequence;]
 end case;

13
Lecture 08

Multiple-Way Selection Using else-if

•  Multiple-Way selectors can appear as direct extensions to
Two-Way selectors, using else-if clauses.

•  Python:
 if count < 10:

 bag1 = True

 elif count < 100:

 bag2 = True

 elif count < 1000:

 bag3 = True

 else:

 bag4 = True

14
Lecture 08

•  Ruby:
case

 when count < 10 then bag1 = True

 when count < 100 then bag2 = True

 when count < 1000 then bag3 = True

 else bag4 = True

end

Multiple-Way Selection Statements: Ruby

•  Case constructs are expressions:

leap = case

 when year % 400 == 0 then true

 when year % 100 == 0 then false

 else year % 4 == 0

 end

15
Lecture 08

Iteration Statements

•  The repeated execution of a statement or compound
statement can be accomplished by:
–  iteration (imperative languages).
–  recursion (functional languages).

•  Iteration Statements provide for structured iteration
without the use of goto statements:
–  Counter-Controlled Loops (definite iterations).
–  Logically-Controlled Loops (indefinite iterations).

16
Lecture 08

Definite vs. Indefinite Iterations

•  A definite iteration is executed a fixed number of times:
for (int i = 0; i < 10; i++) {

sum = sum + a[i];

}

•  An indefinite iteration relies on a dynamically computed
value to determine whether the iteration should continue:
int fact = 1;

while (n > 1) {

fact = fact * n;

n = n - 1;

}

17
Lecture 08

Common Iteration Constructs in C/C++/Java

•  while loops (pretest):
while (<condition>) <statement>;

while (<condition>) {<statement>; <statement>; …}

•  do-while loops (posttest, similar to repeat-until in Pascal):
do <statement> while (<condition>);

do {<statement>; <statement>; …} while (<condition>);

•  for loops (restricted form of while loops):
for (<initialize>; <test>; <step>) <statement>

for (<initialize>; <test>; <step>) {<statement-list>}

•  Exercise:
–  state semantics for each construct (natural language, denotational).
–  model for loops using while loops.

18
Lecture 08

Iteration Constructs in Ada

•  for loops:
 for var in [reverse] discrete_range
loop ...

 end loop
•  Ada vs. C differences:

–  The loop variable does not exist outside the loop. and cannot be
changed in the loop.

–  The discrete range is evaluated just once.
–  Cannot branch into the loop body.

 Count: Float := 3.14;
 for Count in 1..10 loop
 Sum := Sum + Count;
 end loop;

19
Lecture 08

Iteration Constructs in Python

•  for loops:
 for <var> in <domain>:

 <loop-body>
 [else:
 <else-clause>]

•  The domain is often a range:
–  a list of values in brackets ([2, 4, 6]);
–  a call to the range function, e.g. range(4) which returns [0, 1, 2, 3]

•  The else clause is optional, and is executed if the loop
terminates normally.

20
Lecture 08

Special Iteration Constructs: break

•  Most of the time iteration constructs are single-entry,
single-exits.

•  Sometimes a loop needs to be terminated prematurely, if a
special condition arrives:
–  C /C++/C#, Python, and Ruby have unconditional unlabeled exits

(break):
•  transfer control right after the end of the enclosing loop.

–  Java and Perl have unconditional labeled exits (break in Java,
last in Perl):

•  transfer control at the labeled statement..

21
Lecture 08

Special Iteration Constructs: continue

•  Sometimes it is necessary to force a loop to be re-entered
from the “top” before the loop has reached the “bottom”:
–  C/C++ and Python have an unlabeled control statement

(continue).
–  Java and Perl have labeled versions of continue.

outerloop: // Java

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 if (a[i][j] < 0)
 break outerloop;
 }

}

 22
Lecture 08

Iteration Statements

•  Iteration constructs, along with break and continue
are just a more structured way of programming common
goto control flow.

•  For example, the while loop:
start: // start of the loop

 if (cond-expr == false)

 goto end;

 ... // body of the loop

 goto start;
end: // end of the loop

... // statements following the loop

23
Lecture 08

Reading Assignment

Chapter 8 (8.1 – 8.4)

24
Lecture 08

Special Iteration Constructs

•  Infinite loops:
while (true) { ... };

for (;;) { ... };

•  Execute-once loops:
do { ... } while (false);

25
Lecture 08

