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Logic Programming 

•  Introduction 

•  Predicate Calculus 

•  Inference Rules 

•  Logic Programming Languages 

•  Elements of Prolog 

•  Applications of Logic Programming 
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Introduction: Logic Programming Languages 

•  Express programs in a form of symbolic logic: 
–  First order predicate calculus: 

•  Horn clauses. 

•  Produce results using a logical inference process: 
–  Resolution: 

•  Backward chaining (top-down resolution). 

•  Sometimes called declarative programming languages: 
–  declarative: specify only properties of the results (what). 
–  procedural: specify procedures for obtaining the results (how). 
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First Order Predicate Calculus 

•  First Order Logic (FOL) assumes the world contains: 
–  Objects: people, houses, numbers, colors, baseball games, wars, … 
–  Relations: brother of, bigger than, part of, comes between, … 
–  Properties: red, round, prime, multistoried, … 
–  Functions: father of, best friend, one more than, plus, … 

•  Examples: 
–  “Evil King John ruled England in 1200.” 

•  Objects: 
•  Relations: 
•  Properties: 
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Syntax of FOL: Basic Elements 

•  Used to build terms: 
–  Constants:   John, 2, A, B, C, ...  
–  Functions:   sqrt, cosine, fatherOf, leftLegOf, ... 
–  Variables:   x, y, a, b, s, ... 

•  Used to build sentences: 
–  Predicates:      Round, Brother, >, ... 
–  Connectives:   ¬, ⇒, ∧, ∨, ⇔ 
–  Equality:         =  
–  Quantifiers:     ∀, ∃ 
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Atomic Sentences 

•  Every FOL expression is a sentence, which represents a fact. 
  

 AtomicSentence →  Predicate (Term1, ..., Termn)   
           |  Term1 = Term2 

 Term  →  Function (Term1,...,Termn)    
          | Constant  

           | Variable  
 

•  Examples: 
–  Brother(John, Richard)  
–  >(length(leftLegOf(Richard)), length(leftLegOf(John))) 
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Complex Sentences 

•  Complex sentences are made from atomic sentences using 
connectives: 

 ¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2, 
 

•  Examples: 

 Sibling(John,Richard) ⇒ Sibling(Richard,John)  
     >(1,2) ∨ ≤ (1,2) 

     >(1,2) ∧ ¬ >(1,2)  
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Truth in FOL 

•  Sentences are true/false with respect to a model and an 
interpretation.  
–  Model contains objects and relations among them. 

–  Interpretation specifies referents for: 
  constant symbols  →  objects 
  predicate symbols  →  relations 
  function symbols  →  functional relations 

 
•  An atomic sentence Predicate(term1,...,termn) is true iff  

the objects referred to by term1,...,termn are in the relation 
referred to by Predicate. 
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Model in FOL: Example 
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Universal Quantification 

•  ∀<variables> <sentence> 

 “Everyone at OU is smart”: ∀x At(x,OU) ⇒ Smart(x) 
 

•  “∀x P” is true in a model M iff P is true for every possible 
instantiation of x with an object in the model. 

•  Roughly speaking, equivalent to the conjunction of 
instantiations of P: 

     At(John, OU) ⇒ Smart(John)  
 ∧ At(Richard, OU) ⇒  Smart(Richard)  
 ∧ At(OU, OU) ⇒ Smart(OU)  
 ∧ ... 
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Existential Quantification 

•  ∃ <variables> <sentence> 

 “Someone at OU is smart”: ∃x At(x,OU) ∧ Smart(x) 
 

•  “∃x P” is true in a model M iff P is true with x being some 
possible object in the model. 

•  Roughly speaking, equivalent to the disjunction of 
instantiations of P: 

 At(John, OU) ∧ Smart(John)  
∨  At(Richard, OU) ∧ Smart(Richard)  
∨  At(OU, OU) ∧ Smart(OU)  
∨  … 
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Properties of Quantifiers 

•  ∀x ∀y is the same as ∀y ∀x 
•  ∃x ∃y is the same as ∃y ∃x  

•  ∃x ∀y is not the same as ∀y ∃x 
–  ∃x ∀y Loves(x,y) 

•  “There is a person who loves everyone in the world” 
–  ∀y ∃x Loves(x,y) 

•  “Everyone in the world is loved by at least one person” 

•  Quantifier duality: each can be expressed using the other. 
–  ∀x Likes(x, IceCream)  <=>   ¬∃x ¬Likes(x, IceCream) 
–  ∃x Likes(x, Broccoli)    <=>   ¬∀x ¬Likes(x, Broccoli) 
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Equality 

•  term1 = term2 is true under a given interpretation 
if and only if term1 and term2 refer to the same 
object. 

•  Example: definition of Sibling in terms of Parent: 

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧  ∃m,f ¬ (m = f) ∧ 
Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧  Parent(f,y)] 
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Using FOL: The Kinship Domain 

•  “Brothers are siblings: 
∀x,y Brother(x,y) => Sibling(x,y) 
 

•  “One's mother is one's female parent” 
∀m,c Mother(c) = m => (Female(m) ∧ Parent(m,c)) 
 

•  The “Sibling” relation is symmetric: 
∀x,y Sibling(x,y) => Sibling(y,x) 
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Inference in Predicate Logic 

•  Inference = Reasoning: any process by which conclusions 
are reached. 

•  Logical Inference = a procedure that generate a new 
sentence α that is necessarily true, given that the old 
sentences in the KB (Knowledge Base) are true. 

•  Entailment: the relation between KB and the new 
sentence α. 
  KB |= α 
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Logical Inference: Example 

•  Knowledge Base (KB): 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
∀y Greedy(y) 
Brother(Richard, John) 

 
•  Sentence (α): 

Evil(John) 

•  Entailment: KB |= α ? 
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Inference Rules 

•  Resolution (Herbrand 1965): 
–  a complete procedure for proving sentences by refutation. 
–  sentences need to be reformulated into a normal form. 

•  conjunctive normal form, or 
•  implicative normal form. 

•  Modus Ponens: 
–  uses unification in a forward-chaining or backward-chaining 

algorithm; is not complete. 
–  sentences need to be reformulated into a canonical form: 

•  nonnegated atomic sentences, or 
•  Horn clauses: p1 ∧ … ∧ pn => q, where pi and q are atoms. 
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Modus Ponens: Canonical Form 

•  Convert sentences into canonical form sentences: 
–  Existential Elimination and And Elimination: 

“∃ x Owns (John, x) ∧ Missile (x)” is replaced with: 
“Owns(John, M1)” 
“Missile(M1)” 

–  Transform complex sentences into Horn clauses: 
“¬P1∨¬P2 ⇒ Q” is replaced with P1 ∧ P2 ⇒ Q 

•  Not all sentences can be transformed into the canonical 
form for Modus Ponens: 
=> Modus Ponens is not a complete inference procedure. 
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Modus Ponens 

Generalized Modus Ponens: 
•  For atomic sentence pi, p'i and q and a substitution of 
variables θ such that Subst(θ, pi') = Subst(θ, pi) for all i: 
   p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q) |= Subst(θ, q) 
 
Example: 
p1' is King(John)   p1 is King(x)  
p2' is Greedy(y)   p2 is Greedy(x)  
θ is {x/John, y/John}  q is Evil(x) 
 

Subst(θ, q) is Evil(John) 
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Unification 

•  We can use Modus Ponens immediately if we can find a substitution θ 
such that King(x) and Greedy(x) match King(John) and Greedy(y). 

 θ = {x/John,y/John} works 
 

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ,  β)  
p     q     θ   
Knows(John,x)  Knows(John,Jane)   
Knows(John,x)  Knows(y,OJ)    
Knows(John,x)  Knows(y,Mother(y))   
Knows(John,x)  Knows(x,OJ)    
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Unification 

•  We can use Modus Ponens immediately if we can find a substitution θ 
such that King(x) and Greedy(x) match King(John) and Greedy(y). 

 θ = {x/John,y/John} works 
 

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ,  β)  
p     q     θ   
Knows(John,x)  Knows(John,Jane)  {x/Jane} 
Knows(John,x)  Knows(y,OJ)    
Knows(John,x)  Knows(y,Mother(y))   
Knows(John,x)  Knows(x,OJ)    
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Unification 

•  We can use Modus Ponens immediately if we can find a substitution θ 
such that King(x) and Greedy(x) match King(John) and Greedy(y). 

 θ = {x/John,y/John} works 
 

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ,  β)  
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Unification 

•  We can use Modus Ponens immediately if we can find a substitution θ 
such that King(x) and Greedy(x) match King(John) and Greedy(y). 

 θ = {x/John,y/John} works 
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Unification 

•  We can use Modus Ponens immediately if we can find a substitution θ 
such that King(x) and Greedy(x) match King(John) and Greedy(y). 

 θ = {x/John,y/John} works 
 

•  Unify(α,β) = θ if Subst(θ, α) = Subst(θ,  β)  
p     q     θ   
Knows(John,x)  Knows(John,Jane)  {x/Jane} 
Knows(John,x)  Knows(y,OJ)   {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))     {y/John,x/Mother(John)} 
Knows(John,x)  Knows(x,OJ)    {fail} 
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Most General Unifier 

•  To unify Knows(John,x) and Knows(y,z): 
–  θ = {y/John, x/z } or  
–  θ = {y/John, x/John, z/John} 

•  The first unifier is more general than the second. 

•  There is a single most general unifier (MGU) that is 
unique up to renaming of variables. 
–  MGU = {y/John, x/z} 
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The Unification Algorithm 
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The Unification Algorithm 
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Modus Ponens: Example 

•  Knowledge Base: 
 “The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an enemy 
of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.” 

•  Prove that “Colonel West is a criminal”. 
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Modus Ponens: Example 

... it is a crime for an American to sell weapons to hostile nations: 
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) and Missile(M1) 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

West, who is American … 
American(West) 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
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Backward-Chaining Algorithm 
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•   SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p)) 



Backward chaining example 

31 
Lecture 13 



Backward chaining example 
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Backward chaining example 

33 
Lecture 13 



Backward chaining example 

34 
Lecture 13 



Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward-Chaining 

•  Depth-first recursive proof search:  
–  Space Complexity is linear in the size of proof. 

•  Incomplete due to infinite loops: 
–  Fix by checking current goal against every goal on stack. 

•  Inefficient due to repeated subgoals (both success and 
failure): 
–  Fix using caching of previous results (need extra space). 

•  Widely used for logic programming. 
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Logic Programming 

•  Declarative semantics: 
–  There is a simple way to determine the meaning of each statement. 
–  The meaning can be concisely determined from the statement itself. 
–  The meaning does not depend on how the statement might be used 

to solve a problem: 
•  Sentences in FOL vs. statements in imperative languages. 

⇒ Simpler than the semantics of imperative languages. 

•  Programming is nonprocedural: 
–  Programs do not state how a result is to be computed, but rather the 

form of the result. 
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Example: Sorting a List 

•  Describe the characteristics of a sorted list, not the process 
of rearranging a list. 

 
 sort(old_list, new_list) ⇐ permute (old_list, new_list) ∧ 
sorted (new_list) 

 
 sorted (list) ⇐ ∀j such that 1≤ j < n, list(j) ≤ list (j+1) 
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Logic Programming: Prolog 

•  University of Aix-Marseille (Colmerauer & Roussel) 
–  Natural language processing. 

•  University of Edinburgh (Kowalski) 
–  Automated theorem proving. 

•  Algorithm = Logic + Control 
•  Backward-Chaining with Horn clauses  

+ bells & whistles. 

•  Widely used in Europe, Japan (basis of 5th Generation 
project). 
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Logic Programming: Prolog 

•  Program = set of clauses: 
  head :- literal1, … literaln. 

 
  criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), 

hostile(Z). 
 

•  Depth-first, left-to-right backward chaining. 
•  Built-in predicates for arithmetic: 

 X is Y*Z+3 
•  Built-in predicates that have side effects: 

–  input and output  predicates, assert/retract predicates. 
•  Closed-world assumption ("negation as failure"): 

–  e.g., given alive(X) :- not dead(X). 
–  alive(joe) succeeds if dead(joe) fails 
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Prolog: Syntax (Edinburgh) 

•  Term: a constant, variable, or structure. 
•  Constant: an atom or an integer. 
•  Atom: symbolic value of Prolog. 

–  string of letters, digits, underscores beginning with a lowercase letter. 
–  a string of printable ASCII characters delimited by apostrophes. 

•  Variable: any string of letters, digits, and underscores 
beginning with an uppercase letter. 

•  Instantiation: binding of a variable to a value. 
–  Lasts only as long as it takes to satisfy one complete goal 

•  Structure: represents atomic proposition:   
 functor(parameter list) 
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Prolog: Fact Statements 

•  Used for the unconditional assertions. 

•  Headless Horn clauses: 
 female(shelley). 

 male(bill). 

 father(bill, jake). 
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Prolog: Rule Statements 

•  Used for the conditional assertions. 

•  Headed Horn clause 
–  Right side: antecedent (if part) 

•  May be single term or conjunction. 
–  Left side: consequent (then part) 

•  Must be single term. 

•  Conjunction: multiple terms separated by commas. 
–  logical AND operator is implied. 
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Prolog: Example Rules 

ancestor(mary,shelley):- mother(mary,shelley). 

 
•  Can use variables (universal objects) to generalize meaning: 
 parent(X,Y):- mother(X,Y). 
 parent(X,Y):- father(X,Y). 
 grandparent(X,Z):- parent(X,Y), parent(Y,Z). 
 sibling(X,Y):- mother(M,X), mother(M,Y), 
  father(F,X), father(F,Y). 
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Prolog: Goal Statements 

•  For theorem proving, theorem is in form of a sentence that 
we want system to prove or disprove : 
– goal statement, or query. 

•  Same format as headless Horn: 
–  man(fred) 

–  Conjunctive sentences and sentences with variables are also legal 
goals: 
• father(X,mike) 
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Prolog: Simple Arithmetic 

•  Prolog supports integer variables and integer arithmetic 
•  is operator: takes an arithmetic expression as right 

operand and variable as left operand 
 A is B / 17 + C 

•  Not the same as an assignment statement! 
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Prolog: Example 

speed(ford,100). 
speed(chevy,105). 
speed(dodge,95). 
speed(volvo,80). 
time(ford,20). 
time(chevy,21). 
time(dodge,24). 
time(volvo,24). 
distance(X,Y) :-  speed(X,Speed), 
     time(X,Time),  
     Y is Speed * Time. 
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Prolog: Trace 

•  Built-in structure that displays instantiations at each step. 
•  Tracing model of execution - four events: 

–  Call (beginning of attempt to satisfy goal) 
–  Exit (when a goal has been satisfied) 
–  Redo (when backtrack occurs) 
–  Fail (when goal fails) 
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Prolog: Trace Example 

likes(jake,chocolate). 
likes(jake,apricots). 

likes(darcie,licorice). 
likes(darcie,apricots). 

 

trace. 
likes(jake,X), 

likes(darcie,X). 
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Prolog: Lists 

•  Other basic data structure besides atomic sentences. 
•  List is a sequence of any number of elements. 
•  Elements can be atoms, atomic sentences, or other terms 

(including other lists) 
 
 [apple, prune, grape, kumquat] 
 []   (empty list) 
 [X | Y]  (head X and tail Y) 
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Examples: Append and Reverse 

append([], List, List). 
append([Head | List_1], List_2, [Head | List_3]) :-  

 append (List_1, List_2, List_3). 

 
reverse([], []). 

reverse([Head | Tail], List) :-  
 reverse (Tail, Result), 

 append (Result, [Head], List). 
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Examples: Append and Reverse 

 
•  Query:    append(A,B,[1,2]).  

•  Answers:  A=[]    B=[1,2] 
          A=[1]   B=[2] 

          A=[1,2] B=[] 
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Deficiencies of Prolog 

•  Resolution order control. 
•  The closed-world assumption. 
•  The negation problem. 

–  the use of Horn clauses prevents negative conclusions. 

•  Intrinsic limitations. 
–  cannot transform declarative specification of the sorting problem 

into an efficient sorting algorithm. 
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Applications of Logic Programming 

•  Relational database management systems. 
•  Expert systems. 
•  Natural language processing. 
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