
Organization of Programming Languages
CS 3200/5200N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 09

Control Flow

•  Control flow = the flow of control, or execution sequence,
in a program.

•  Levels of control flow:
1.  Within expressions.
2.  Among program statements.
3.  Among program units.

Lecture 09
2

Abstraction

•  Abstraction = a view or representation of an entity that
includes only the most significant attributes.

•  Birds are animals with the following attributes:
–  two wings
–  two legs
–  a tail, feathers, …

•  Robins are birds that …
•  Sparrows are birds that …
⇒ significant simplification of descriptions of members.

3
Lecture 09

Abstraction

•  Two fundamental abstraction facilities in PLs:
–  Process abstraction:

•  Emphasized from early days.
•  Abstract away the details of the implementation by using just a

call statement.
–  Data abstraction:

•  Emphasized in the 1980s.
•  Abstract away from the type representation and the

implementation details of its operations by using an abstract
data type.

Lecture 09
4

Subprograms: General Characteristics

•  Each subprogram has a single entry point:
–  Exception: coroutines.

•  The calling program is suspended during execution of the
called subprogram:
–  Exception: concurrent units.

•  Control always returns to the caller when the called
subprogram’s execution terminates.

Lecture 09
5

Subprograms: Procedures vs. Functions

•  A procedure is a named scope that is parameterized:
–  Procedure body: defines a scope that contains local variable type

declarations and statements.
–  Parameters: allow additional values, variable references, or names

to be bound into the scope, depending on the calling convention
semantics.

•  formal parameters when the procedure is defined.
•  actual parameters when the procedure is called.

–  Name: may be overloaded to have different meaning depending on
the type of the arguments

Lecture 09
6

Subprograms: Procedures vs. Functions

•  A function structurally resembles a procedure, but is
semantically modeled on mathematical functions:

•  Functions are expected to produce no side effects.
•  Functions are required to produce a return value.
•  Functions should have at least one argument.

•  In some languages (e.g. C/C++) the terms function and
procedure are used interchangeably:
–  a distinction should be made.
–  examples of procedure vs. function behavior in C/C++.

Lecture 09
7

Basic Definitions

•  A subprogram definition describes the interface to and the
actions of the subprogram abstraction:
–  Ada and Fortran also specify the type of the subprogram:

procedure Adder(parameters)
–  Other languages have only one kind of subprogram (functions).

•  In Python, subprogram definitions are executable statements:
if … :

def fun(…):
…

else :
def fun(…):

…

Lecture 09
8

Basic Definitions

•  A subprogram header is the first part of the definition,
including:
–  the kind of subprogram;
–  the name (can be overloaded);
–  the formal parameters.

•  The parameter profile (i.e. signature) of a subprogram is
the number, order, and types of its parameters.

•  The protocol of a subprogram is:
–  a parameter profile for procedures.
–  a parameter profile + its return type for functions.

Lecture 09
9

Basic Definitions

•  A subprogram declaration provides the protocol, but not
the body, of the subprogram.

•  A subprogram call is an explicit request to execute the
subprogram:
–  actual parameters are mapped to corresponding formal

parameters based on corespondence rules of the language.
–  actual parameters are bound to formal parameters based on the

calling convention semantics.

Lecture 09
10

Actual/Formal Parameter Correspondence

•  Positional:
–  The first actual parameter is bound to the first formal parameter,

and so forth.
–  Safe and effective.
–  Nearly all programming languages.

•  Keyword:
–  The name of the formal parameter to which an actual parameter is

to be bound is specified with the actual parameter.
–  Advantage: Parameters can appear in any order, thereby avoiding

parameter correspondence errors.
–  Disadvantage: User must know the formal parameter’s names
–  Ada, Fortran95, Python.

Lecture 09
11

Formal Parameters: Default Values

•  In certain languages formal parameters can have default
values (if no actual parameter is passed):
–  Examples: C++, Python, Ruby, Ada, PHP.

•  In C++, default parameters must appear last because
parameters are positionally associated.

•  In Python, it used to be the case that default parameters can
appear at any position:
–  all actual parameters after the absent one must be keyworded.

def compute_pay(income, exemptions = 1, tax_rate):
...
pay = compute_pay(20000, tax_rate = 0.15)

Lecture 09
12

Local Referencing Environment

•  Local referencing environment is defined by:
–  local variables;
–  formal parameters;

•  Local variables can be stack-dynamic or static:
–  Advantages of stack-dynamic:

•  Support for recursion
•  Storage for locals is shared among some subprograms

–  Disadvantages of stack-dynamic:
•  Allocation/de-allocation, initialization time
•  Indirect addressing
•  Subprograms cannot be history sensitive

Lecture 09
13

Local Referencing Environment

•  C/C++ example:
int length (const char* string) {

int len = 0;

if (string == NULL || *string == ‘\0’)
return 0;

while (*string != ‘\0’) {
len++;

string++;

}

return len;
}

•  When the function is called, its environment is activated:
–  bindings of local variables to stack locations (l-values).
–  bindings of argument values (r-values) to stack locations

associated with formal parameters.
Lecture 09

14

Semantic Models of Parameter Passing

•  In mode: formal parameters can receive data from the
corresponding actual parameters.

•  Out mode: formal parameters can transmit data to the
corresponding actual parameters.

•  InOut mode: both.

Lecture 09
15

Semantic Models of Parameter Passing:
x in, y out, z in out

Lecture 09
16

Models of Parameter Passing: Implementations
(Calling Conventions)

•  Pass-by-Value (In Mode)
•  Pass-by-Result (Out Mode)
•  Pass-by-Value-Result (InOut Mode)
•  Pass-by-Reference (InOut Mode, but also In, or Out)
•  Pass-by-Name (InOut Mode)

•  In most languages parameter communication takes place
through the run-time stack.
–  Copy an actual value (r-value)
–  Transfer an access path (l-value)

•  a pointer, or a reference.

Lecture 09
17

Pass-by-Value (In Mode)

•  The value of the actual parameter is used to initialize the
corresponding formal parameter:
–  The r-value of actual param is copied on the stack (pass by copy).

•  Disadvantages:
–  additional storage is required (stored twice) and the actual

move can be costly (for large parameters).

Lecture 09
18

Pass-by-Value (In Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 function Fun_In(X: in Integer) return Integer is
 begin
 X := X + 3;
 return 2 * X;
 end Fun_In;

 A: Integer := 10;

begin
 Put(Fun_In(A));
 Put(A);
end Parameter_Test;

19
Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
parameter_test.adb:13:07: assignment to "in" mode

 parameter not allowed
gnatmake: "parameter_test.adb" compilation error

Pass-by-Value (In Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 function Fun_In(X: in Integer) return Integer is
 begin
 return 2 * X;
 end Fun_In;

 A: Integer := 10;

begin
 Put(Fun_In(A));
 Put(A);
end Parameter_Test;

20
Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
gnatbind -x parameter_test.ali
gnatlink parameter_test.ali

> ./parameter_test
 20 10

Pass-by-Result (Out Mode)

•  No value is transmitted to the subprogram.
•  The formal parameter acts as a local variable.
•  Before control is returned to the caller, the value of the

formal parameter is transmitted back to the caller’s actual
parameter:
–  Actual parameter must be a variable.
–  Implemented by copying an r-value from the stack.

•  Potential problem:
–  sub(p1, p1);

•  whichever formal parameter is copied back will represent the
current value of p1.

Lecture 09
21

Pass-by-Result (Out Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 procedure Fun_Out(X: out Integer) is
 begin
 X := 2 * X;
 end Fun_Out;

 A: Integer := 10;

begin
 Fun_Out(A);
 Put(A);
end Parameter_Test;

22
Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
parameter_test.adb:8:16: warning: "X" may be
 referenced before it has a value
gnatbind -x parameter_test.ali
gnatlink parameter_test.ali

> ./parameter_test
 0

Pass-by-Result (Out Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 procedure Fun_Out(X: out Integer) is
 begin
 X := 3;
 X := 2 * X;
 end Fun_Out;

 A: Integer := 10;

begin
 Fun_Out(A);
 Put(A);
end Parameter_Test;

23
Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
gnatbind -x parameter_test.ali
gnatlink parameter_test.ali

> ./parameter_test
 6

Pass-by-Result (Out Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 procedure Fun_Out(X: out Integer) is
 begin
 X := 3;
 X := 2 * X;
 end Fun_Out;

 A: Integer := 10;

begin
 Fun_Out(5);
 Put(A);
end Parameter_Test;

24
Lecture 09

[razvan@texas ada]$ gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
parameter_test.adb:14:08: actual for "X" must be a

 variable
gnatmake: "parameter_test.adb" compilation error

Pass-by-Value-Result (InOut Mode)

•  A combination of pass-by-value and pass-by-result.

•  Sometimes called copy-in/copy-out.

•  Formal parameters have local storage.

•  Semantically similar to pass-by-reference:

–  There may be subtle differences due to aliasing in pass-by-reference!

Lecture 09
25

Pass-by-Value-Result (InOut Mode): Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 procedure Fun_InOut(X: in out Integer) is
 begin
 X := 2 * X + 1;
 end Fun_InOut;

 A: Integer := 10;

begin
 Fun_InOut(A);
 Put(A);
end Parameter_Test;

26
Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
gnatbind -x parameter_test.ali
gnatlink parameter_test.ali

> ./parameter_test
 21

Functions vs. Procedures: Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 procedure Fun_InOut(X: in out Integer) return Integer is
 begin
 X := 2 * X;
 return X - 1;
 end Fun_InOut;

 A: Integer := 10;

begin
 Fun_InOut(A);
 Put(A);
end Parameter_Test;

27

Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
parameter_test.adb:5:04: “procedure” should be
 “function”
gnatmake: "parameter_test.adb" compilation error

Functions vs. Procedures: Ada

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Parameter_Test is

 function Fun_InOut(X: in out Integer) return Integer is
 begin
 X := 2 * X;
 return X - 1;
 end Fun_InOut;

 A: Integer := 10;

begin
 Fun_InOut(A);
 Put(A);
end Parameter_Test;

28

Lecture 09

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
parameter_test.adb:5:21: functions can only have

 "in" parameters
parameter_test.adb:7:07: assignment to "in" mode

 parameter not allowed
gnatmake: "parameter_test.adb" compilation error

Pass-By-Reference

•  An access path is transmitted to the called subprogram:
–  usually the l-value of the actual parameter is passed on the stack.

•  Also called pass-by-sharing.
•  Advantage:

–  Passing process is efficient (no copying and no duplicated storage).
–  Can be used to implement all semantic modes (in, out, inout).

•  Disadvantages:
–  Slower accesses to formal parameters (compared to pass-by-

value).
–  Potentials for unwanted side effects (collisions).
–  Unwanted aliases (access broadened).

Lecture 09
29

Pass-By-Reference (InOut Mode): Ada

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;

procedure Parameter_Test is

 type Employee is record
 Name: Unbounded_String;
 Hourly_Pay: Float;
 end record;

 procedure Fun_InOut(X: in out Employee) is
 begin
 X.Name := To_Unbounded_String("John Williams");
 X.Hourly_Pay := 20.0;
 end Fun_InOut;

 A: Employee :=
 (Name => To_Unbounded_String("Mark Brown"),
 Hourly_Pay => 15.0);

30
Lecture 09

begin
 Fun_InOut(A);
 Put(To_String(A.Name) &
 " " &
 Float'Image(A.Hourly_Pay));
end Parameter_Test;

> gnat make parameter_test.adb
gcc-4.4 -c parameter_test.adb
gnatbind -x parameter_test.ali
gnatlink parameter_test.ali

> ./parameter_test
John Williams 2.00000E+01

Pass-By-Reference (InOut Mode) : C++

struct Employee {
 string name_;
 float hourly_pay_;
};

void funInOut(Employee &X)
{
 X.name = “John Williams”;
 X.hourly_pay_ = 20.0;
}

int main(int argc, char** argv)
{
 Employee A = {“Mark Brown”, 15.0};
 funInOut(A);
 cout << A.name << “ “ << A.hourly_pay_ << endl;
 return 0;
}

 31
Lecture 09

> g++ parameter_test.cc –o parameter_test

> ./parameter_test
John Williams 2.00000E+01

Pass-By-Reference (In/Out)

•  Pass by reference can also be used to implement in mode:
–  C++: void fun(const int &p1) { … };
–  Disadvantages :

•  enforcing write protection in the callee is not easy.
•  accesses costs more (indirect addressing).

•  Pass by reference can also be used to implement out mode:
–  C#: void fun(out int x, out int y) { … };
–  Ada: procedure Fun_Out(X: out Employee) is

32
Lecture 09

Pass-by-Value-Result vs. Pass-by-Reference

procedure Parameter_Test is

 Y: Integer := 2;

 procedure Fun_InOut(X: in out Integer) is
 begin
 X := X + 1;
 X := X + Y;
 end Fun_InOut;

begin
 Fun_InOut(Y);
 Put(Y);
end Parameter_Test;

33
Lecture 09

Pass-by-Value-Result ⇒ Y = ?

Pass-By-Reference ⇒ Y = ?

Aliasing

Pass-by-Name (InOut Mode)

•  By textual substitution:
–  The actual parameter is textually substituted for the corresponding

formal parameter in all its occurrences in the subprogram.
–  Potential for name conflicts.

•  Introduced in Algol 60, but not part of any widely used
language.

•  Still used at preprocessing/compile time for:
–  macro substitution.
–  generic parameters for generic subprograms in C++ and Ada.

Lecture 09
34

Parameter Passing Methods of Major
Languages

•  C:
–  Pass-by-value.
–  Pass-by-reference is simulated by using pointers as parameters.

•  C++:
–  Pass-by-reference using a special pointer type called reference.
–  What is the difference between:

• void fun(int p1) { … };
• void fun(const int &p1) { … };

•  Java:
–  All parameters are passed by value.
–  Object parameters are in effect passed by reference.

Lecture 09
35

Parameter Passing Methods of Major
Languages

•  Ada:
–  Three semantics modes of parameter transmission: in, out,
in out; in is the default mode:

•  Formal parameters declared out can be assigned:
–  can not be referenced in Ada 83 ⇒ awkward;
–  restriction removed in Ada 95.

•  those declared in can be referenced but not assigned;
• in out parameters can be referenced and assigned

–  Scalar parameters are passed-by-copy.
⇒ in out implemented as pass-by-value-result.

–  Structured parameters are passed-by-reference.
⇒ in out implemented as pass-by-reference.

Lecture 09
36

Parameter Passing Methods of Major
Languages

•  Fortran 95 is similar to Ada:
–  Parameters can be declared to be in, out, or inout mode.

•  C#:
–  in mode is default, implemented as pass-by-value.
–  out mode is specified with the out modifier:

•  implemented as pass-by-reference.
–  in out mode is specified with the ref modifier:

•  implemented as pass-by-reference.

Lecture 09
37

Parameter Passing Methods of Major
Languages

•  Perl:
–  all actual parameters are implicitly placed in a predefined array

named @_ whose elements are aliases for actual parameters.

•  Python and Ruby:
–  Pass-by-assignment (all data values are objects, often immutable).
–  It is in effect semantically equivalent with pass-by-reference:

•  every variable stores a reference to an object.
⇒ the value of an actual parameter is a reference, that is assigned

to the formal parameter.

38
Lecture 09

Type Checking Parameters

•  Considered very important for reliability.
•  FORTRAN 77 and original C: none.
•  Pascal, FORTRAN 90, Java, and Ada: it is always required.
•  ANSI C and C++: choice is made by the user

–  Type checking avoided by using ellipsis (e.g. printf).

•  Perl, JavaScript, and PHP do not require type checking.
•  In Python and Ruby:

–  variables do not have types (objects do);
–  formal parameters are typeless;
⇒ parameter type checking is not possible.

Lecture 09
39

Overloaded Subprograms

•  An overloaded subprogram is one that has the same name
as another subprogram in the same referencing
environment:
–  Every version of an overloaded subprogram has a unique protocol.

•  C++, Java, C#, and Ada include predefined overloaded
subprograms:
–  Many classes have overloaded constructors.

•  C++, Java, C#, and Ada also allow users to write multiple
versions of subprograms with the same name.

Lecture 09
40

Overloaded Subprograms

•  In Ada, the return type of an overloaded function can be
used to disambiguate calls:
–  Possible because it does not allow mixed mode expressions.

A, B : Integer;
…

A := B + Fun(7);

•  In C++, Java, and C# the return type is irrelevant to
disambiguation of overloaded functions/methods:
–  Impossible because they allow mixed mode expressions.

Lecture 09
41

Polymorphic & Generic Subprograms

•  A polymorphic subprogram takes parameters of different
types on different activations.
–  ad hoc polymorphism = the type of polymorphism provided by

overloaded subprograms.
–  parametric polymorphism = the type of polimorphism provided by

generic subprograms.
•  A generic subprogram is parameterized with type information,

using a type expression that describes the type of the parameters.

•  Example: generic function definition in C++:
template<class type> void swap(type& a, type&b)
{ type temp = a; a = b; b = temp; }

Lecture 09
42

Polymorphic & Generic Subprograms

•  The compiler takes care of generating instances of the
subprogram:
–  In C++, they are instantiated implicitly, when the subprogram is

named in a call or when its address is taken with the & operator:
int u = 1;
int v = 0;
swap(u,v);
⇒  void swap(int& a, int&b)
 {int temp = a; a = b; b = temp; }

–  In Ada, generic subprograms are instantiated explicitly:
procedure int_swap is
 new swap(type ⇒ Integer);

43
Lecture 09

Generic Functions vs. Macros in C++

•  Generic Function:
template <class Type>
Type max(Type first, Type second) {
 return first > second ? first : second;
}
•  “Equivalent” Macro:
#define max(a,b) ((a) > (b)) ? (a) : (b)

•  Is there any difference?

44
Lecture 09

Overloaded Operators

•  Operators can be overloaded in Ada, C++, Python, and
Ruby.

•  An Ada example:
function "*" (A,B: in Vec_Type): return Integer
is
 Sum: Integer := 0;
 begin
 for Index in A'range loop
 Sum := Sum + A(Index) * B(Index)
 end loop
 return sum;
end "*";
…
c = a * b; -- a, b are of type Vec_Type
 -- c is of type Integer

45
Lecture 09

Coroutines

•  A coroutine is a subprogram that has multiple entries and
controls them itself.

•  Symmetric control: caller and called coroutines are on a
more equal basis.

•  A coroutine call is named a resume.
–  The first resume of a coroutine is to its beginning;
–  Subsequent resumes enter at the point just after the last executed

statement in the coroutine;
–  Coroutines repeatedly resume each other, possibly forever.

•  Coroutines provide quasi-concurrent execution of
program units (the coroutines):
–  their execution is interleaved, but not overlapped.

46
Lecture 09

Coroutines Illustrated: Possible Execution
Controls

47
Lecture 09

Coroutines Illustrated: Possible Execution
Controls

48
Lecture 09

Coroutines Illustrated: Possible Execution
Controls with Loops

49
Lecture 09

Simulating Coroutines Using Generators in
Python

def funA(gens):
 print "In A, right before first resume B."
 yield gens[1]
 print "In A, right before second resume B.“
 yield gens[1]
 print "In A, right before third resume B."
 yield gens[1]

def funB(gens):
 print "In B, right before first resume A."
 yield gens[0]
 print "In B, right before second resume A."
 yield gens[0]
 print "In B, right at the end."

50
Lecture 09

def master():
 gens = [None, None]
 gens[0] = funA(gens)
 gens[1] = funB(gens)
 gen = gens[0] # start with A
 try:
 while True:
 gen = gen.next()
 except StopIteration:
 None

