Mathematical Preliminaries

Sets:

- An unordered collection of elements (order doesn't matter).
- Can be finite, $\{2,3,4\}$, or infinite $\{1,2,3,4 \ldots\}$.
- Set membership: $\in \notin \not$
$E x: 4 \in\{2,3,4\}, 1 \notin\{2,3,4\}$,
- Sets can contain other sets: $\{2,\{5\}\},\{\{0\}\} \neq\{0\} \neq 0$
- Two sets are equal if they contain the same elements.

Common Sets

- Naturals: $N=\{0,1,2,3,4, \ldots\}$
- Integers: $Z=\{\ldots-2,-1,0,1,2, \ldots\}$
- Rationals: $Q=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in Z, b \neq 0\right\}$
- Reals: R
- Empty set: $\varnothing=\{ \}$
- Set definition: '|' means "such that".

Ex: $\{k \mid k \in N, 0<k<4\}$

Set operations

- Subset: \subseteq, \subset.
- $\forall S, \varnothing \subseteq S$.
- $\forall S, S \subseteq S$.
- Union (\cup), Intersection (\cap).
- Set difference: $S-T=\{x \mid x \in S \wedge x \notin T\}$.
- Set complement: $\neg S$ or $\bar{S}=\{x \mid x \notin S\}=U-S$, where U is a universal set (everything).
- Disjoint sets: $S \cap T=\varnothing$.

Set Cardinality

- Cardinality: $|S|=$ number of elements in S.
- Power set of a set $A, 2^{A}$ is the set of all subsets of A.

Example: $A=\{2,3\}$, then the power set of A is $2^{A}=$ $\{\varnothing,\{2\},\{3\},\{2,3\}\}$.

Question: if $|A|=n$, what is the cardinality of the power set? Answer: 2^{n}.

- DeMorgan's laws:

$$
\begin{aligned}
& \neg(B \cap C)=\neg B \cup \neg C \\
& \neg(B \cup C)=\neg B \cap \neg C
\end{aligned}
$$

Cartesian product

- Given two sets A and B, the Cartesian product or cross product $A \times B$ is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B.

Example: if $A=\{1,2\}$ and $B=\{x, y, z\}$, then
$A \times B=\{(1, x),(1, y),(1, z),(2, x),(2, y),(2, z)\}$.

Question: what is the cardinality of $A \times B$? Answer: $|A| \times|B|$.

Binary relations

- A binary relation R on two sets A and B is a subset of the Cartesian product $A \times B$. If $(a, b) \in R$, this is equivalently written as $a R b$.
- Types of relations $R \subseteq A \times A$:
- reflexive: $a R a$, for all $a \in A$
- symmetric: $a R b \Rightarrow b R a$, for all $a, b \in A$
- transitive: $a R b$ and $b R c \Rightarrow a R c$, for all $a, b, c \in A$
- equivalence: reflexive and symmetric and transitive.
- Examples: $<, \geq,=$.

Functions

- A function $f: A \rightarrow B$ is a binary relation on A and B such that for all $a \in A$, there is one and only one $b \in B$ such that $(a, b) \in f$.
$(a, b) \in f$ is equivalently written $f(a)=b$.
A is called $f^{\prime} s$ domain and B is the codomain.

We say that a is the argument of f and that $f(a)=b$ is the value (image) of f at a.

- The range of f is the image of its domain, that is, $f(A)=\{b \in B: b=f(a)$ for some $a \in A\}$.
- A function is a surjection if its range is its codomain.

Functions (cont'd)

- A function $f: A \rightarrow B$ is an injection (one-to-one) if distinct arguments to f produce distinct values, that is, if $a \neq a^{\prime}$ implies $f(a) \neq f\left(a^{\prime}\right)$.

Example:

- A function $f: A \rightarrow B$ is a bijection (one-to-one correspondence) if it is injective and surjective.

Example:

Floor, Ceiling

floor and ceiling:

- Let $x \in R$, then:

$$
\begin{aligned}
& -\lfloor x\rfloor=\text { largest integer } \leq x-\text { "floor". (e.g., }\lfloor 8.2\rfloor=8) \\
& -\lceil x\rceil=\text { smallest integer } \geq x-\text { "ceiling". (e.g., }\lceil 8.2\rceil=9)
\end{aligned}
$$

Basic facts:
$-x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$

- If n is a integer then $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$

$$
\left\lceil\frac{\left\lceil\frac{n}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{n}{4}\right\rceil
$$

Polynomial and Exponential

Polynomials:

$$
\begin{equation*}
p(n)=\sum_{k=0}^{d} a_{k} \cdot n^{k}=a_{d} \cdot n^{d}+\ldots a_{1} \cdot n+a_{0} \tag{1}
\end{equation*}
$$

Exponential Function:

$$
\begin{aligned}
& a^{0}=1 \\
& a^{1}=a \\
& a^{-1}=1 / a \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} a^{n}=a^{m+n}
\end{aligned}
$$

Logarithms

Logarithms:

- definitions: Ig $n=\log _{2} n, \quad \ln n=\log _{e} n$
- $\log _{c} a b=\log _{c} a+\log _{c} b$.
- $\log _{c} a^{b}=b \cdot \log _{c} a$.
- $\log _{c} \frac{a}{b}=\log _{c} a-\log _{c} b$.
- $\log _{c} a=\frac{\log _{d} a}{\log _{d} c}$. (change base)
- $a^{\log _{c} n}=n^{\log _{c} a}$
- derivatives: $(\ln a)^{\prime}=\frac{1}{a}, \quad(\lg a)^{\prime}=\frac{\lg e}{a}$.

Factorial

Factorials:

$$
n!= \begin{cases}1 & \text { for } n=0 \\ n(n-1)! & \text { for } n>0\end{cases}
$$

Note:

- $n!\leq n^{n}$
- $\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n+\left(\frac{1}{12} n\right)}$

The last formula is called "Stirling's approximation" for n !.

Summation \& Recurrences

Summations

Given a sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, the summation $a_{1}+a_{2}+\ldots a_{n}$ is written as

$$
\sum_{i=1}^{n} a_{i}
$$

The infinite sum $a_{1}+a_{2}+\ldots$ is written as

$$
\sum_{i=1}^{\infty} a_{i}
$$

and it is formally interpreted as

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

General Properties of Summations

Linearity

$$
\sum_{k=1}^{n}\left(c a_{k}+b_{k}\right)=c \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}
$$

Arithmetic Series

$$
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)=\Theta\left(n^{2}\right) .
$$

Sum of squares

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)=\Theta\left(n^{3}\right) .
$$

Series

Sum of cubes

$$
\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}=\Theta\left(n^{4}\right)
$$

Geometric Series For real number $x \neq 1$,

$$
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+x^{3}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1} .
$$

The following geometric series are used frequently:

$$
\begin{gathered}
\sum_{k=0}^{n} 2^{k}=\frac{2^{n+1}-1}{2-1}=2^{n+1}-1 \\
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \quad(\text { if }|x|<1)
\end{gathered}
$$

More Series

Using integrals:

- if f is a continuous, increasing function:

$$
\int_{a-1}^{b} f(x) d x \leq \sum_{i=a}^{b} f(i) \leq \int_{a}^{b+1} f(x) d x
$$

- if f is a continuous, decreasing function:

$$
\int_{a}^{b+1} f(x) d x \leq \sum_{i=a}^{b} f(i) \leq \int_{a-1}^{b} f(x) d x
$$

- Example: $f(k)=\frac{1}{k}$

$$
\ln (n+1) \leq \sum_{i=1}^{n} \frac{1}{k} \leq \ln (n)+1, \quad \sum_{i=1}^{n} \frac{1}{k}=\ln (n)+O(1)
$$

Graphs

- A directed graph G is a pair (V, E), where V is the set of vertices, and E is the set of edges (i.e. ordered pairs of vertices).

Review: adjacency, in-degree, out-degree, path, cycle.

- In an undirected graph $G=(V, E)$, the edges are undordered pairs of vertices.

Review: adjacency, degree, path, cycle.

Review on Graphs

$$
\begin{aligned}
& V=\{1,2,3,4,5\} \\
& E=\{(1,2),(2,3),(3,5),(5,4),(4,1)\}
\end{aligned}
$$

Representation of graphs

- Adjacency List
- Adjacency Matrix

Review on Trees

- A free tree is a connected, acyclic, undirected graph.
- A rooted tree is a free tree in which one vertex (the root) is distinguished from the others.

Review: ancestor/descendant, parent/child, siblings, external/internal nodes, depth \& height.

Proofs

Mathematical Statements:

- Definition, Lemma, Theorem, Corollary

Types of Proofs:

- Contradiction
- Induction
- Counter-example

Proof by Contradiction

Example: $\sqrt{2}$ is rational.

Proof by Induction

If we want to prove a statement $P(n)$ is true for all natural numbers $n \in\{1,2,3 \ldots\}$, we can achieve this with the following two steps:

1 Prove that the statement holds when $n=1$ ($P(1)$ is true). ---- basis

2 Prove that if the statement holds for $n=m$, then the same statement holds for $n=m+1$. $(P(m) \Rightarrow P(m+1)) .----$ induction step

Example

$$
\sum_{1}^{n}=\frac{n(n+1)}{2} \text { for } n=\{1,2,3 \ldots\}
$$

Proof by Induction: Generalizations

Generalization type 1:

- If we want to prove a statement P not for all natural numbers but only for all numbers greater than a certain number b then the following two steps are sufficient

1. basis: Prove that the statement holds when $n=b$.
2. induction step: Prove that if the statement holds for
$n=m$ then the same statement also holds for $n=m+1$.

Generalizations

Generalization type 2:

- Another generalization allows that in the second step, we not only assume that the statement holds for $n=m$ but also for all n smaller than or equal to m. This leads to the following two steps.

1. basis: Prove that the statement holds when $n=b$.
2. induction step: Prove that if the statement holds for $n \leq m$ then the same statement also holds for $n=m+1$.

Example

Every natural number greater than 1 is a product of prime numbers.

