
How to prove an algorithm is correct?How to prove an algorithm is correct?

• To prove the incorrectness of an algorithm, one

counter-example is enough.

• Proving the correctness of an algorithm is similar to proving

a mathematical theorem; fundamentally, it’s

algorithm-dependent.

• But there are still some general guidelines we can follow.

• An example: Proof by Loop Invariant.
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Insertion SortInsertion Sort

• Input: an array of numbers with length n.

• Output: a non-decreasing reordering of the array.

• Intuition: sorting a hand of playing cards.

• Formal description: start from an empty list (empty left

hand); successively insert new elements in the proper

positions.
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Insertion Sort (an input instance)Insertion Sort (an input instance)

5 2̂ 4̂ 6̂ 1̂ 3̂

2 5 4̂ 6̂ 1̂ 3̂

2 4 5 6̂ 1̂ 3̂

2 4 5 6 1̂ 3̂

1 2 4 5 6 3̂

1 2 3 4 5 6
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Insertion Sort AlgorithmInsertion Sort Algorithm

INSERTION-SORT(A)

1 for j:=2 to length of A do

2 key := A[j]

3 /* put A[j] into A[1..j-1] */

4 i := j -1

5 while ( i > 0 AND A[i] > key)

6 A[i+1] := A[i]

7 i:=i - 1

8 A[i+1] := key
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Proof by Mathematical InductionProof by Mathematical Induction

• The aim is to prove a statement P(n) is true for all positive

integers, starting with n = 1.

• Using mathematical induction, two steps are sufficient for

this purpose:

1. Prove that P(1) is true (the base case).

2. Assume that P(k) is true for some k. Derive from here

that P(k+1) is also true (the inductive step).
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Correctness Proof by Loop InvariantCorrectness Proof by Loop Invariant

Step 0: find a P first, which is called loop invariant

in insertion sort.

At the start of each iteration of the for loop of line 1-8,

the sub-array A[1..j-1] consists of the elements originally

in A[1..j-1] but in sorted order.

Step 1: Initialization (the base case)

when j = 2, the sub-array A[1..j-1], consists of A[1],

which is obviously sorted.

Step 2: Maintenance (the inductive step)

Step 3: Termination The algorithms terminates when

j exceeds n, namely j = n+1. So based on the

loop invariant, A[1..j-1]=A[1..n] is sorted.
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EfficiencyEfficiency

• Why don’t we just use a super computer?

• What if the computer is infinitely fast and the memory

is free?

Measure of efficiency: space complexity and time

complexity

Space complexity: the amount of storage needed to solve

the problem. Typically expressed as a

function of the input size (number of bits

to represent input).

Time complexity: the amount of time needed to solve

the problem?

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 3



A RAM MachineA RAM Machine

Memory is unbounded

Accessing the ith memory address

takes constant time,
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RAM (Random Access Machine) ModelRAM (Random Access Machine) Model

1) Each simple operation takes constant time. What are

simple operations? arithmetic (add, subtract, multiply,

divide, remainder, floor, ceiling) data movement (load,

store, copy) and control (conditional and unconditional

branch, subroutine call and return).

2) Things that do not take constant time are loops and

subroutine calls like sort.

3) Each memory access takes the same amount of time.
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Time ComplexityTime Complexity

Time Complexity: the total number of basic operations

performed, expressed as a function of the input size.

Input Size:

• the number of elements in the input (e.g. sorting), or

• the number of bits needed to represent the input (e.g.

integer multiplication).
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Exact Analysis of Insertion SortExact Analysis of Insertion Sort

Note: In for loops and while statements, the loop header will be executed

one more time than the body.

InsertionSort(A) cost times

1 for j:=2 to length of A do c1 n

2 key := A[j] c2 n − 1

3 /* put A[j] into A[1..j-1] */ c3 = 0

4 i := j -1 c4 n − 1

5 while ( i > 0 AND A[i] > key) c5
∑n

j=2 tj

6 A[i+1] := A[i] c6
∑n

j=2(tj − 1)

7 i:=i - 1 c7
∑n

j=2(tj − 1)

8 A[i+1] := key c8 n − 1
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Exact Analysis of Insertion SortExact Analysis of Insertion Sort

• tj = # of times the while loop runs for the value j.

• tj = 1 + # of elements that have to be shifted to the right

to insert the jth item.

• # of step 5 = t2 + t3 + ... + tn.

• # of step 6 = (t2 − 1) + (t3 − 1) + ... + (tn − 1).

• # of step 7 = (t2 − 1) + (t3 − 1) + ... + (tn − 1).
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General Case and Best CaseGeneral Case and Best Case

General Case:

T(n) = c1n + c2(n − 1) + c4(n − 1) + c5
∑n

j=2 tj +

c6
∑n

j=2(tj − 1) + c7
∑n

j=2(tj − 1) + c8(n − 1);

Best Case:

If the input array is already sorted, all tjs are 1. Hence, the

best case time complexity is:

T(n)best = c1n + (c2 + c4 + c5 + c8)(n − 1)

which is a linear function of n.
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Worst CaseWorst Case

Worst Case:

If the input is sorted in descending order, we will have to

shift all of the already-sorted elements, so tj = j for

j = 2,3, ...n.

Note that:
∑n

j=2 = n(n+1)
2 − 1

∑n−1
j=2 = n(n−1)

2

T(n) = c1n + c2(n − 1) + c4(n − 1) + c5(
n(n+1)

2 − 1)

+c6(
n(n−1)

2 ) + c7(
n(n−1)

2 ) + c8(n − 1);

which is a quadratic function of n.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 3


