
Organization of Programming Languages
CS 3200/5200N

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 13

Logic Programming

•  Introduction

•  Predicate Calculus

•  Inference Rules

•  Logic Programming Languages

•  Elements of Prolog

•  Applications of Logic Programming

2
Lecture 13

Introduction: Logic Programming Languages

•  Express programs in a form of symbolic logic:
–  First order predicate calculus:

•  Horn clauses.

•  Produce results using a logical inference process:
–  Resolution:

•  Backward chaining (top-down resolution).

•  Sometimes called declarative programming languages:
–  declarative: specify only properties of the results (what).
–  procedural: specify procedures for obtaining the results (how).

3
Lecture 13

First Order Predicate Calculus

•  First Order Logic (FOL) assumes the world contains:
–  Objects: people, houses, numbers, colors, baseball games, wars, …
–  Relations: brother of, bigger than, part of, comes between, …
–  Properties: red, round, prime, multistoried, …
–  Functions: father of, best friend, one more than, plus, …

•  Examples:
–  “Evil King John ruled England in 1200.”

•  Objects:
•  Relations:
•  Properties:

4
Lecture 13

Syntax of FOL: Basic Elements

•  Used to build terms:
–  Constants: John, 2, A, B, C, ...
–  Functions: sqrt, cosine, fatherOf, leftLegOf, ...
–  Variables: x, y, a, b, s, ...

•  Used to build sentences:
–  Predicates: Round, Brother, >, ...
–  Connectives: ¬, ⇒, ∧, ∨, ⇔
–  Equality: =
–  Quantifiers: ∀, ∃

5
Lecture 13

Atomic Sentences

•  Every FOL expression is a sentence, which represents a fact.

 AtomicSentence → Predicate (Term1, ..., Termn)
 | Term1 = Term2

 Term → Function (Term1,...,Termn)
 | Constant

 | Variable

•  Examples:
–  Brother(John, Richard)
–  >(length(leftLegOf(Richard)), length(leftLegOf(John)))

6
Lecture 13

Complex Sentences

•  Complex sentences are made from atomic sentences using
connectives:

 ¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

•  Examples:

 Sibling(John,Richard) ⇒ Sibling(Richard,John)
 >(1,2) ∨ ≤ (1,2)

 >(1,2) ∧ ¬ >(1,2)

7
Lecture 13

Truth in FOL

•  Sentences are true/false with respect to a model and an
interpretation.
–  Model contains objects and relations among them.

–  Interpretation specifies referents for:
 constant symbols → objects
 predicate symbols → relations
 function symbols → functional relations

•  An atomic sentence Predicate(term1,...,termn) is true iff

the objects referred to by term1,...,termn are in the relation
referred to by Predicate.

8
Lecture 13

Model in FOL: Example

9
Lecture 13

Universal Quantification

•  ∀<variables> <sentence>

 “Everyone at OU is smart”: ∀x At(x,OU) ⇒ Smart(x)

•  “∀x P” is true in a model M iff P is true for every possible
instantiation of x with an object in the model.

•  Roughly speaking, equivalent to the conjunction of
instantiations of P:

 At(John, OU) ⇒ Smart(John)
 ∧ At(Richard, OU) ⇒ Smart(Richard)
 ∧ At(OU, OU) ⇒ Smart(OU)
 ∧ ...

10
Lecture 13

Existential Quantification

•  ∃ <variables> <sentence>

 “Someone at OU is smart”: ∃x At(x,OU) ∧ Smart(x)

•  “∃x P” is true in a model M iff P is true with x being some
possible object in the model.

•  Roughly speaking, equivalent to the disjunction of
instantiations of P:

 At(John, OU) ∧ Smart(John)
∨ At(Richard, OU) ∧ Smart(Richard)
∨  At(OU, OU) ∧ Smart(OU)
∨  …

11
Lecture 13

Properties of Quantifiers

•  ∀x ∀y is the same as ∀y ∀x
•  ∃x ∃y is the same as ∃y ∃x

•  ∃x ∀y is not the same as ∀y ∃x
–  ∃x ∀y Loves(x,y)

•  “There is a person who loves everyone in the world”
–  ∀y ∃x Loves(x,y)

•  “Everyone in the world is loved by at least one person”

•  Quantifier duality: each can be expressed using the other.
–  ∀x Likes(x, IceCream) <=> ¬∃x ¬Likes(x, IceCream)
–  ∃x Likes(x, Broccoli) <=> ¬∀x ¬Likes(x, Broccoli)

12
Lecture 13

Equality

•  term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same
object.

•  Example: definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧
Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

13
Lecture 13

Using FOL: The Kinship Domain

•  “Brothers are siblings:
∀x,y Brother(x,y) => Sibling(x,y)

•  “One's mother is one's female parent”
∀m,c Mother(c) = m => (Female(m) ∧ Parent(m,c))

•  The “Sibling” relation is symmetric:
∀x,y Sibling(x,y) => Sibling(y,x)

14
Lecture 13

Inference in Predicate Logic

•  Inference = Reasoning: any process by which conclusions
are reached.

•  Logical Inference = a procedure that generate a new
sentence α that is necessarily true, given that the old
sentences in the KB (Knowledge Base) are true.

•  Entailment: the relation between KB and the new
sentence α.
 KB |= α

15

Lecture 13

Logical Inference: Example

•  Knowledge Base (KB):

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard, John)

•  Sentence (α):

Evil(John)

•  Entailment: KB |= α ?

16
Lecture 13

Inference Rules

•  Resolution (Herbrand 1965):
–  a complete procedure for proving sentences by refutation.
–  sentences need to be reformulated into a normal form.

•  conjunctive normal form, or
•  implicative normal form.

•  Modus Ponens:
–  uses unification in a forward-chaining or backward-chaining

algorithm; is not complete.
–  sentences need to be reformulated into a canonical form:

•  nonnegated atomic sentences, or
•  Horn clauses: p1 ∧ … ∧ pn => q, where pi and q are atoms.

17
Lecture 13

Modus Ponens: Canonical Form

•  Convert sentences into canonical form sentences:
–  Existential Elimination and And Elimination:

“∃ x Owns (John, x) ∧ Missile (x)” is replaced with:
“Owns(John, M1)”
“Missile(M1)”

–  Transform complex sentences into Horn clauses:
“¬P1∨¬P2 ⇒ Q” is replaced with P1 ∧ P2 ⇒ Q

•  Not all sentences can be transformed into the canonical
form for Modus Ponens:
=> Modus Ponens is not a complete inference procedure.

18
Lecture 13

Modus Ponens

Generalized Modus Ponens:
•  For atomic sentence pi, p'i and q and a substitution of
variables θ such that Subst(θ, pi') = Subst(θ, pi) for all i:
 p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q) |= Subst(θ, q)

Example:
p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John, y/John} q is Evil(x)

Subst(θ, q) is Evil(John)

19
Lecture 13

Unification

•  We can use Modus Ponens immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y).

 θ = {x/John,y/John} works

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)
p q θ
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

20
Lecture 13

Unification

•  We can use Modus Ponens immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y).

 θ = {x/John,y/John} works

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

21
Lecture 13

Unification

•  We can use Modus Ponens immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y).

 θ = {x/John,y/John} works

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

22
Lecture 13

Unification

•  We can use Modus Ponens immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y).

 θ = {x/John,y/John} works

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ)

23
Lecture 13

Unification

•  We can use Modus Ponens immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y).

 θ = {x/John,y/John} works

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

24
Lecture 13

Most General Unifier

•  To unify Knows(John,x) and Knows(y,z):
–  θ = {y/John, x/z } or
–  θ = {y/John, x/John, z/John}

•  The first unifier is more general than the second.

•  There is a single most general unifier (MGU) that is
unique up to renaming of variables.
–  MGU = {y/John, x/z}

25
Lecture 13

The Unification Algorithm

26
Lecture 13

The Unification Algorithm

27
Lecture 13

Modus Ponens: Example

•  Knowledge Base:
 “The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an enemy
of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.”

•  Prove that “Colonel West is a criminal”.

28
Lecture 13

Modus Ponens: Example

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

 29
Lecture 13

Backward-Chaining Algorithm

30
Lecture 13

•  SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p))

Backward chaining example

31
Lecture 13

Backward chaining example

32
Lecture 13

Backward chaining example

33
Lecture 13

Backward chaining example

34
Lecture 13

Backward chaining example

35
Lecture 13

Backward chaining example

36
Lecture 13

Backward chaining example

37
Lecture 13

Backward chaining example

38
Lecture 13

Backward-Chaining

•  Depth-first recursive proof search:
–  Space Complexity is linear in the size of proof.

•  Incomplete due to infinite loops:
–  Fix by checking current goal against every goal on stack.

•  Inefficient due to repeated subgoals (both success and
failure):
–  Fix using caching of previous results (need extra space).

•  Widely used for logic programming.

39
Lecture 13

Logic Programming

•  Declarative semantics:
–  There is a simple way to determine the meaning of each statement.
–  The meaning can be concisely determined from the statement itself.
–  The meaning does not depend on how the statement might be used

to solve a problem:
•  Sentences in FOL vs. statements in imperative languages.

⇒ Simpler than the semantics of imperative languages.

•  Programming is nonprocedural:
–  Programs do not state how a result is to be computed, but rather the

form of the result.

40
Lecture 13

Example: Sorting a List

•  Describe the characteristics of a sorted list, not the process
of rearranging a list.

 sort(old_list, new_list) ⇐ permute (old_list, new_list) ∧
sorted (new_list)

 sorted (list) ⇐ ∀j such that 1≤ j < n, list(j) ≤ list (j+1)

41
Lecture 13

Logic Programming: Prolog

•  University of Aix-Marseille (Colmerauer & Roussel)
–  Natural language processing.

•  University of Edinburgh (Kowalski)
–  Automated theorem proving.

•  Algorithm = Logic + Control
•  Backward-Chaining with Horn clauses

+ bells & whistles.

•  Widely used in Europe, Japan (basis of 5th Generation
project).

42
Lecture 13

Logic Programming: Prolog

•  Program = set of clauses:
 head :- literal1, … literaln.

 criminal(X) :- american(X), weapon(Y), sells(X,Y,Z),

hostile(Z).

•  Depth-first, left-to-right backward chaining.
•  Built-in predicates for arithmetic:

 X is Y*Z+3
•  Built-in predicates that have side effects:

–  input and output predicates, assert/retract predicates.
•  Closed-world assumption ("negation as failure"):

–  e.g., given alive(X) :- not dead(X).
–  alive(joe) succeeds if dead(joe) fails

43
Lecture 13

Prolog: Syntax (Edinburgh)

•  Term: a constant, variable, or structure.
•  Constant: an atom or an integer.
•  Atom: symbolic value of Prolog.

–  string of letters, digits, underscores beginning with a lowercase letter.
–  a string of printable ASCII characters delimited by apostrophes.

•  Variable: any string of letters, digits, and underscores
beginning with an uppercase letter.

•  Instantiation: binding of a variable to a value.
–  Lasts only as long as it takes to satisfy one complete goal

•  Structure: represents atomic proposition:
 functor(parameter list)

44
Lecture 13

Prolog: Fact Statements

•  Used for the unconditional assertions.

•  Headless Horn clauses:
 female(shelley).

 male(bill).

 father(bill, jake).

45
Lecture 13

Prolog: Rule Statements

•  Used for the conditional assertions.

•  Headed Horn clause
–  Right side: antecedent (if part)

•  May be single term or conjunction.
–  Left side: consequent (then part)

•  Must be single term.

•  Conjunction: multiple terms separated by commas.
–  logical AND operator is implied.

46
Lecture 13

Prolog: Example Rules

ancestor(mary,shelley):- mother(mary,shelley).

•  Can use variables (universal objects) to generalize meaning:
 parent(X,Y):- mother(X,Y).
 parent(X,Y):- father(X,Y).
 grandparent(X,Z):- parent(X,Y), parent(Y,Z).
 sibling(X,Y):- mother(M,X), mother(M,Y),
 father(F,X), father(F,Y).

47
Lecture 13

Prolog: Goal Statements

•  For theorem proving, theorem is in form of a sentence that
we want system to prove or disprove :
– goal statement, or query.

•  Same format as headless Horn:
–  man(fred)

–  Conjunctive sentences and sentences with variables are also legal
goals:
• father(X,mike)

48
Lecture 13

Prolog: Simple Arithmetic

•  Prolog supports integer variables and integer arithmetic
•  is operator: takes an arithmetic expression as right

operand and variable as left operand
 A is B / 17 + C

•  Not the same as an assignment statement!

49
Lecture 13

Prolog: Example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

50
Lecture 13

Prolog: Trace

•  Built-in structure that displays instantiations at each step.
•  Tracing model of execution - four events:

–  Call (beginning of attempt to satisfy goal)
–  Exit (when a goal has been satisfied)
–  Redo (when backtrack occurs)
–  Fail (when goal fails)

51
Lecture 13

Prolog: Trace Example

likes(jake,chocolate).
likes(jake,apricots).

likes(darcie,licorice).
likes(darcie,apricots).

trace.
likes(jake,X),

likes(darcie,X).

52
Lecture 13

Prolog: Lists

•  Other basic data structure besides atomic sentences.
•  List is a sequence of any number of elements.
•  Elements can be atoms, atomic sentences, or other terms

(including other lists)

 [apple, prune, grape, kumquat]
 [] (empty list)
 [X | Y] (head X and tail Y)

53
Lecture 13

Examples: Append and Reverse

append([], List, List).
append([Head | List_1], List_2, [Head | List_3]) :-

 append (List_1, List_2, List_3).

reverse([], []).

reverse([Head | Tail], List) :-
 reverse (Tail, Result),

 append (Result, [Head], List).

54
Lecture 13

Examples: Append and Reverse

•  Query: append(A,B,[1,2]).

•  Answers: A=[] B=[1,2]
 A=[1] B=[2]

 A=[1,2] B=[]

55
Lecture 13

Deficiencies of Prolog

•  Resolution order control.
•  The closed-world assumption.
•  The negation problem.

–  the use of Horn clauses prevents negative conclusions.

•  Intrinsic limitations.
–  cannot transform declarative specification of the sorting problem

into an efficient sorting algorithm.

56
Lecture 13

Applications of Logic Programming

•  Relational database management systems.
•  Expert systems.
•  Natural language processing.

57
Lecture 13

