HW Assignment 2 (Due date: February 13, by 9:00 am)

1. [Sorting Complexity, 5 points] Exercise 1.2-2, page 14.
2. [Time Complexity, 10 points] Exercise 2.2-3, page 29.
3. [Binary Search, 5 points] Exercise 2.3-5, page 39.
4. [Binary Search, 5 points] Exercise 2.3-6, page 39.
5. [Asymptotic Notation, 5 points] Exercise 3.1-1, page 52.
6. [Asymptotic Notation, 10 points] Prove or disprove:
a) $3^{n+1}=O\left(3^{n}\right)$
b) $2^{2 n}=O\left(2^{n}\right)$
c) $3 n^{2} \lg n+4 n=O\left(n^{3}\right)$
d) $3 n^{2} \lg n+4 n=O\left(n^{2} \lg n\right)$
e) $3 n^{2} \lg n+4 n=O\left(n^{2} \sqrt{n}\right)$
7. [Asymptotic Notation, 5 points] Prove $\lg (n!)=\theta(n \lg n)$.
[Hint: use one of Stirling's approximations (3.18 or 3.20 on page 57)].
8. [Substitution Method, $\mathbf{1 5}$ points] Show that the solution to:

$$
T(6)=1
$$

$$
T(n)=3 T(\lfloor n / 3\rfloor+4)+n, \text { for } n>6
$$

is $O(n \lg n)$.
9. [Master Method, 10 points] Use the master method to give tight asymptotic bounds for the following recurrences:
a) $T(n)=4 T(n / 2)+n$.
b) $T(n)=4 T(n / 2)+n^{2}$.
c) $T(n)=4 T(n / 2)+n^{3}$.
d) $T(n)=2 T(n / 4)+\sqrt{n}$.
e) $T(n)=2 T(n / 4)+n^{2}$.
10. [Master Method, 5 points] The recurrence $T(n)=10 T(n / 3)+n^{2}$ describes the running time of an algorithm A. A competing algorithm A^{\prime} has a running time of $T^{\prime}(n)=a T^{\prime}(n / 9)+n^{2}$. What is the largest integer value for a such that A^{\prime} is asymptotically faster than A ?
11. [Recurrence, $\mathbf{2 0}$ points] Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
a) $T(n)=2 T(n / 2)+n^{3}$.
b) $T(n)=T(9 n / 10)+n$.
c) $T(n)=16 T(n / 4)+n^{2}$.
d) $T(n)=7 T(n / 3)+n^{2}$.
e) $T(n)=7 T(n / 2)+n^{2}$.
f) $T(n)=2 T(n / 4)+\sqrt{n}$.
g) $T(n)=T(n-1)+n$.
h) $T(n)=T(\sqrt{n})+1$.
12. [Recurrence, 5 points $\left.\left(^{*}\right)\right]$. Solve the recurrence $T(n)=2 T(\sqrt{n})+1$ by making a change of variable. The solution should be asymptotically tight (i.e. use the Θ notation). Do not worry about whether values are integral.
13. [Design \& Analysis, 10 points (*)] Exercise 2.3-7, page 39.

