
Introspective Sorting and Selection Algorithms

David R� Musser�

Computer Science Department

Rensselaer Polytechnic Institute� Troy� NY �����

musser�cs�rpi�edu

Abstract

Quicksort is the preferred in�place sorting algorithm in many contexts� since its average
computing time on uniformly distributed inputs is ��N logN� and it is in fact faster than
most other sorting algorithms on most inputs� Its drawback is that its worst�case time
bound is ��N��� Previous attempts to protect against the worst case by improving the
way quicksort chooses pivot elements for partitioning have increased the average computing
time too much�one might as well use heapsort� which has a ��N logN� worst�case time
bound but is on the average � to � times slower than quicksort� A similar dilemma exists
with selection algorithms �for 	nding the i�th largest element� based on partitioning� This
paper describes a simple solution to this dilemma
 limit the depth of partitioning� and for
subproblems that exceed the limit switch to another algorithm with a better worst�case
bound� Using heapsort as the �stopper� yields a sorting algorithm that is just as fast
as quicksort in the average case but also has an ��N logN� worst case time bound� For
selection� a hybrid of Hoares find algorithm� which is linear on average but quadratic
in the worst case� and the Blum�Floyd�Pratt�Rivest�Tarjan algorithm is as fast as Hoares
algorithm in practice� yet has a linear worst�case time bound� Also discussed are issues
of implementing the new algorithms as generic algorithms and accurately measuring their
performance in the framework of the C�� Standard Template Library�

key words Quicksort Heapsort Sorting algorithms Introspective algorithms Hybrid
algorithms Generic algorithms STL

Introduction

Among sorting algorithms with O�N logN� average computing time� median�of�� quicksort
��� �� is considered to be a good choice in most contexts	 It sorts in place� except for
�logN�
stack space� and is usually faster than other in�place algorithms such as heapsort ���� mainly
because it does substantially fewer data assignments and other operations	 These characteristics
make median�of�� quicksort a good candidate for a standard library sorting routine� and it is in
fact used as such in the C�� Standard Template Library �STL� ��� � �� as well as in older C
libraries�it is the algorithm most commonly used for qsort� for example	 However� its worst�
case time is
�N��� and although the worst�case behavior appears to be highly unlikely� the
very existence of input sequences that can cause such bad performance may be a concern in
some situations	 The best alternative in such situations has been to use heapsort� which has a

�N logN� worst�case as well as average�case time bound� but doing so results in computing
times � to times longer than quicksort�s time on most inputs	 Thus� in order to protect

�This work was partially supported by a grant from IBM Corporation�

�

completely against deterioration to quadratic time it would seem necessary to pay a substantial
time penalty for the great majority of input sequences	
A similar dilemma appears with selection algorithms for �nding the i�th smallest element of

a sequence	 Hoare�s algorithm ��� based on partitioning has a linear bound in the average case
but is quadratic in the worst case	 The Blum�Floyd�Pratt�Rivest�Tarjan linear�time worst�
case algorithm ��� is much slower on the average than Hoare�s algorithm	 In this paper� we
concentrate on the sorting problem and return to the selection problem only brie�y in a later
section	
The next section presents a class of arbitrarily long input sequences that do in fact cause

median�of�� quicksort to take quadratic time �call these sequences �median�of�� killers��	 It
is pointed out that such input sequences might not be as rare in practice as a probabilistic
argument based on uniform distribution of permutations would suggest	
The third section then describes introsort �for �introspective sort��� a new� hybrid sorting

algorithm that behaves almost exactly like median�of�� quicksort for most inputs �and is just as
fast� but which is capable of detecting when partitioning is tending toward quadratic behavior	
By switching to heapsort in those situations� introsort achieves the same O�N logN� time
bound as heapsort but is almost always faster than just using heapsort in the �rst place	 On a
median�of�� killer sequence of length �������� for example� introsort switches to heapsort after
�� partitions and has a total running time less than ������th of that of median�of�� quicksort	�

In this case it would be somewhat faster to use heapsort in the �rst place� but for almost all
randomly�chosen integer sequences introsort is faster than heapsort by a factor of between �
and 	
Ideally� quicksort partitions sequences of size N into sequences of size approximately N���

those sequences in sequences of size N��� and so on� implicitly producing a tree of subproblems
whose depth� is approximately log�N 	 The quadratic�time problem arises on sequences that
cause many unequal partitions� resulting in the subproblem tree depth growing linearly rather
than logarithmically	 Introsort avoids the problem by putting a logarithmic bound on the depth
and switching to heapsort whenever the bound is reached	
Another way of obtaining an O�N logN� worst�case time bound with an algorithm based

on quicksort is to install a linear�time median��nding algorithm for choosing partition pivots
���	 However the resulting algorithm is useless in practice since the large overhead of the
median��nding algorithm makes the overall sorting algorithm much slower than heapsort	 This
algorithm could however be used as the �stopper� in an introspective algorithm� in place of
heapsort	 There might be some advantage in this algorithm in terms of commonality of code
with the selection algorithms described in a later section	
Instead of �nding the median exactly� other less expensive alternatives have been suggested�

such as adaptively selecting from larger arrays a larger sample of elements from which to
estimate the median	 A new version of the C library function qsort based on this technique and
other improvements ��� outperforms median�of�� versions in most cases� but still takes
�N��
time in the worst�case	
Yet another possibility is to use a randomized version of quicksort� in which pivot elements

are chosen at random	 The worst�case time bound is still
�N��� but the probability of there

����� seconds on a �� MHz microSPARC II versus ��� seconds for the generic sort algorithm from the
Hewlett�Packard �HP	 implementation of the C

 Standard Template library� with both algorithms compiled
with the Apogee C

 compiler� version ���� Performance comparisons that are more architecture� and compiler�
independent are given in a later section�

�For a purely recursive version of quicksort the subproblem depth would be the same as the recursion depth�
but the most e�cient versions recurse� directly or using a stack� on only one branch of the subproblem tree and
iterate down the other�

�

being su�ciently many bad partitions to achieve this bound is extremely low	 However� choosing
a single element of the sequence at random does not produce good enough partitions on the
average to compete with median�of�� choices� and choosing three elements at random requires
too much time for random number generation	 Introsort beats these randomized variations in
practice	

Median�of�� Killer Sequences

As is well�known� the simplest methods of choosing pivot elements for partitioning� such as
always choosing the �rst element� cause quicksort to deteriorate to quadratic time on already
�or nearly� sorted sequences	 Since there are many situations in which one applies a sorting
algorithm to an already sorted or almost sorted sequence� a more robust way of choosing pivots
is needed	 While the ideal choice would be the median value� the amount of computation
required is too large	 Instead� one of the most frequently used methods is to choose the �rst�
middle� and last elements and then choose the median of these three values ���	 This method
produces good partitions in most cases� including the sorted or almost sorted cases that cause
the simpler pivoting methods to blow up	� Nevertheless� there are sequences that can cause
median�of�� quicksort to make many bad partitions and take quadratic time	
For example� let k be any even positive integer� and consider the following permutation of

�� �� � � � � �k �����

�
� � � � � � � � k � � k � � k k � � k � � k � � � � � �k � � �k

� k � � � k � � � � � � �k � � k � � �k � � � � � � � � �k � � �k

�

Call this permutation K�k� for reasons to be seen� it will also be called a �median�of�� killer�
permutation �or sequence�	 Assume the three elements chosen by a median�of�� quicksort
algorithm on an array a�����k� are a���� a�k � ��� and a��k�	 Thus for K�k� the three values
chosen are �� �� and �k� and the median value chosen as the pivot for partitioning is �	 In the
partition� the only elements exchanged are k � � and �� resulting in

�
� � � � � � � � k � � k � � k k � � k � � k � � � � � �k � � �k

� � � k � � � � � � �k � � k � � �k � � k � � � � � � � �k � � �k

�

where the partition point is after a��� � �	 Now the array a����k� now holds a sequence with
the structure of K�k��� as can be seen by subtracting � from every element	 As this step can
be repeated k�� times� we have the following

Theorem � For any even integer N divisible by �� the permutation KN causes median�of��

partitioning to produce a sequence of N�� partitions into subsequences of length � and N � ��
� and N � �� ���� � and N���

Corollary � On any sequence permuted from an ordered sequence by KN � where N is divisible

by �� median�of�� quicksort takes ��N�� time�

Proof� By the theorem� the subproblem tree produced by partitioning KN has at least N��
levels	 Since the total time for all partitions at each level is
�N�� the total time for all levels
is ��N��	 �

One might argue that the KN sequences are not likely to occur in real applications� or at
least not nearly so likely as the almost sorted sequences that cause simpler versions of quicksort

�This assumes that care is also taken with other aspects of the algorithm� such as programming the partition
algorithm so that it swaps equal elements in order to ensure that good partitions result on sequences of all equal
elements or sequences whose elements are chosen from a relatively small set�

�

to blow up	 While this is probably true� perhaps there is still some reason to expect these or
equally damaging sequences to occur more often in practice than a probabilistic argument based
on uniform distribution of permutations would suggest	 Indeed� some authors have proposed
substituting for the uniform distribution a �universal distribution� that assigns much higher
probability to sequences that can be produced by short programs� as can theKN sequences� than
to random sequences �those that require programs of length proportional to the sequence length�
����	 Under the universal distribution� both quicksort�s worst�case and average computing times
are
�N��	 The average and worst�case times for heapsort�and introsort�remain
�N logN�
under the universal distribution	

The Algorithm

The details of the introsort algorithm are perhaps easiest to understand in terms of its di�erences
from the following version of median�of�� quicksort�the one used in the HP implementation
of the C�� Standard Template Library ���� for the sort function	 This version uses a constant
called size threshold to stop generating subproblems for small sequences� leaving the problem
instead for a later pass using insertion sort	 Leaving small subproblems to insertion sort is one
of the usual optimizations of quicksort� the merits of leaving them until a �nal pass rather than
calling insertion sort immediately are discussed later	 As in ����� block structure is indicated in
the pseudo�code using indentation rather than bracketing	

Algorithm Quicksort�A� f� b�
Inputs
 A� a random access data structure containing the sequence

of data to be sorted� in positions A�f�� ���� A�b � ���

f� the 	rst position of the sequence

b� the 	rst position beyond the end of the sequence

Output
 A is permuted so that A�f� � A�f��� � � � � � A�b � ��

Quicksort loop�A� f� b�
Insertion sort�A� f� b�

Algorithm Quicksort loop�A� f� b�
Inputs
 A� f� b as in Quicksort

Output
 A is permuted so that A�i� � A�j�

for all i� j
 f � i � j � b and size threshold � j � i

while b � f � size threshold
do p �� Partition�A� f� b� Median of ��A�f�� A�f��b�f��	�� A�b�
���

if �p � f � b � p�
then Quicksort loop�A� p� b�

b �� p
else Quicksort loop�A� f� p�

f �� p

The test p � f � b � p is to ensure that the recursive call is on a subsequence of length no more
than half of the input sequence� so that the stack depth is O�logN� rather than O�N�	 The
details of Insertion sort�Median of � and Partition are not important for this discussion�
these routines are also used without change in Introsort	
The key modi�cation to quicksort to avoid quadratic worst�case behavior is to make the

algorithm �aware� of how many subproblem levels it is generating	 It can then avoid the

�

performance problem by switching to heapsort when the number of levels reaches a limit	
According to Theorem � below� the depth limit must be O�logN�	 Although any choice for
the constant factor in this bound will ensure an overall time bound of O�N logN�� it must not
be so small that the algorithm calls heapsort too frequently �causing it to be little better than
using heapsort in the �rst place�	 In the following pseudo�code the depth limit is �blog�Nc�
since this value empirically produces good results	

Algorithm Introsort�A� f� b�
Inputs
 A� a random access data structure containing the sequence

of data to be sorted� in positions A�f�� ���� A�b � ���

f� the 	rst position of the sequence

b� the 	rst position beyond the end of the sequence

Output
 A is permuted so that A�f� � A�f��� � � � � � A�b � ��

Introsort loop�A� f� b� 	 � Floor lg�b � f��
Insertion sort�A� f� b�

Algorithm Introsort loop�A� f� b� depth limit�
Inputs
 A� f� b as in Introsort�

depth limit� a nonnegative integer

Output
 A is permuted so that A�i� � A�j�

for all i� j
 f � i � j � b and size threshold � j � i

while b � f � size threshold
do if depth limit � �

then Heapsort�A� f� b�
return

depth limit �� depth limit �

p �� Partition�A� f� b� Median of ��A�f�� A�f��b�f��	�� A�b�
���
Introsort loop�A� p� b� depth limit�
b �� p

In Introsort loop it is possible to omit the test for recursing on the smaller half of the
partition� since the depth limit puts an O�logN� bound on the stack depth anyway	 This
omission nicely o�sets the added test for exceeding the depth�limit� keeping the algorithm�s
overhead essentially the same as Quicksort�s	 We can skip the details of the Heapsort
algorithm� since they are unimportant for the time bound claimed for Introsort� as long as
Heapsort� or any other algorithm used as the �stopper�� has an O�N logN� worst�case time
bound	

Theorem � Assuming an O�logN� subproblem tree depth limit and an O�N logN� worst�case
time bound for Heapsort� the worst�case computing time for Introsort is
�N logN��

Proof� The time for partitioning is bounded by N times the number of levels of partitioning�
which is bounded by the subproblem tree depth limit	 Hence the total time for partitioning is
O�N logN�	 Suppose Introsort calls Heapsort j times on sequences of length n�� � � � � nj 	
Let c be a constant such that cN log�N bounds the time for Heapsort on a sequence of length
N � then the time for all the calls of Heapsort is bounded by

jX
i��

cni log� ni � c log�N
jX

i��

ni � cN log�N�

or O�N logN� also	 Therefore the total time for Introsort is O�N logN�	
The lower bound is also ��N logN�� since a sequence such as an already sorted sequence

produces equal length partitions in all cases� resulting in log�N levels each taking ��N� time	
�

Implementation and Optimization

An important detail not indicated by the pseudo�code is the parameterization of the algorithms
by the type of data and the type of function used for comparisons	 Such parameterization
is a fairly common use of the C�� template feature� but the Standard Template Library
goes further by also parameterizing on the sequence representation	 Speci�cally� instead of
passing an array base address and using integer indexing� the boundaries of the sequence are
passed via iterators� which are a generalization of ordinary C�C�� pointers	 The iterator type
is a template parameter of the algorithms� as in ��� �	 The implementation of introsort is
parameterized in the same way� for example� the C�� source code for the main function is

template �class RandomAccessIterator� class T� class Distance�

void ��introsort�loop�RandomAccessIterator first�

RandomAccessIterator last� T��

Distance depth�limit� �

while �last � first � ��stl�threshold� �

if �depth�limit 		
� �

partial�sort�first� last� last��

return�

�

��depth�limit�

RandomAccessIterator cut 	 ��unguarded�partition

�first� last� T���median��first� ��first �last � first�����

��last � ������

��introsort�loop�cut� last� value�type�first�� depth�limit��

last 	 cut�

�

�

STL de�nes �ve categories of iterators� the most powerful being random�access iterators� for
which i�n� for iterator i and integer n� is a constant time operation	 Introsort� like quicksort and
heapsort� requires random�access iterators� which means that it cannot be used with linked lists	
However it is not restricted just to arrays� in STL� random�access iterators are also provided
by vectors and deques� which are like arrays in most respects but dynamically expandable at
one or at both ends� respectively	
For heapsort� the implementation calls the STL generic partial sort algorithm	 Similarly�

the call to insertion sort is coded as a call to an internal insertion sort routine already provided
in the HP STL code	

Performance Measurements

To compare the computing time performance of algorithms that have the same asymptotic time
bounds� as is the case here� we must look for more discriminating ways of describing them	 For

�

this purpose it is traditional to use formulas that express the actual time an algorithm uses or
the number of operations it does� in the worst or average case� when applied to any input in
a certain class	 Actual times are the most accurate description but may only apply to a single
hardware architecture and compiler con�guration	 Operation counts are more portable�except
for dependence� in some cases� on compiler optimizations�but they may bear little relation to
actual times when only certain operations are counted� such as only counting the comparison
operations done by a sorting algorithm	 For example in STL heapsort� present as a special
case of its partial sort generic algorithm� does fewer comparisons than the STL median�of��
quicksort version �sort�� but its actual computing time is usually signi�cantly higher because
it does more assignments and other operations	 And since these algorithms are generic� they
access most of the operations they do through type parameters� and thus the relative cost of
di�erent kinds of operations can vary when they are specialized with di�erent types	
With algorithms that are generic in the sequence representation� as in STL� the number of

iterator operations and their cost relative to comparisons and assignments are also important	
As discussed in more detail at the end of this section� in the deque representation in the HP
STL implementation most iterator operations cost several times as much as vector or array
iterator operations� and this fact is signi�cant in assessing the relative performance of di�erent
variants of introsort	
A fourth kind of operations that appears in these algorithms is distance operations� which

are arithmetic operations on integer results of iterator subtractions� such as the division by � in
the expression �last � first���	 The cost of a distance operation is mostly independent of
the data or iterator types� but it is still useful to know how many such operations are performed	
Heapsort� for example� does many more distance operations than quicksort or introsort� which�
along with its higher number of iterator operations� accounts for its poorer performance in most
cases	
Thus� the performance tables below do not show actual times but instead give separate

counts for comparison� assignment� iterator� and distance operations	 Table � shows the oper�
ation counts for introsort� quicksort� and heapsort on randomly�ordered sequences ranging in
size from ����� to ��������� elements	 Each value is the median of measurements on seven ran�
dom sequences	 The table shows that on such sequences the operation counts for introsort are
almost identical to those of quicksort	 Heapsort comes in with an approximately � smaller
comparison count but does about �	 times as many assignments� �	 times as many iterator
operations and more than �� times as many distance operations	 The last column gives the to�
tal number of operations� which is a guide to how actual computing times compare when each
kind of operation takes about the same time� as for example with arrays containing integer
elements	 The total for heapsort is more than � times the total for introsort or quicksort	
Table � shows the operation counts for the three algorithms on the median�of�� killer se�

quences	 For quicksort the operation total grows quadratically� as predicted by the analysis	
Note also that on these sequences introsort is somewhat slower than heapsort� because it per�
forms �blog�Nc partitions before switching to heapsort on a sequence of length N � �blog�Nc	
Thus the time for the heapsort call within introsort is almost as great as the heapsort time on
the original sequence� but introsort adds to this the time for the partitions	
There are also some sequences on which introsort fares worse than quicksort� though never

so dramatically as the di�erences in the other direction	 Such sequences TN can be constructed
by taking KN and randomly shu!ing the elements in positions �blog�Nc through N�� and
N�� � �blog�Nc through N �call such sequences �two�faced��	 On TN � introsort switches to
heapsort after �blog�Nc partitions� but since the heapsort call is on a random sequence it takes
longer than continuing to partition would	

�

Table �� Performance of Introsort� Quicksort� and Heapsort on Random Sequences �Sizes and
Operations Counts in Multiples of ������

Size Algorithm Comparisons Assignments Iterator Ops Distance Ops Total Ops

� Introsort ��	� �	� �	� �	� �	�
Quicksort ��	� �	� �	� �	� �	�
Heapsort ��	� �	 ���	� ��	� ���	�

� Introsort �	� ��	� ���	� �	� ��	
Quicksort �	� ��	� ���	� �	� ��	�
Heapsort ��	� ��	� ���	 ���	� ���	�

�� Introsort ��	� ���	� ����	� ��	 ����	�
Quicksort ��	� ���	� ����	� ��	 ����	�
Heapsort ���	� ���	� ���	� ����	 ���	�

�� Introsort ���	� ���	� ��	� ��	� ����	�
Quicksort ���	� ���	� ��	� ��	 ���	
Heapsort ����	� ���	� �����	� ���	� ����	�

�� Introsort ���	� ����	� ����	� ���	 �����	�
Quicksort ���	� ����	� �����	� ���	� �����	�
Heapsort ����	� ���	� ����	� �����	� ������	�

���� Introsort ����	� ����	� ������	� ����	� �����	�
Quicksort ����	� ����	� ������	� ����	� �����	�
Heapsort �����	� ����	� ������	� ������	� �����	�

Experiments were also performed with an introsort version in which the insertion sort call
is placed at the end of Introsort loop� where it does many separate calls on small subarrays�
rather than at the end of Introsort� where it does one �nal pass over the entire array	 The
one��nal�pass position is one of the quicksort optimizations suggested by Sedgewick ����	 But
with modern memory caches the savings in overhead may be cancelled or outweighed for large
arrays� since the complete pass at the end can double the number of cache misses ���	� However�
in these experiments the many�insertion�sort�call version almost never ran faster than the one�
�nal�pass version� and in some cases ran considerably slower	 One important case is sorting
a deque� whose implementation in HP STL is in terms of a two�level structure consisting of
a block of pointers to �xed�sized blocks	 This representation supports random access� but
iterator operations are slower than array or vector iterator operations by a constant factor�
typically three to �ve	 Measurements show that the many�call version performs about � more
iterator operations than the one�call version� causing it to take ���� more time when sorting
a deque	 Thus the one�call version is de�nitely to be preferred when sorting a deque� and the
only question is whether the many�call version should be used for arrays or vectors �giving up
some genericity�	 For now� it seems better to retain only the one�call version� since the cases
in which the many�call version might be faster are rare� but this decision should probably be
revisited as relative cache�miss penalties continue to increase	
Finally� it may be of some interest that the operation counts were obtained without modi�

fying the algorithm source code at all� by specializing their type parameters with classes whose

�In Introsort the many�call version also has the advantage that insertion sorting is never done on a region
already sorted by Heapsort� although this is relatively unimportant since Heapsort is very rarely called� and
insertion�sorting an already sorted array is very fast anyway�

�

Table �� Performance of Introsort� Quicksort� and Heapsort on Median�of�� Killer Sequences
�Sizes and Operations Counts in Multiples of ������

Size Algorithm Comparisons Assignments Iterator Ops Distance Ops Total Ops

� Introsort ��	� ��	� ��	� ��	� ��	�
Quicksort ���	� �	� ���	� �	� ���	�
Heapsort ��	� �	� ���	� ��	� ���	�

� Introsort ���	� ��	� ��	� ���	� ����	�
Quicksort ����	� ��	� ����	� ��	� ����	�
Heapsort ��	� ��	� ���	 ��	� ��	�

�� Introsort ���	� ��	� ����	� ����	� ����	�
Quicksort �����	� ���	 �����	� �	� �����	�
Heapsort ���	� ���	� ����	� ���	� ����	�

�� Introsort ���	� ���	� �����	� ����	 �����	�
Quicksort ������	� ���	� ������	� ���	� �������	�
Heapsort ���	� ����	� �����	� ����	� ����	�

operations have counters built into them	 This is an obvious technique for counting element
type comparison and assignment operations� but iterator operations and even distance opera�
tions can be counted in the same way since STL generic algorithms also access them through
type parameters	 The most useful way of de�ning a counting class is as an adaptor ���� which
is a generic component that takes another component and out�ts it with a new interface� or
provides the same interface but with di�erent or additional �behind�the�scenes� functionality	
A counting adaptor is an example of adding both to the interface �for initializing and reporting
counts� and internal functionality �incrementing the counts�	

Introspective Selection Algorithms

Hoare�s �nd algorithm ��� for selecting the i�smallest element of a sequence is similar to quick�
sort� but only one of the two subproblems generated by partitioning must be pursued	 With
even splits� the computing time is O�N�N���N��� � � ��� or O�N�	 But the same median�of��
killer sequences described in Section � cause the selection algorithm to do N�� partitions when
�nding the median� and the computing time thus becomes ��N��	
If� as in introsort� we limit the depth to a logarithmic bound� the average time remains linear

but the worst case is
�N logN�	 We could get an overall linear worst�case bound by putting a
constant bound on partitioning depth� but that would mean that for su�ciently large sequences
we would switch to the stopper algorithm on most inputs even though Hoare�s algorithm would
run faster	 A better approach is to require that the sequence size is cut at least in half by any
k consecutive partitions� for some positive integer k� if this test fails� then switch to the linear
time algorithm	 This limits the partitioning depth to kdlog�Ne and the total time to O�N�	
Another approach that achieves this time bound is limiting the sum of the sizes of all partitions
generated to some constant times N 	
The details of such �introselect� algorithms and the results of experiments comparing them

with other selection algorithms will be given in a separate paper	

�

Implications for Generic Software Libraries

Let us conclude by noting the possible advantages and disadvantages of introsort and introselect
relative to other sorting and selection algorithms included in a generic software library such as
STL	
STL is not a set of speci�c software components but a set of requirements which compo�

nents must satisfy	 By making time complexity part of the requirements for components� STL
insures that compliant components not only have the speci�ed interfaces and semantics but also
meet certain computing time bounds	 The complexity requirements were chosen based on the
characteristics of the best algorithms and data structures known at the time the requirements
were proposed	 Whenever possible� the requirements are expressed as worst�case time bounds	
Requiring O�N logN� worst�case time for the generic sort algorithm would have meant heap�
sort could be used but would have precluded quicksort	 And of course� only requiring O�N��
worst�case time would have permitted insertion sort �or even bubble sort"� to be used	 So in
this case the requirements only stipulate O�N logN� average time� in order to allow quicksort
to be used for this component	 The speci�cation then appends the caveat� �if the worst�case
behavior is important stable sort or partial sort should be used	� In view of introsort�s
combination of parity with quicksort on most sequences while meeting an O�N logN� worst�
case bound� the STL requirement could be now best be expressed as an O�N logN� worst�case
bound� with no need for the caveat	
Is there now any need to have heapsort publicly available in a generic library# Yes� if as in

STL it is present in a more general form� called partial sort� capable of placing the smallest
k elements of a sequence of length N in the �rst k positions� leaving the remaining N � k
elements in an unde�ned order	 Its time complexity requirement is O�N log k�� which is not as
good as could be done using a linear selection algorithm to place the k smallest elements at
the beginning of the array and sorting them with heapsort� for a total time of O�N � k log k�	
However� it does permit an algorithm that makes a heap out of the �rst k elements� then
maintains in it the k smallest elements of the i elements seen so far as i goes to N � and �nally
sorts the heap	 This algorithm� which is used in HP STL� is faster on the average than the
select�and�sort algorithm	
Introsort� like quicksort� is not stable�does not preserve the order of equivalent elements�

so there is still a need to have a separate requirement for a stable sorting routine	 In STL the
requirements for stable sort are written to be satis�able by a merge sort algorithm	
A possible disadvantage of introsort is the extra code space required� roughly double the

requirement for quicksort or heapsort alone	 In a compile�time generic library such as STL� this
problem is exacerbated when many di�erent instances of a generic component are required in
a single application program	 The problem fades away however if there is a separate need for
partial sort� since the code for introsort can just call it and need not include it in�line	
Finally� combining introspection with partitioning methods other than median�of�� should

be explored	 For example� it can also be applied to partitioning using the simpler choice of the
�rst element as the pivot� the resulting algorithm still has a
�N logN� time bound	 However�
because the simpler choice of pivot does not partition as evenly as median�of�� partitioning
does� the average time is higher	 Another possibility is to apply depth limiting to the algorithm
described in ���� which adaptively selects from larger arrays a larger sample of elements from
which to estimate the median	 Experimentation with this algorithm and other variations of
will be the subject of a future paper	
Acknowledgments C	 Stewart suggested the idea for the class of sequences KN 	 J	 Valois
and two anonymous referees made many useful comments on an earlier draft of this paper	

��

References

��� C	 A	 R	 Hoare	 Quicksort	 Computer Journal� ��������� ����	

��� R	 C	 Singleton	 Communications of the ACM� �����$���� ����	

��� J	 W	 J	 Williams	 Algorithm ��� �heapsort�	 Communications of the ACM� �����$����
����	

��� D	 R	 Musser and A	 A	 Stepanov	 Algorithm�oriented generic libraries	 Software Practice
and Experience� ������ July ����	

�� A	 A	 Stepanov and M	 Lee	 The Standard Template Library� Technical Report HPL����
��� Hewlett�Packard Laboratories� May ��� ����� revised October ��� ���� incorporated
into Accredited Standards Committee X� �American National Standards Institute�� Infor�
mation Processing Systems�Working Paper for Draft Proposed International Standard for

Information Processing Systems�Programming Language C��	 Doc	 No	 X�J����������
WG���N���� April ���	

��� D	 R	 Musser and A	 Saini	 STL Tutorial and Reference Guide� C�� Programming with

the Standard Template Library	 Addison�Wesley� Reading� MA� ����	

��� C	 A	 R	 Hoare	 Algorithm �� �partition� and algorithm � ��nd�	 Communications of the
ACM� ������������� ����	

��� M	 Blum� R	 W	 Floyd� V	 Pratt� R	 L	 Rivest� and R	 E	 Tarjan	 Time bounds for selection	
Journal of Computer and System Sciences� ��������$���� ����	

��� J	 L	 Bentley and M	 D	 McIlroy	 Engineering a sort function	 Software Practice and Ex�

perience� ������� November ����	

���� C	 V	 Stewart� Private communication	

���� M	 Li and P	 M	 B	 Vit%anyi	 Average case complexity under the universal distribution
equals worst�case complexity	 Information Processing Letters� �����$���� ����	

���� A	 A	 Stepanov� M	 Lee� and D	 R	 Musser	 Hewlett�Packard Laboratories refer�
ence implementation of the Standard Template Library� source �les available from
ftp���ftpcsrpiedu�pub�stl	

���� T	 H	 Cormen� C	 E	 Leiserson� and R	 L	 Rivest	 Introduction to Algorithms	 MIT Press�
Cambridge� MA� ����	

���� R	 Sedgewick	 Implementing quicksort programs� Communications of the ACM� �����������
��� ����	

��� A	 LaMarca and R	 E	 Ladner	 The in�uence of caches on the performance of sorting	
Proceedings of Eighth Annual ACM�SIAM Symposium on Discrete Algorithms� January
����	

��

