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Functional vs. Imperative 

•  The design of the imperative languages is based directly on 
the von Neumann architecture: 
–  Efficiency is the primary concern, rather than the suitability of the 

language for software development. 
–  Heavy reliance on the underlying hardware ⇒ (unnecessary) 

restrictions on software development. 

•  The design of the functional languages is based on 
mathematical functions: 
–  Offer a solid theoretical basis that is also closer to the user. 
–  Relatively unconcerned with the architecture of the machines on 

which programs will run. 
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Mathematical Functions 

•  A mathematical function is a mapping of members of one 
set, called the domain, to another set, called the range: 
–  The function  square: Z → N,  square(x) =  x * x 

•  square is the name of the function 
•  x is an element in the domain Z 
•  square(x) is the corresponding element in the range N 
•  square(x) =  x * x  defines the mapping. 

–  The function fact : N → N 

  fact(x) =  

3 
 Lecture 11 

1          if x =0 
x* fact(x-1)    if x > 0 



Lambda Expressions 

•  A lambda expression specifies the parameters and the 
mapping of a nameless function in the following form: 
λx. x * x is the lambda expression for the mathematical function  
square(x) = x * x . 

λx. λy. x + y corresponds to sum(x, y) = x + y  

•  Lambda expressions are applied to parameters by placing 
the parameters after the expression: 
(λx. x * x * x)(2) evaluates to 8. 
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Functional Forms 

•  A higher-order function, or functional form, is one that:  
–  either takes functions as parameters,  
–  or yields a function as its result, 
–  or both. 

•  Examples of functional forms: 
–  functional composition. 
–  apply-to-all. 
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Functional Composition 

•  Mathematical Notation: 
–  Form: h ≡ fͦg 
–  Meaning: h(x) ≡ f(g(x)) 
–  Example:   

• f(x) ≡ x + 2  and  g(x) ≡ 3 * x. 
• h ≡ fͦg  is equivalent with h(x)≡(3*x)+2 

•  Lambda expression: 
λx. x + 2 
λx. 3 * x 

λf. λg. λx. f (g x) 
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Apply-to-all 

•  A functional form that takes a single function as a 
parameter and yields a list of values obtained by applying 
the given function to each element of a list of parameters. 

•  Mathematical notation: 
–  Form: α 
–  Function: h(x) ≡ x * x 
–  Example: α(h, (2, 3, 4))  yields  (4, 9, 16) 

•  Lambda expression: 
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Functional Programming and Lambda Calculus 

•  Functional languages have a formal semantics derived 
from Lambda Calculus: 
–  Defined by Alonzo Church in the mid 1930s as a computational 

theory of recursive functions. 
–  The lambda calculus emphasizes expressions and functions, which 

naturally leads to a functional style of programming based on 
evaluation of expressions by function application to argument 
values. 
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Imperative Programming and Turing Machines 

•  Imperative programming: computation is performed 
through statements that change a program state. 

•  Modeled formally using Turing Machines: 
–  Defined by Alan Turing in the mid 1930s. 
–  Abstract machines that emphasize computation as a series of state 

transitions driven by symbols on an input tape, which leads 
naturally to an imperative style of programming based on 
assignment. 
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Functional Languages and Lambda Calculus 

•  Theorem (Church, Kleen, Turing): 
–  Lambda Calculus and Turing Machines have the same 

computational power. 

•  Functional Languages have a denotational semantics based 
on lambda calculus: 
–  the meaning of all syntactic programming constructs in the 

language is defined in terms of mathematical functions. 
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Scheme 

•  Designed and implemented by Steele and Sussman at MIT 
in 1975. 

•  Influenced syntactically and semantically by LISP and 
conceptually by Algol: 
–  Lisp contributed the simple syntax, uniform representation of 

programs as lists and garbage collected heap allocated data. 
–  Algol contributed lexical (static) scoping and block structure. 
–  Lisp and Algol both defined recursive functions. 
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Scheme: Key Features 

•  Scheme is statically scoped: 
–  uses the let, let* and letrec operators to define variable bindings 

within local scopes. 

•  Scheme has dynamic or latent typing: 
–  types are associated with values at run-time. 
–  a variable assumes the type of the value that is bound to at run-time. 

•  Scheme objects are garbage-collected: 
–  run-time objects have potentially unlimited lifetime. 

•  Scheme functions are first-class objects: 
–  functions can be created dynamically, stored in data structures, 

returned as results of expressions or other functions. 
•  functions are defined as lists ⇒ can be treated as data. 
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Scheme: Key Features 

•  Scheme data objects (e.g. lists) are first-class objects: 
–  they are all heap-allocated; can be returned as results from 

functions, and combined to form larger data strucures. 

•  Scheme supports many different types: 
–  numbers, characters, strings, symbols, and lists. 
–  integers, real, complex, and arbitrary precision rational numbers. 

•  Scheme includes a large set of built-in functions for 
manipulation of lists and other data objects. 

•  Arguments to functions are always passed by value: 
–  actual arguments are always evaluated before a function is called, 

whether or not the function needs the values (eager, or strict 
evaluation). 
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Syntax and Naming Conventions 

•  Scheme programs are made of: 
–  keywords, variables, structured forms (e.g. lists), numbers, characters, 

strings, quoted vectors, quoted lists, whitespace, and comments. 

•  Identifiers (keywords, variables and symbols) are formed 
from the characters a-z, A-Z, 0-9, and ?!.+-*/<=>:$%^&_~ 
–  identifiers cannot start with 0-9,-,+. 

•  Predicate names end in the question mark symbol: 
–  eq?, zero?, string=? 

•  Type predicates are the name of the type followed by a ?: 
–  pair?, string? 
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Syntax and Naming Conventions 

•  Builtin character, string, and vector functions start with the 
name of the type: 
–  string-append, … 

•  Functions that convert one type of object to another use the 
→ symbol: 
–  string→number 

•  Strings are formed using double quotes: 
–  “Hello, world!” 

•  Numbers are just numbers: 
–  100, 3.14 

•  Some function names are overloaded (e.g., +, *, /). 
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Simple Expressions 

•  An expression in Scheme has the form (E1 E2 … En): 
–  E1 evaluates to an operator. 
–  E2 through En are evaluated as operands. 

•  Some examples using the Dr. Scheme interpreter: 
–  (+ 1 2 3 4) ⇒ 10 
–  (+ 1 (* 2 3) 4) ⇒ 11 

•  Scheme does dynamic type checking and automatic type 
coercion: 
–  (+ 2.5 10) ⇒ 12.5 
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Simple Expressions 

•  Scheme uses inner-most evaluation: 
–  arguments are evaluated first, then substituted as parameters to 

functions: 
(define (square x) (* x x)) 

(square (+ 2 3)) ⇒ (square 5) ⇒ (* 5 5) ⇒ 25 

–  once the subexpression (+2 3) is evaluated, the memory for this 
list can be garbage collected. 

•  Functions can also be defined using lambda expressions: 
(define square (lambda(x) (* x x))) 
(square 0.1) ⇒ 0.01 
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Top Level Bindings: define 

•  A Function for constructing functions define: 
1.  To bind a symbol to an expression 

 e.g., (define pi 3.141593) 
 Example use: (define two_pi (* 2 pi)) 

2.  To bind names to lambda expressions 
 e.g., (define(square x) (* x x)) 
 Example use: (square 5) 

 

–  The evaluation process for define is different! The first 
parameter is never evaluated. The second parameter is evaluated 
and bound to  the first parameter.  
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Delayed Evaluation: quote 

•  quote takes one parameter; returns the parameter w/o evaluation. 
–  (quote (+ 1 2 3)) ⇒ (+ 1 2 3)  

•  The Scheme interpreter, named eval, always evaluates parameters to 
function applications before applying the function. 

•  Use quote to avoid parameter evaluation when it is not appropriate. 
•  Can be abbreviated with the apostrophe prefix operator: 

–  ‘(+ 1 2 3) ⇒ (+ 1 2 3) 

–  (eval ‘(+ 1 2 3)) ⇒ 6 
–  (define sum123 ‘(+ 1 2 3)) 
–  sum123 ⇒ (+ 1 2 3) 

–  (eval sum123) ⇒ 6 

–  ‘x ⇒ x 
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Predicate Functions 

•  Boolean values: 
–  #T is true and #F is false  
–  sometimes () is used for false. 

•  Relational predicates:  
–  =, >, <, >=, <= 
–  implement <> 

•  Numerical predicates: 
–  even?, odd?, zero?, negative? 
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Predicate Functions: Equality 

1.  Use eq? to compare two atoms: 
–  (eq? ‘a ‘a) ⇒ #t 

–  (eq? 1.0 1.0) ⇒ #f 

2.  Use eqv? to compare two numbers or characters: 
–  (eqv? 1.0 1.0) ⇒ #t 

–  (eqv? “hello” “hello”) ⇒ #f 

3.  Use equal? to compare two objects for structural equality: 
–  (equal? “hello” “hello”) ⇒ #t 
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Builtin Logical Operators 

•  Logical operators: 
–  (and <e1> … <en>) 
–  (or <e1> … <en> 
–  (not  <e1>) 

•  Parameter evaluation: 
–  expressions are evaluated left to right: 
–  short-circuit evaluation for and and or. 

•  Examples: 
–  (and (< x 10) (> x 5) 
–  (define (<= x y) (or (< x y) (= x y))) 
–  (define (<= x y) (not (> x y))) 

22 
Lecture 11 



Control Flow: if 

•  The special form if: 
–  (if <predicate> <then_exp> <else_exp>) 
–  (if <predicate> <then_exp>) 

•  Examples:  
–  (define (abs x) 

  (if (< x 0) 

      (- 0 x) 

      x)) 
 

- ((if #f + *) 2 3) 
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Control Flow: cond 

•  Multiple selection using the special form cond with the 
general form: 
 (cond 
  (predicate_1  expr {expr}) 
  (predicate_2  expr {expr}) 
  ... 
  (predicate_k expr {expr}) 
  (else expr {expr})) 

•  Returns the value of the last expression in the first pair 
whose predicate evaluates to true 

24 
Lecture 11 



Control Flow: cond 

•  (define (abs x) 
  (cond ((< x 0) (- 0 x)) 
   (else x))) 

 
 
•  (define (compare x y) 
   (cond 
     ((> x y) “x is greater than y”) 
     ((< x y) “y is greater than x”) 
     (else “x and y are equal”))) 
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Factorial in Scheme 

•  (define (factorial x) 
 (if (= x 0)  
     1  

     (* x (factorial (- x 1))))) 

 
•  (define factorial (lambda (x) 

 (if (= x 0)  
     1  

     (* x (factorial (- x 1))))) 
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Lambda Expressions in Scheme 

•  (lambda (<formal parameters>) <body>) 
–  When the lambda expression is evaluated, the environment in 

which it is evaluated is remembered. 
–  When the procedure is called, the environment is augmented with 

bindings of formal params to actual params. 
–  The expressions in the body are evaluated sequentially in order. 

•  Example: 
–  ((lambda (x y) (* x y) ) 2 3) ;; multiply 2 
with 3 
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Let Expressions 

•  Allow the definition of local variable bindings. 
•  General form: 
 (let((<name1> <expression1>) 
    (<name2> <expression2>) 

    ... 

    (<namek> <expressionk>)) 

  body 

 ) 
–  Evaluate all expressions; 
–  Bind the values to the names; 
–  Evaluate the body. 
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Let Expressions 

•  (define pi 3.14) 
•  (define (sum-of-pi-squared) (+ (square pi) 

      (square pi))) 

•  (define (sum-of-pi-squared) 
(let ((pi-squared (square pi))) 

(+ pi-squared pi-squared))) 

•  Which is more efficient? 
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Let Expressions are Lambda Expressions 

•  “Syntactic sugar” for lambda expressions: 
((lambda (<name1> … <namek>) 

  (<body>)) 

  <expr1> 

  … 

  <exprk>) 
–  the result of the lambda expression is an anonymous procedure. 
–  all the argument expressions are evaluated before the procedure is 

called (because of call-by-value semantics). 
–  when the procedure is called, the variables for the formal 

parameters are bound to the values of  the argument expressions 
and used in evaluating the body of the procedure. 
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Let* Expressions 

•  General form: 
 (let* ((<name1> <expression1>) 
     (<name2> <expression2>) 

     ... 
     (<namek> <expressionk>)) 

  body 

 ) 

–  The bindings are performed sequentially, from left to right.  
–  ⇒ earlier variable bindings apply to later variable bindings. 
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Let* Expressions are Lambda Expressions 

•  Let* examples: 
–  (define x 0) 
–  x ⇒ 0 

–  (let  ((x 2) (y x)) y) 
⇒ 0 

–  (let* ((x 2) (y x)) y) 
⇒ 2 

•  Binding order is important ⇒ lexically nest the lambda 
expressions and the application to arguments: 
–  ((lambda (x) ((lambda (y) y) x)) 2) 

⇒ 2 
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Lists in Scheme 

•  Almost everything in Scheme is a list: 
–  the interpreter evaluates most lists as an operator followed by 

operands, and returns a result. 
• (+ 1 2 3 4) ⇒ 10 

–   list is evaluated as an expression, result is 10. 
• ‘(+ 1 2 3 4) ⇒ (+ 1 2 3 4) 

–  result is a list of symbols 
–  the empty list is denoted by (). 

•  Examples: 
–  ‘(colorless green ideas sleep furiously) 
–  ‘((green) ideas (((sleep) furiously)) ()) 
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List Operations: car and cdr 

•  car takes a list parameter; returns the first element of that 
list e.g. 

 (car '(A B C)) yields A 
 (car '((A B) C D)) yields (A B) 

 

•  cdr takes a list parameter; returns the list after removing 
its first element e.g.  

 (cdr '(A B C)) yields (B C) 
 (cdr '((A B) C D)) yields (C D) 
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List Creation: cons and list 

•  cons: 
–  takes two parameters: 

•  the first can be either an atom or a list; 
•  the second is a list; 
•  returns a new list that  includes the first parameter as its first 

element and the second parameter as the remainder. 
–  (cons 'A '(B C)) ⇒ (A B C) 

•  list: 
–  takes any number of parameters;  
–  returns a list with the parameters as elements. 
–  (list ‘a ‘b ‘c) ⇒ (a b c) 
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Pairs 

•  cons can also be used to create pairs or improper lists: 
> (cons ‘a ‘b) ⇒ (a . b) 

> (car ‘(a . b)) ⇒ a 

> (cdr ‘(a . b)) ⇒ b 

 

•  When the second argument is a list, the result is a list: 
> (cons ‘a ‘(b)) ⇒ (a b) 

> (car ‘(a b)) ⇒ a 

> (cdr ‘(a b)) ⇒ (b) 
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Predicates on Lists 

•  list? takes one parameter; it returns #t if the parameter 
is a list; otherwise #f 
–  (list? ‘()) ⇒ #t 

–  (list? (cons ‘a ‘())) ⇒ #t 

•  null? takes one parameter; it returns #t if the parameter 
is the empty list; otherwise #f 
–  (null? ‘()) ⇒ #t 

•  equal? 
–  (equal? ‘(a b) (list ‘a ‘b)) ⇒ #t 
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Scheme Functions: Example 

•  member takes as parameters an atom and a simple list: 
–  returns #t if the atom is in the list;  
–  returns #f otherwise. 

 (define (member atom list) 
  (cond 
     ((null? list) #f) 
     ((eq? atom (car list)) #t) 
     (else (member atom (cdr list))) 
   ) 
   )     
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Scheme Functions: Example 

•  equalsimp takes two simple lists as parameters: 
–  returns #T if the two simple lists are equal; 
–  returns #F otherwise. 

 (define (equalsimp lis1 lis2) 
   (cond 
     ((null? lis1) (null? lis2)) 
     ((null? lis2) #F) 
     ((eq? (car lis1) (car lis2)) 
          (equalsimp (cdr lis1)(cdr lis2))) 
     (else #F) 
   )) 
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Scheme Functions: Example 

•  equal takes two general lists as parameters: 
–  returns #T if the two lists are equal; 
–  returns #F otherwise. 
 (define (equal list1 list2) 
   (cond 
     ((not (list? list1))(eq? list1 list2)) 
     ((not (list? list2)) #F) 
     ((null? list1) (null? list2)) 
     ((null? list2) #F) 
     ((equal (car list1) (car list2)) 
   (equal (cdr list1) (cdr list2))) 
     (else #F))) 
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Scheme Functions: Example 

•  append takes two lists as parameters: 
–  returns the first parameter list with the elements of the second 

parameter list appended at the end. 

 (define (append list1 list2) 

   (cond 

     ((null? list1) list2) 
     (else (cons (car list1) 

       (append (cdr list1) list2))) 

   ) 

   ) 
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Functional Forms in Scheme 

•  Functional Composition: 
–  (cdr (cdr '(A B C))) ⇒(C) 

–  HW: define a function that is the composition of cdr with cdr. 

•  Apply-to-All:  
–  one form in Scheme is map, which applies a given function to all 

elements of a given list. 
 (define (map fun lis) 
   (cond 

     ((null? lis) ()) 

     (else (cons (fun (car lis)) 

      (map fun (cdr lis)))) 

 )) 

42 
Lecture 11 



Procedures That Return Procedures 

> (define (make-adder (num) 

   (lambda (x) 
      (+ x num))) 

 

> ((make-adder 10) 9) ⇒ ? 

 

> ((lambda (x) (+ x 10)) 9) ⇒ ? 
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Functions that build Scheme code 

•  It is possible in Scheme to define a function that builds 
Scheme code and requests its interpretation. 

•  This is possible because the interpreter is a user-available 
function, eval. 
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Functions that build Scheme code 

•  Building a function that adds a list of numbers: 
(define (adder lis) 
   (cond 
     ((null? lis) 0) 
     (else (eval (cons '+ lis) 
       (scheme-report-environment 5) 
 ))) 
 

•   The parameter is a list of numbers to be added;  
–  adder inserts a + operator and evaluates the resulting list. 
–  Use cons to insert the atom + into the list of numbers. 
–  Be sure that + is quoted to prevent evaluation. 
–  Submit the new list to eval for evaluation. 
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Conceptually Infinite Lists in Scheme 

•  A doomed attempt to define the infinite list of integers: 
 

> (define ints 

    (lambda (n) 

      (cons n (ints (+ n 1))))) 

 
> (define integers (ints 1)) 
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Conceptually Infinite Lists in Scheme 

•  Delayed Evaluation: delay the creation of remaining 
integers until needed. 
> (define ints 

    (lambda (n) 

      (cons n (lambda () (ints (+ n 1)))))) 
 

> (define integers (ints 1)) 

> integers ⇒ (1 . #<procedure>) 

•  How do we access elements in the list? 
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Conceptually Infinite Lists in Scheme 

•  Head – can get the head with car: 
> (define head car) 

> (head integers)⇒ Value: 1 
 

•  Tail – must force the evaluation of the tail: 
> (define tail 

    (lambda (list) 
      ((cdr list)))) 

> (tail integers) ⇒(2 . #<procedure>) 

> (head (tail (tail integers))) ⇒ ? 

48 
Lecture 11 



Conceptually Infinite Lists in Scheme 

•  Element – get the n-th integer: 
> (define element 

    (lambda (n list) 

      (if (= n 1) 

          (head list) 

          (element (- n 1) (tail list))))) 
> (element 6 integers) ⇒ 6 

> (element 6 (tail integers)) ⇒ ? 
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Conceptually Infinite Lists in Scheme 

•  Take – get the first n integers: 
> (define take 

    (lambda (n list) 

      (if (= n 0) 

          '() 

          (cons (head list)  
                (take (- n 1) (tail list)))))) 

> (take 5 integers) ⇒ (1 2 3 4 5) 

> (take 3 (tail integers)) ⇒ ? 
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The Fibonacci Numbers 

•  The Fibonacci numbers as a conceptually infinite list: 
> (define fibs 

    (lambda (a b) 

      (cons a (lambda () (fibs b (+ a b)))))) 

 

> (define fibonacci (fibs 1 1)) 
 

> (take 10 fibonacci)  

   ⇒ (1 1 2 3 5 8 13 21 34 55) 

 

> (element 10 (tail fibonacci)) ⇒ ? 
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The Sum of Two Infinite Lists 

> (define sum 

    (lambda (list1 list2) 
      (cons (+ (head list1) (head list2)) 

            (lambda ()  

              (sum (tail list1)  

        (tail list2)))))) 

 
> (take 10 (sum integers integers)) 

  ⇒ (2 4 6 8 10 12 14 16 18 20) 

 

> (take 5 (sum integers fibonacci) 

  ⇒ ? 
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The Sum of Two Infinite Lists 

•  What does the following list correspond to? 
> (define foo 

    (cons 1  

         (lambda ()  

            (cons 1  

                  (lambda ()  
                    (sum foo (tail foo))))))) 

 

> (take 10 foo) ⇒ ? 
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Reading Assignment 

•  Chapter 10 from the textbook (10.1, 10.2, 10.3, 10.5, 10.7): 
–  ignore imperative features (e.g. assignment, iteration). 

•  Chapters 1 & 2 from the Scheme programming book at 
http://www.scheme.com/tspl3/ 
–  ignore imperative features (e.g. assignment, iteration). 

•  DrScheme is installed on the prime machines (p1 & p2).  
–  you can also install it on your Win/Linux/Mac machine by 

downloading it from racket-lang.org. 

•  Familiarize yourself with the Scheme interpreter by typing 
in examples from the textbook or lecture notes. 
–  set the language to “Standard (R6RS)”. 
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