# Organization of Programming Languages CS3200/5200N 

## Lecture 11

Razvan C. Bunescu

School of Electrical Engineering and Computer Science
bunescu@ohio.edu

## Functional vs. Imperative

- The design of the imperative languages is based directly on the von Neumann architecture:
- Efficiency is the primary concern, rather than the suitability of the language for software development.
- Heavy reliance on the underlying hardware $\Rightarrow$ (unnecessary) restrictions on software development.
- The design of the functional languages is based on mathematical functions:
- Offer a solid theoretical basis that is also closer to the user.
- Relatively unconcerned with the architecture of the machines on which programs will run.


## Mathematical Functions

- A mathematical function is a mapping of members of one set, called the domain, to another set, called the range:
- The function square: $\mathrm{Z} \rightarrow \mathrm{N}, \operatorname{square}(x)=x * x$
- square is the name of the function
- $x$ is an element in the domain Z
- square $(x)$ is the corresponding element in the range N
- $\operatorname{square}(x)=x * x$ defines the mapping.
- The function fact: $\mathrm{N} \rightarrow \mathrm{N}$

$$
\operatorname{fact}(x)= \begin{cases}1 & \text { if } x=0 \\ x^{*} \operatorname{fact}(x-1) & \text { if } x>0\end{cases}
$$

## Lambda Expressions

- A lambda expression specifies the parameters and the mapping of a nameless function in the following form:
$\lambda \mathrm{x} . \mathrm{x} * \mathrm{x}$ is the lambda expression for the mathematical function
square $(x)=x^{\star} x$.
$\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x}+\mathrm{y}$ corresponds to $\operatorname{sum}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$
- Lambda expressions are applied to parameters by placing the parameters after the expression:
$(\lambda x . x * x * x)(2)$ evaluates to 8.


## Functional Forms

- A higher-order function, or functional form, is one that:
- either takes functions as parameters,
- or yields a function as its result,
- or both.
- Examples of functional forms:
- functional composition.
- apply-to-all.


## Functional Composition

- Mathematical Notation:
- Form: $\mathrm{h} \equiv \mathrm{f} \circ \mathrm{g}$
- Meaning: $\mathrm{h}(\mathrm{x}) \equiv \mathrm{f}(\mathrm{g}(\mathrm{x}))$
- Example:
- $f(x) \equiv x+2$ and $g(x) \equiv 3$ * $x$.
- $h \equiv f \circ g$ is equivalent with $h(x) \equiv(3 * x)+2$
- Lambda expression:

$$
\begin{aligned}
& \lambda x \cdot x+2 \\
& \lambda x \cdot 3 * x \\
& \lambda f \cdot \lambda g \cdot \lambda x \cdot f \quad(g \mathrm{x})
\end{aligned}
$$

## Apply-to-all

- A functional form that takes a single function as a parameter and yields a list of values obtained by applying the given function to each element of a list of parameters.
- Mathematical notation:
- Form: $\alpha$
- Function: $h(x) \equiv \mathrm{x}$ * x
- Example: $\alpha(h,(2,3,4))$ yields (4, 9, 16)
- Lambda expression:


## Functional Programming and Lambda Calculus

- Functional languages have a formal semantics derived from Lambda Calculus:
- Defined by Alonzo Church in the mid 1930s as a computational theory of recursive functions.
- The lambda calculus emphasizes expressions and functions, which naturally leads to a functional style of programming based on evaluation of expressions by function application to argument values.


## Imperative Programming and Turing Machines

- Imperative programming: computation is performed through statements that change a program state.
- Modeled formally using Turing Machines:
- Defined by Alan Turing in the mid 1930s.
- Abstract machines that emphasize computation as a series of state transitions driven by symbols on an input tape, which leads naturally to an imperative style of programming based on assignment.


## Functional Languages and Lambda Calculus

- Theorem (Church, Kleen, Turing):
- Lambda Calculus and Turing Machines have the same computational power.
- Functional Languages have a denotational semantics based on lambda calculus:
- the meaning of all syntactic programming constructs in the language is defined in terms of mathematical functions.


## Scheme

- Designed and implemented by Steele and Sussman at MIT in 1975.
- Influenced syntactically and semantically by LISP and conceptually by Algol:
- Lisp contributed the simple syntax, uniform representation of programs as lists and garbage collected heap allocated data.
- Algol contributed lexical (static) scoping and block structure.
- Lisp and Algol both defined recursive functions.


## Scheme: Key Features

- Scheme is statically scoped:
- uses the let, let* and letrec operators to define variable bindings within local scopes.
- Scheme has dynamic or latent typing:
- types are associated with values at run-time.
- a variable assumes the type of the value that is bound to at run-time.
- Scheme objects are garbage-collected:
- run-time objects have potentially unlimited lifetime.
- Scheme functions are first-class objects:
- functions can be created dynamically, stored in data structures, returned as results of expressions or other functions.
- functions are defined as lists $\Rightarrow$ can be treated as data.


## Scheme: Key Features

- Scheme data objects (e.g. lists) are first-class objects:
- they are all heap-allocated; can be returned as results from functions, and combined to form larger data strucures.
- Scheme supports many different types:
- numbers, characters, strings, symbols, and lists.
- integers, real, complex, and arbitrary precision rational numbers.
- Scheme includes a large set of built-in functions for manipulation of lists and other data objects.
- Arguments to functions are always passed by value:
- actual arguments are always evaluated before a function is called, whether or not the function needs the values (eager, or strict evaluation).


## Syntax and Naming Conventions

- Scheme programs are made of:
- keywords, variables, structured forms (e.g. lists), numbers, characters, strings, quoted vectors, quoted lists, whitespace, and comments.
- Identifiers (keywords, variables and symbols) are formed from the characters a-z, A-Z, $0-9$, and ?!.+-*/<=>:\$\%^\&_~
- identifiers cannot start with $0-9,-,+$.
- Predicate names end in the question mark symbol:
- eq?, zero?, string=?
- Type predicates are the name of the type followed by a ?:
- pair?, string?


## Syntax and Naming Conventions

- Builtin character, string, and vector functions start with the name of the type:
- string-append, ...
- Functions that convert one type of object to another use the $\rightarrow$ symbol:
- string $\rightarrow$ number
- Strings are formed using double quotes:
- "Hello, world!"
- Numbers are just numbers:
- 100, 3.14
- Some function names are overloaded (e.g., $+,{ }^{*}, /$ ).


## Simple Expressions

- An expression in Scheme has the form $\left(\mathrm{E}_{1} \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{n}}\right)$ :
- $E_{1}$ evaluates to an operator.
- $E_{2}$ through $E_{n}$ are evaluated as operands.
- Some examples using the Dr. Scheme interpreter:
$-(+1234) \Rightarrow 10$
$-(+1(* 23) 4) \Rightarrow 11$
- Scheme does dynamic type checking and automatic type coercion:
$-(+2.510) \Rightarrow 12.5$


## Simple Expressions

- Scheme uses inner-most evaluation:
- arguments are evaluated first, then substituted as parameters to functions:
(define (square x) (* x x))
(square (+ 2 3)) $\Rightarrow$ (square 5) $\Rightarrow$ (* 5 5) $\Rightarrow 25$
- once the subexpression $(+23)$ is evaluated, the memory for this list can be garbage collected.
- Functions can also be defined using lambda expressions:
(define square (lambda(x) (* x x)))
(square 0.1) $\Rightarrow 0.01$


## Top Level Bindings: define

- A Function for constructing functions define:

1. To bind a symbol to an expression
e.g., (define pi 3.141593)

Example use: (define two_pi (* 2 pi))
2. To bind names to lambda expressions
e.g., (define (square x) (* x x) )

Example use: (square 5)

- The evaluation process for define is different! The first parameter is never evaluated. The second parameter is evaluated and bound to the first parameter.


## Delayed Evaluation: quote

- quote takes one parameter; returns the parameter w/o evaluation.

$$
-(\text { quote }(+123)) \Rightarrow(+123)
$$

- The Scheme interpreter, named eval, always evaluates parameters to function applications before applying the function.
- Use quote to avoid parameter evaluation when it is not appropriate.
- Can be abbreviated with the apostrophe prefix operator:

```
- '(+ 1 2 3) m (+ 1 2 3)
- (eval '(+ 1 2 3)) = 6
- (define sum123 '(+ 1 2 3))
- sum123 m (+ 1 2 3)
- (eval sum123) => 6
- 'x 
```


## Predicate Functions

- Boolean values:
- \#T is true and \#F is false
- sometimes () is used for false.
- Relational predicates:
$-=,>,<,>=,<=$
- implement <>
- Numerical predicates:
- even?, odd?, zero?, negative?


## Predicate Functions: Equality

1. Use eq? to compare two atoms:

- (eq? 'a 'a) $\Rightarrow$ \#t
$-\quad(e q ? 1.01 .0) \Rightarrow \# f$

2. Use eqv? to compare two numbers or characters:

$$
\begin{aligned}
& \text { - (eqv? } 1.01 .0) \Rightarrow \text { \#t } \\
& \text { - (eqv? "hello" "hello") } \Rightarrow \text { \#f }
\end{aligned}
$$

3. Use equal? to compare two objects for structural equality:

- (equal? "hello" "hello") $\Rightarrow$ \#t


## Builtin Logical Operators

- Logical operators:
- (and <e1> ... <en>)
- (or <e1> ... <en>
- (not <e1>)
- Parameter evaluation:
- expressions are evaluated left to right:
- short-circuit evaluation for and and or.
- Examples:
- (and (<x 10) (> x 5)
- (define ( $<=x$ y) (or (< x y) (= x y)))
- (define (<= x y) (not (> x y)))


## Control Flow: if

- The special form if:
- (if <predicate> <then_exp> <else_exp>)
- (if <predicate> <then_exp>)
- Examples:

$$
\begin{gathered}
\text { - (define (abs x) } \\
(\text { if }(<\mathrm{x} 0) \\
(-0 \mathrm{x}) \\
\mathrm{x})) \\
-((\text { if \#f }+*) 23)
\end{gathered}
$$

## Control Flow: cond

- Multiple selection using the special form cond with the general form:
( cond

```
(predicate_1 expr {expr})
(predicate_2 expr {expr})
```

(predicate_kexpr $\{\operatorname{expr}\})$
(else expr $\{\operatorname{expr}\})$ )

- Returns the value of the last expression in the first pair whose predicate evaluates to true


## Control Flow: cond

- (define (abs x)

$$
\begin{aligned}
(\operatorname{cond} & ((<x \quad 0) \quad(-0 \quad x)) \\
& (\text { (else } x)))
\end{aligned}
$$

- (define (compare $x$ y)
(cong

$$
\begin{aligned}
& ((>x y) \text { "x is greater than } y ") \\
& ((<x y) \text { "y is greater than } x ") \\
& (e l s e ~ " x \text { and y are equal")) })
\end{aligned}
$$

## Factorial in Scheme

- (define (factorial x)

$$
\begin{aligned}
& \text { (if }(=x 0) \\
& \\
& \quad 1 \\
& \\
& (* x(\text { factorial }(-x \quad 1)))))
\end{aligned}
$$

- (define factorial (lambda (x)

$$
\text { (if }(=x 0)
$$

$$
1
$$

$$
(* \text { x (factorial (- x 1))))) }
$$

## Lambda Expressions in Scheme

- (lambda (<formal parameters>) <body>)
- When the lambda expression is evaluated, the environment in which it is evaluated is remembered.
- When the procedure is called, the environment is augmented with bindings of formal params to actual params.
- The expressions in the body are evaluated sequentially in order.
- Example:

```
- ((lambda (x y) (* x y) ) 2 3) ; ; multiply 2
    with 3
```


## Let Expressions

- Allow the definition of local variable bindings.
- General form:

```
(let((<name1> <expression1>)
    (<name2> <expression2>)
    (<namek> <expressionk>))
    body
)
```

- Evaluate all expressions;
- Bind the values to the names;
- Evaluate the body.


## Let Expressions

- (define pi 3.14)
- (define (sum-of-pi-squared) (+ (square pi) (square pi)) )
- (define (sum-of-pi-squared)

$$
\begin{gathered}
(\text { let ((pi-squared (square pi))) } \\
(+ \text { pi-squared pi-squared))) }
\end{gathered}
$$

- Which is more efficient?


## Let Expressions are Lambda Expressions

- "Syntactic sugar" for lambda expressions:

```
((lambda (<name1> ... <namek>)
            (<body>))
<expr1>
<exprk>)
```

- the result of the lambda expression is an anonymous procedure.
- all the argument expressions are evaluated before the procedure is called (because of call-by-value semantics).
- when the procedure is called, the variables for the formal parameters are bound to the values of the argument expressions and used in evaluating the body of the procedure.


## Let* Expressions

- General form:

```
(let* ((<name1> <expression1>)
    (<name2> <expression2>)
    (<namek> <expressionk>))
        body
)
```

- The bindings are performed sequentially, from left to right.
$-\Rightarrow$ earlier variable bindings apply to later variable bindings.


## Let* Expressions are Lambda Expressions

- Let* examples:
- (define x 0)
$-\mathrm{x} \Rightarrow 0$
$-\left(\operatorname{let}\left(\begin{array}{ll}(x & 2) \\ (y & x\end{array}\right) \quad y\right)$
$\Rightarrow 0$

$$
\begin{aligned}
& -\quad\left(\text { let* } \left(\begin{array}{ll}
(x \operatorname{let} & (y \mathrm{x})) \mathrm{y}) \\
\quad \Rightarrow 2
\end{array}\right.\right.
\end{aligned}
$$

- Binding order is important $\Rightarrow$ lexically nest the lambda expressions and the application to arguments:
- ((lambda (x) ((lambda (y) y) x) ) 2)
$\Rightarrow 2$


## Lists in Scheme

- Almost everything in Scheme is a list:
- the interpreter evaluates most lists as an operator followed by operands, and returns a result.
- ( $\left.+\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) \Rightarrow 10$
- list is evaluated as an expression, result is 10 .
- ' $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) \Rightarrow\left(\begin{array}{llll}+ & 2 & 3 & 4\end{array}\right)$
- result is a list of symbols
- the empty list is denoted by ().
- Examples:

```
- '(colorless green ideas sleep furiously)
- '((green) ideas (((sleep) furiously)) ())
```


## List Operations: car and cdr

- car takes a list parameter; returns the first element of that list e.g.

```
(car '(A B C)) yields A
(car '((A B) C D)) yields (A B)
```

- cdr takes a list parameter, returns the list after removing its first element e.g.

```
(cdr '(A B C)) yields (B C)
    (cdr '((A B) C D)) yields (C D)
```


## List Creation: cons and list

- cons:
- takes two parameters:
- the first can be either an atom or a list;
- the second is a list;
- returns a new list that includes the first parameter as its first element and the second parameter as the remainder.
- (cons 'A ' ( $\mathrm{B} C$ ) ) $\Rightarrow(A B C)$
- list:
- takes any number of parameters;
- returns a list with the parameters as elements.
- (list 'a 'b 'c) $\Rightarrow$ ( a b c)


## Pairs

- cons can also be used to create pairs or improper lists:

$$
\begin{aligned}
& >(\text { cons 'a 'b) } \Rightarrow(a \cdot b) \\
& >(\operatorname{car} \cdot(a \cdot b)) \Rightarrow a \\
& >(\operatorname{cdr} \cdot(a \cdot b)) \Rightarrow b
\end{aligned}
$$

- When the second argument is a list, the result is a list:

$$
\begin{aligned}
& >(\text { cons 'a ' }(b)) \Rightarrow(a \quad b) \\
& >(\operatorname{car} \cdot(a b)) \Rightarrow a \\
& >(c d r \cdot(a b)) \Rightarrow(b)
\end{aligned}
$$

## Predicates on Lists

- list? takes one parameter; it returns \#t if the parameter is a list; otherwise \#f

$$
\begin{aligned}
& - \text { (list? '()) } \Rightarrow \text { \#t } \\
& -(l i s t ? ~(c o n s ~ ' a ~ '())) ~
\end{aligned}
$$

- null? takes one parameter; it returns \#t if the parameter is the empty list; otherwise \#f

$$
- \text { (null? '()) } \Rightarrow \text { \#t }
$$

- equal?

$$
\text { - (equal? '(a b) (list 'a 'b)) } \Rightarrow \# t
$$

## Scheme Functions: Example

- member takes as parameters an atom and a simple list:
- returns \# t if the atom is in the list;
- returns \#f otherwise.

```
(define (member atom list)
    (cond
        ((null? list) #f)
        ((eq? atom (car list)) #t)
        (else (member atom (cdr list)))
        )
    )
```


## Scheme Functions: Example

- equal simp takes two simple lists as parameters:
- returns \#T if the two simple lists are equal;
- returns \#F otherwise.

```
(define (equalsimp lis1 lis2)
    (cond
        ((null? lis1) (null? lis2))
        ((null? lis2) #F)
        ((eq? (car lis1) (car lis2))
        (equalsimp (cdr lis1)(cdr lis2)))
    (else #F)
    ))
```


## Scheme Functions: Example

- equal takes two general lists as parameters:
- returns \# T if the two lists are equal;
- returns \#F otherwise.

```
(define (equal list1 list2)
    (cond
    ((not (list? list1))(eq? list1 list2))
    ((not (list? list2)) #F)
    ((null? list1) (null? list2))
    ((null? list2) #F)
    ((equal (car list1) (car list2))
            (equal (cdr list1) (cdr list2)))
    (else #F)))
```


## Scheme Functions: Example

- append takes two lists as parameters:
- returns the first parameter list with the elements of the second parameter list appended at the end.

```
(define (append list1 list2)
    (cond
        ((null? list1) list2)
        (else (cons (car list1)
        (append (cdr list1) list2)))
    )
    )
```


## Functional Forms in Scheme

- Functional Composition:
$-(\operatorname{cdr}(c d r \quad(A B C))) \Rightarrow(C)$
- HW: define a function that is the composition of cdr with cdr.
- Apply-to-All:
- one form in Scheme is map, which applies a given function to all elements of a given list.

```
(define (map fun lis)
        (cond
            ((null? lis) ())
            (else (cons (fun (car lis))
                        (map fun (cdr lis))))
))
```


## Procedures That Return Procedures

> (define (make-adder (num) (lambda (x) (+ x num)) )
$>(($ make-adder 10) 9) $\Rightarrow$ ?
$>((\operatorname{lambda}(x) \quad(+x$ 10) $) 9) \Rightarrow$ ?

## Functions that build Scheme code

- It is possible in Scheme to define a function that builds Scheme code and requests its interpretation.
- This is possible because the interpreter is a user-available function, eval.


## Functions that build Scheme code

- Building a function that adds a list of numbers:

```
(define (adder lis)
    ( cond
    ( (null? lis) 0)
        (else (eval (cons '+ lis)
        (scheme-report-environment 5)
```

    ) ) )
    - The parameter is a list of numbers to be added;
- adder inserts a + operator and evaluates the resulting list.
- Use cons to insert the atom + into the list of numbers.
- Be sure that + is quoted to prevent evaluation.
- Submit the new list to eval for evaluation.


## Conceptually Infinite Lists in Scheme

- A doomed attempt to define the infinite list of integers:
> (define ints
(lambda (n)
(cons $n(i n t s(+n 1))))$
> (define integers (ints 1))


## Conceptually Infinite Lists in Scheme

- Delayed Evaluation: delay the creation of remaining integers until needed.

```
> (define ints
    (lambda (n)
    (cons n (lambda () (ints (+ n 1))))))
> (define integers (ints 1))
> integers => (1 . #<procedure>)
```

- How do we access elements in the list?


## Conceptually Infinite Lists in Scheme

- Head - can get the head with car:

```
> (define head car)
> (head integers) }=>\mathrm{ Value: 1
```

- Tail - must force the evaluation of the tail:

```
> (define tail
    (lambda (list)
    ((cdr list))))
\(>\) (tail integers) \(\Rightarrow(2\). \#<procedure>)
\(>\) (head (tail (tail integers))) \(\Rightarrow\) ?
```


## Conceptually Infinite Lists in Scheme

- Element - get the n-th integer:
> (define element
(lambda (n list)
(if (= n 1)
(head list)
(element (- n 1) (tail list)))))
$>$ (element 6 integers) $\Rightarrow 6$
$>$ (element 6 (tail integers)) $\Rightarrow$ ?


## Conceptually Infinite Lists in Scheme

- Take - get the first n integers:
> (define take
(lambda (n list)
(if (= n 0)
' ()
(cons (head list)
(take (- n 1) (tail list))))))
$>$ (take 5 integers) $\Rightarrow\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$
$>$ (take 3 (tail integers)) $\Rightarrow$ ?


## The Fibonacci Numbers

- The Fibonacci numbers as a conceptually infinite list:

```
> (define fibs
    (lambda (a b)
    (cons a (lambda () (fibs b (+ a b))))))
    > (define fibonacci (fibs 1 1))
    > (take 10 fibonacci)
        #((1)1
    > (element 10 (tail fibonacci)) => ?
```


## The Sum of Two Infinite Lists

> (define sum
(lambda (list1 list2)
(cons (+ (head list1) (head list2))
(lambda ()
(sum (tail listl)
(tail list2))))))
> (take 10 (sum integers integers))

$$
\Rightarrow\left(\begin{array}{llllllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20
\end{array}\right)
$$

> (take 5 (sum integers fibonacci)

$$
\Rightarrow \text { ? }
$$

## The Sum of Two Infinite Lists

- What does the following list correspond to?

```
> (define foo
            (cons 1
                (lambda ()
            (cons 1
                            (lambda ()
                                    (sum foo (tail foo)))))))
> (take 10 foo) = ?
```


## Reading Assignment

- Chapter 10 from the textbook ( $10.1,10.2,10.3,10.5,10.7$ ):
- ignore imperative features (e.g. assignment, iteration).
- Chapters $1 \& 2$ from the Scheme programming book at http://www.scheme.com/tspl3/
- ignore imperative features (e.g. assignment, iteration).
- DrScheme is installed on the prime machines (p1 \& p2).
- you can also install it on your Win/Linux/Mac machine by downloading it from racket-lang.org.
- Familiarize yourself with the Scheme interpreter by typing in examples from the textbook or lecture notes.
- set the language to "Standard (R6RS)".

