
Mathematical PreliminariesMathematical Preliminaries

Sets:

• An unordered collection of elements (order doesn’t matter).

• Can be finite, {2,3,4}, or infinite {1,2,3,4...}.

• Set membership: ∈, /∈

Ex: 4 ∈ {2,3,4}, 1 /∈ {2,3,4},

• Sets can contain other sets: {2, {5}}, {{0}} 6= {0} 6= 0

• Two sets are equal if they contain the same elements.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 2

Common SetsCommon Sets

• Naturals: N = {0,1,2,3,4, ...}

• Integers: Z = {... − 2,−1,0,1,2, ...}

• Rationals: Q = {a
b |a, b ∈ Z, b 6= 0}

• Reals: R

• Empty set: Ø = {}

• Set definition: ′|′ means “such that”.

Ex: {k|k ∈ N,0 < k < 4}

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 2

Set operationsSet operations

• Subset: ⊆, ⊂.

• ∀S,Ø ⊆ S.

• ∀S, S ⊆ S.

• Union (∪), Intersection (∩).

• Set difference: S − T = {x|x ∈ S ∧ x /∈ T}.

• Set complement: ¬S or S̄ = {x|x /∈ S} = U − S, where U is

a universal set (everything).

• Disjoint sets: S ∩ T = Ø.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 2

Set CardinalitySet Cardinality

• Cardinality: |S| = number of elements in S.

• Power set of a set A, 2A is the set of all subsets of A.

Example: A = {2,3}, then the power set of A is 2A =

{Ø, {2}, {3}, {2,3}}.

Question: if |A| = n, what is the cardinality of the power

set? Answer: 2n.

• DeMorgan’s laws:

¬(B ∩ C) = ¬B ∪ ¬C

¬(B ∪ C) = ¬B ∩ ¬C

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 2

Cartesian productCartesian product

• Given two sets A and B, the Cartesian product or cross

product A × B is the set of all ordered pairs wherein the

first element is a member of A and the second element is a

member of B.

Example: if A = {1,2} and B = {x, y, z}, then

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}.

Question: what is the cardinality of A × B? Answer:

|A| × |B|.

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 2

Binary relationsBinary relations

• A binary relation R on two sets A and B is a subset of the

Cartesian product A × B. If (a, b) ∈ R, this is equivalently

written as aRb.

• Types of relations R ⊆ A × A:

– reflexive: aRa, for all a ∈ A

– symmetric: aRb ⇒ bRa, for all a, b ∈ A

– transitive: aRb and bRc ⇒ aRc, for all a, b, c ∈ A

– equivalence: reflexive and symmetric and transitive.

• Examples: <, ≥, =.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 2

FunctionsFunctions

• A function f : A → B is a binary relation on A and B such

that for all a ∈ A, there is one and only one b ∈ B such that

(a, b) ∈ f .

(a, b) ∈ f is equivalently written f(a) = b.

A is called f ′s domain and B is the codomain.

We say that a is the argument of f and that f(a) = b is

the value (image) of f at a.

• The range of f is the image of its domain, that is,

f(A) = {b ∈ B : b = f(a) for some a ∈ A}.

• A function is a surjection if its range is its codomain.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 2

Functions (cont’d)Functions (cont’d)

• A function f : A → B is an injection (one-to-one) if

distinct arguments to f produce distinct values, that is, if

a 6= a′ implies f(a) 6= f(a′).

Example:

• A function f : A → B is a bijection (one-to-one

correspondence) if it is injective and surjective.

Example:

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 2

Floor, CeilingFloor, Ceiling

floor and ceiling:

• Let x ∈ R, then:

– ⌊x⌋ = largest integer ≤ x —“floor”. (e.g., ⌊8.2⌋ = 8)

– ⌈x⌉ = smallest integer ≥ x — “ceiling”. (e.g., ⌈8.2⌉ = 9)

Basic facts:

– x − 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x + 1

– If n is a integer then ⌊n/2⌋ + ⌈n/2⌉ = n

⌈
⌈n
2⌉
2

⌉ = ⌈n
4
⌉

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 2

Polynomial and ExponentialPolynomial and Exponential

Polynomials:

p(n) =
d

∑

k=0

ak · nk = ad · nd + . . . a1 · n + a0 (1)

Exponential Function:

a0 = 1

a1 = a

a−1 = 1/a

(am)n = amn

aman = am+n

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 2

LogarithmsLogarithms

Logarithms:

• definitions: lgn = log2 n, lnn = loge n

• logc ab = logc a + logc b.

• logc ab = b · logc a.

• logc
a
b = logc a − logc b.

• logc a =
logd a
logd c . (change base)

• alogcn = nlogca

• derivatives: (ln a)′ = 1
a, (lg a)′ = lg e

a .

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 2

FactorialFactorial

Factorials:

n! =

{

1 for n = 0
n(n − 1)! for n > 0

Note:

• n! ≤ nn

•
√

2πn · (n
e)

n ≤ n! ≤
√

2πn · (n
e)

n+(1
12n)

The last formula is called “Stirling’s approximation” for n!.

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 2

Summation & RecurrencesSummation & Recurrences

Summations

Given a sequence of numbers a1, a2, a3 , ... , an , the

summation a1 + a2 + . . . an is written as

n
∑

i=1

ai

The infinite sum a1 + a2 + . . . is written as

∞
∑

i=1

ai

and it is formally interpreted as

lim
n→∞

n
∑

i=1

ai.

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 2

General Properties of SummationsGeneral Properties of Summations

Linearity

n
∑

k=1

(cak + bk) = c
n

∑

k=1

ak +
n

∑

k=1

bk.

Arithmetic Series

n
∑

k=1

k =
1

2
n(n + 1) = Θ(n2).

Sum of squares

n
∑

k=1

k2 =
1

6
n(n + 1)(2n + 1) = Θ(n3).

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 2

SeriesSeries

Sum of cubes
n

∑

k=1

k3 =
n2(n + 1)2

4
= Θ(n4).

Geometric Series For real number x 6= 1,

n
∑

k=0

xk = 1 + x + x2 + x3 + ... + xn =
xn+1 − 1

x − 1
.

The following geometric series are used frequently:

n
∑

k=0

2k =
2n+1 − 1

2 − 1
= 2n+1 − 1.

∞
∑

k=0

xk =
1

1 − x
(if |x| < 1)

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 2

More SeriesMore Series

Using integrals:

• if f is a continuous, increasing function:

∫ b

a−1
f(x)dx ≤

b
∑

i=a

f(i) ≤
∫ b+1

a
f(x)dx

• if f is a continuous, decreasing function:

∫ b+1

a
f(x)dx ≤

b
∑

i=a

f(i) ≤
∫ b

a−1
f(x)dx

• Example: f(k) = 1
k

ln(n + 1) ≤
n

∑

i=1

1

k
≤ ln(n) + 1,

n
∑

i=1

1

k
= ln(n) + O(1),

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 2

GraphsGraphs

• A directed graph G is a pair (V, E), where V is the set of

vertices, and E is the set of edges (i.e. ordered pairs of

vertices).

Review: adjacency, in-degree, out-degree, path, cycle.

• In an undirected graph G = (V, E), the edges are

undordered pairs of vertices.

Review: adjacency, degree, path, cycle.

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 2

Review on GraphsReview on Graphs

G=(V,E)

1

2

3

4

5

V = {1,2,3,4,5}

E = {(1,2), (2,3), (3,5), (5,4), (4,1)}

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 2

Representation of graphsRepresentation of graphs

• Adjacency List

• Adjacency Matrix

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 2

Review on TreesReview on Trees

• A free tree is a connected, acyclic, undirected graph.

• A rooted tree is a free tree in which one vertex (the root)

is distinguished from the others.

Review: ancestor/descendant, parent/child, siblings,

external/internal nodes, depth & height.

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 2

ProofsProofs

Mathematical Statements:

• Definition, Lemma, Theorem, Corollary

Types of Proofs:

• Contradiction

• Induction

• Counter-example

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 2

Proof by ContradictionProof by Contradiction

Example:
√

2 is rational.

'

&

$

%CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 2

Proof by InductionProof by Induction

If we want to prove a statement P(n) is true for all natural

numbers n ∈ {1,2,3...}, we can achieve this with the following

two steps:

1 Prove that the statement holds when n = 1

(P(1) is true). −−−− basis

2 Prove that if the statement holds for n = m, then the same

statement holds for n = m + 1.

(P(m) ⇒ P(m + 1)). −−−− induction step

'

&

$

%CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 2

ExampleExample

n
∑

1

=
n(n + 1)

2
for n = {1,2,3...}.

'

&

$

%CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 2

Proof by Induction: GeneralizationsProof by Induction: Generalizations

Generalization type 1:

• If we want to prove a statement P not for all natural

numbers but only for all numbers greater than a certain

number b then the following two steps are sufficient

1. basis: Prove that the statement holds when n = b.

2. induction step: Prove that if the statement holds for

n = m then the same statement also holds for n = m+1.

'

&

$

%CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 2

GeneralizationsGeneralizations

Generalization type 2:

• Another generalization allows that in the second step, we

not only assume that the statement holds for n = m but

also for all n smaller than or equal to m. This leads to the

following two steps.

1. basis: Prove that the statement holds when n = b.

2. induction step: Prove that if the statement holds for

n ≤ m then the same statement also holds for n = m +1.

'

&

$

%CS404/504 Computer Science

26Design and Analysis of Algorithms: Lecture 2

ExampleExample

Every natural number greater than 1 is a product of prime

numbers.

'

&

$

%CS404/504 Computer Science

27Design and Analysis of Algorithms: Lecture 2

