HW Assignment 6 (Due date: April 14, 9:00am)

1. [Divide \& Conquer, 15 points] You are given an infinite array $A[$.$] of$ integers in which the first n elements are in sorted order and the rest of the cells are filled with ∞. You are not given the value of n. Describe an algorithm that takes x as input and finds a position in the array containing x, if such a position exists, in $O(\operatorname{lgn} n)$ time.
2. [Greedy, $10+5$ points] There are n customers that need to be served in a restaurant. The restaurant can service only one customer at a time. For each customer i, the service time required is t_{i}. Design a greedy algorithm that finds an ordering of the customers that minimizes the total waiting time of the n customers. Analyze its time complexity and prove its correctness.

For example, if 4 customers with service times $t_{1}=17, t_{2}=20, t_{3}=$ $6, t_{4}=12$ are serviced in this order, the total waiting time will be $0+$ $17+(17+20)+(17+20+6)$. Find an ordering that minimizes the waiting time.
3. [Dijkstra's SSSP, 10 points] Exercise 24.3-2, page 663.
4. [Dijkstra's SSSP, 10 points] Exercise 24.3-3, page 663.
5. [SSSP, 15 points] Exercise 24.3-6, page 663.
6. $\left(^{*}\right)$ [Bellman-Ford's SSSP, 10 points] Exercise 24.1-3, page 654.
7. (*) [Dijkstra's SSSP, 10 points] Exercise 24.3-4, page 663.

