HW Assignment 2 (Due date: February 13, by 9:00 am)

- 1. [Sorting Complexity, 5 points] Exercise 1.2-2, page 14.
- 2. [Time Complexity, 10 points] Exercise 2.2-3, page 29.
- 3. [Binary Search, 5 points] Exercise 2.3-5, page 39.
- 4. [Binary Search, 5 points] Exercise 2.3-6, page 39.
- 5. [Asymptotic Notation, 5 points] Exercise 3.1-1, page 52.
- 6. [Asymptotic Notation, 10 points] Prove or disprove:
 - a) $3^{n+1} = O(3^n)$
 - b) $2^{2n} = O(2^n)$
 - c) $3n^2 \lg n + 4n = O(n^3)$
 - d) $3n^2 \lg n + 4n = O(n^2 \lg n)$
 - e) $3n^2 \lg n + 4n = O(n^2 \sqrt{n})$
- 7. [Asymptotic Notation, 5 points] Prove $\lg(n!) = \theta(n \lg n)$. [Hint: use one of Stirling's approximations (3.18 or 3.20 on page 57)].
- 8. [Substitution Method, 15 points] Show that the solution to: T(6) = 1 $T(n) = 3T(\lfloor n/3 \rfloor + 4) + n$, for n > 6is $O(n \lg n)$.
- 9. [Master Method, 10 points] Use the master method to give tight asymptotic bounds for the following recurrences:
 - a) T(n) = 4T(n/2) + n.
 - b) $T(n) = 4T(n/2) + n^2$.
 - c) $T(n) = 4T(n/2) + n^3$.
 - d) $T(n) = 2T(n/4) + \sqrt{n}$.
 - e) $T(n) = 2T(n/4) + n^2$.
- 10. [Master Method, 5 points] The recurrence $T(n) = 10T(n/3) + n^2$ describes the running time of an algorithm A. A competing algorithm A' has a running time of $T'(n) = aT'(n/9) + n^2$. What is the largest integer value for a such that A' is asymptotically faster than A?
- 11. [Recurrence, 20 points] Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.

- a) $T(n) = 2T(n/2) + n^3$. b) T(n) = T(9n/10) + n. c) $T(n) = 16T(n/4) + n^2$. d) $T(n) = 7T(n/3) + n^2$. e) $T(n) = 7T(n/2) + n^2$. f) $T(n) = 2T(n/4) + \sqrt{n}$. g) T(n) = T(n-1) + n.
- h) $T(n) = T(\sqrt{n}) + 1.$
- 12. [Recurrence, 5 points (*)]. Solve the recurrence $T(n) = 2T(\sqrt{n}) + 1$ by making a change of variable. The solution should be asymptotically tight (i.e. use the Θ notation). Do not worry about whether values are integral.
- 13. [Design & Analysis, 10 points (*)] Exercise 2.3-7, page 39.