Mathematical Preliminaries

Sets:

- An unordered collection of elements (order doesn't matter).
- Can be finite, {2,3,4}, or infinite {1,2,3,4...}.
- Set membership: \in, \notin

Ex: $4 \in \{2, 3, 4\}$, $1 \notin \{2, 3, 4\}$,

- Sets can contain other sets: $\{2, \{5\}\}, \{\{0\}\} \neq \{0\} \neq 0$
- Two sets are equal if they contain the same elements.

CS404/504

Common Sets

- Naturals: $N = \{0, 1, 2, 3, 4, ...\}$
- Integers: $Z = \{... 2, -1, 0, 1, 2, ...\}$
- Rationals: $Q = \{ \frac{a}{b} \mid a, b \in Z, b \neq 0 \}$
- Reals: R
- Empty set: $\emptyset = \{\}$
- Set definition: '|' means "such that".

```
Ex: \{k | k \in N, 0 < k < 4\}
```

CS404/504

Set operations

- Subset: \subseteq , \subset .
- $\forall S, \emptyset \subseteq S.$
- $\forall S, S \subseteq S$.
- Union (\cup), Intersection (\cap).
- Set difference: $S T = \{x | x \in S \land x \notin T\}.$
- Set complement: $\neg S$ or $\overline{S} = \{x | x \notin S\} = U S$, where U is a universal set (everything).
- **Disjoint** sets: $S \cap T = \emptyset$.

CS404/504

Set Cardinality

- Cardinality: |S| = number of elements in S.
- **Power set** of a set A, 2^A is the set of all subsets of A.

Example: $A = \{2, 3\}$, then the power set of A is $2^A = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$.

Question: if |A| = n, what is the cardinality of the power set? Answer: 2^n .

• DeMorgan's laws:

 $\neg (B \cap C) = \neg B \cup \neg C$

$$\neg (B \cup C) = \neg B \cap \neg C$$

CS404/504

Cartesian product

 Given two sets A and B, the Cartesian product or cross product A × B is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B.

Example: if $A = \{1, 2\}$ and $B = \{x, y, z\}$, then $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}.$

Question: what is the cardinality of $A \times B$? Answer: $|A| \times |B|$.

CS404/504

Binary relations

- A binary relation R on two sets A and B is a subset of the Cartesian product A × B. If (a, b) ∈ R, this is equivalently written as aRb.
- Types of relations $R \subseteq A \times A$:
 - reflexive: aRa, for all $a \in A$
 - symmetric: $aRb \Rightarrow bRa$, for all $a, b \in A$
 - transitive: aRb and $bRc \Rightarrow aRc$, for all $a, b, c \in A$
 - equivalence: reflexive and symmetric and transitive.
- Examples: $<, \geq, =$.

CS404/504

Functions

A function f: A → B is a binary relation on A and B such that for all a ∈ A, there is one and only one b ∈ B such that (a, b) ∈ f.

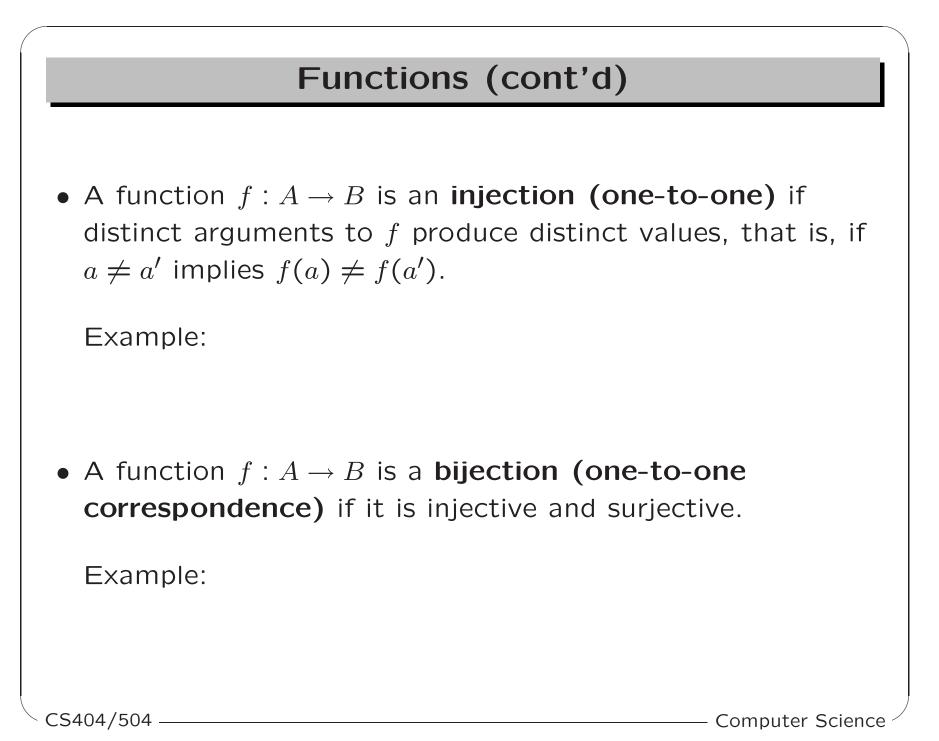
 $(a,b) \in f$ is equivalently written f(a) = b.

A is called f's domain and B is the codomain.

We say that a is the **argument** of f and that f(a) = b is the **value (image)** of f at a.

- The range of f is the image of its domain, that is, $f(A) = \{b \in B : b = f(a) \text{ for some } a \in A\}.$
- A function is a **surjection** if its range is its codomain.

CS404/504



Design and Analysis of Algorithms: Lecture 2

Floor, Ceiling

floor and ceiling:

- Let $x \in R$, then:
 - $-\lfloor x \rfloor =$ largest integer $\leq x$ "floor". (e.g., $\lfloor 8.2 \rfloor = 8$)
 - $\lceil x \rceil = \text{smallest integer} \ge x \text{"ceiling"}. (e.g., \lceil 8.2 \rceil = 9)$

Basic facts:

$$-x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- If n is a integer then $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$

$$\left\lceil \frac{\left\lceil \frac{n}{2} \right\rceil}{2} \right\rceil = \left\lceil \frac{n}{4} \right\rceil$$

CS404/504

Computer Science

Design and Analysis of Algorithms: Lecture 2

Polynomial and Exponential

Polynomials:

$$p(n) = \sum_{k=0}^{d} a_k \cdot n^k = a_d \cdot n^d + \dots a_1 \cdot n + a_0$$
(1)

Exponential Function:

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{-1} = 1/a$$

$$(a^{m})^{n} = a^{mn}$$

$$a^{m}a^{n} = a^{m+n}$$

CS404/504 — Computer Science

Logarithms

Logarithms:

- definitions: $\lg n = \log_2 n$, $\ln n = \log_e n$
- $\log_c ab = \log_c a + \log_c b$.
- $\log_c a^b = b \cdot \log_c a$.
- $\log_c \frac{a}{b} = \log_c a \log_c b.$
- $\log_c a = \frac{\log_d a}{\log_d c}$. (change base)
- $a^{log_cn} = n^{log_ca}$
- derivatives: $(\ln a)' = \frac{1}{a}$, $(\lg a)' = \frac{\lg e}{a}$.

CS404/504 -

Factorial

Factorials:

$$n! = \begin{cases} 1 & \text{for } n = 0\\ n(n-1)! & \text{for } n > 0 \end{cases}$$

Note:

•
$$n! \leq n^n$$

•
$$\sqrt{2\pi n} \cdot (\frac{n}{e})^n \le n! \le \sqrt{2\pi n} \cdot (\frac{n}{e})^{n+(\frac{1}{12}n)}$$

The last formula is called "Stirling's approximation" for n!.

CS404/504 — Computer Science

Summation & Recurrences

Summations

Given a sequence of numbers $a_1,\ a_2,\ a_3$, \ldots , a_n , the summation $a_1+a_2+\ldots a_n$ is written as

 $\sum_{i=1}^{n} a_i$

n

The infinite sum $a_1 + a_2 + \ldots$ is written as

$$\sum_{i=1}^{\infty} a_i$$

and it is formally interpreted as

$$\lim_{n \to \infty} \sum_{i=1}^{n} a_i.$$

CS404/504 -

Computer Science

General Properties of Summations

Linearity

$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$$

Arithmetic Series

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1) = \Theta(n^2).$$

Sum of squares

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1) = \Theta(n^3).$$

CS404/504 — Computer Science

Series

Sum of cubes

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4} = \Theta(n^{4}).$$

Geometric Series For real number $x \neq 1$,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + x^{3} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}.$$

The following geometric series are used frequently:

$$\sum_{k=0}^{n} 2^{k} = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1.$$
$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x} \quad (\text{if } |x| < 1)$$

CS404/504

— Computer Science

Design and Analysis of Algorithms: Lecture 2

More Series

Using integrals:

• if f is a continuous, increasing function:

$$\int_{a-1}^{b} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x)dx$$

• if f is a continuous, decreasing function:

$$\int_{a}^{b+1} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a-1}^{b} f(x)dx$$

• Example:
$$f(k) = \frac{1}{k}$$

 $ln(n+1) \le \sum_{i=1}^{n} \frac{1}{k} \le ln(n) + 1, \qquad \sum_{i=1}^{n} \frac{1}{k} = ln(n) + O(1),$
CS404/504 — Computer Science

CS404/504 -

Design and Analysis of Algorithms: Lecture 2

Graphs

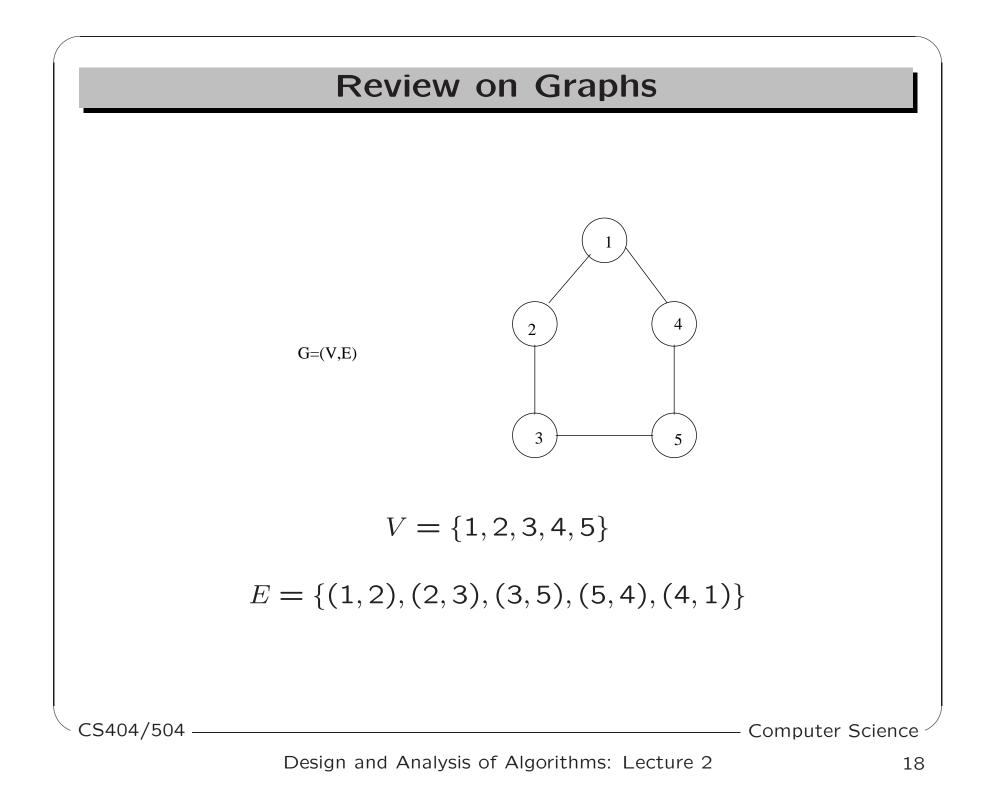
• A directed graph G is a pair (V, E), where V is the set of vertices, and E is the set of edges (i.e. ordered pairs of vertices).

Review: adjacency, in-degree, out-degree, path, cycle.

• In an undirected graph G = (V, E), the edges are undordered pairs of vertices.

Review: adjacency, degree, path, cycle.

CS404/504



Representation of graphs

• Adjacency List

• Adjacency Matrix

CS404/504

— Computer Science

Review on Trees

- A free tree is a connected, acyclic, undirected graph.
- A **rooted tree** is a free tree in which one vertex (the root) is distinguished from the others.

Review: ancestor/descendant, parent/child, siblings, external/internal nodes, depth & height.

CS404/504

Proofs

Mathematical Statements:

• Definition, Lemma, Theorem, Corollary

Types of Proofs:

- Contradiction
- Induction
- Counter-example

CS404/504

Computer Science

Proof by Contradiction

Example: $\sqrt{2}$ is rational.

CS404/504 -

Computer Science

Design and Analysis of Algorithms: Lecture 2

If we want to prove a statement P(n) is true for all natural numbers $n \in \{1, 2, 3...\}$, we can achieve this with the following two steps:

- 1 Prove that the statement holds when n = 1(P(1) is true). --- **basis**
- 2 Prove that if the statement holds for n = m, then the same statement holds for n = m + 1. $(P(m) \Rightarrow P(m + 1))$. --- induction step

CS404/504

Example

$$\sum_{1}^{n} = \frac{n(n+1)}{2} \text{ for } n = \{1, 2, 3...\}.$$

CS404/504 -

Computer Science

Design and Analysis of Algorithms: Lecture 2

Proof by Induction: Generalizations

Generalization type 1:

- If we want to prove a statement *P* not for all natural numbers but only for all numbers greater than a certain number *b* then the following two steps are sufficient
 - 1. **basis:** Prove that the statement holds when n = b.
 - 2. induction step: Prove that if the statement holds for n = m then the same statement also holds for n = m + 1.

CS404/504

Generalizations

Generalization type 2:

- Another generalization allows that in the second step, we
 not only assume that the statement holds for n = m but
 also for all n smaller than or equal to m. This leads to the
 following two steps.
 - 1. **basis:** Prove that the statement holds when n = b.
 - 2. **induction step**: Prove that if the statement holds for $n \le m$ then the same statement also holds for n = m + 1.

CS404/504

Example

Every natural number greater than 1 is a product of prime numbers.

CS404/504

— Computer Science
