How to prove an algorithm is correct?

- To prove the incorrectness of an algorithm, one counter-example is enough.
- Proving the correctness of an algorithm is similar to proving a mathematical theorem; fundamentally, it's algorithm-dependent.
- But there are still some general guidelines we can follow.
- An example: Proof by Loop Invariant.

Insertion Sort

- Input: an array of numbers with length n.
- Output: a non-decreasing reordering of the array.
- Intuition: sorting a hand of playing cards.
- Formal description: start from an empty list (empty left hand); successively insert new elements in the proper positions.

Insertion Sort (an input instance)

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 5 & \hat{2} & \hat{4} & \hat{6} & \hat{1} & \hat{3} \\
\hline 2 & \hline 2 & 5 & \hat{4} & \hat{6} & \hat{1} \\
\hline
\end{array}
$$

Insertion Sort Algorithm

```
Insertion-Sort(A)
1 for \(\mathrm{j}:=2\) to length of A do
2 key \(:=A[j]\)
\(3 \quad / *\) put A[j] into A[1..j-1] */
\(4 \quad i:=j-1\)
\(5 \quad\) while \((i>0\) AND A \([i]>\) key \()\)
        \(A[i+1]:=A[i]\)
        \(\mathrm{i}:=\mathrm{i}-1\)
        \(\mathrm{A}[\mathrm{i}+1]:=\) key
```


Proof by Mathematical Induction

- The aim is to prove a statement $P(n)$ is true for all positive integers, starting with $n=1$.
- Using mathematical induction, two steps are sufficient for this purpose:

1. Prove that $P(1)$ is true (the base case).
2. Assume that $P(k)$ is true for some k. Derive from here that $P(k+1)$ is also true (the inductive step).

Correctness Proof by Loop Invariant

Step 0: find a P first, which is called loop invariant in insertion sort.

At the start of each iteration of the for loop of line 1-8, the sub-array $\mathbf{A}[1 . . \mathrm{j}-1]$ consists of the elements originally in $\mathbf{A}[1 . . \mathrm{j}-1]$ but in sorted order.

Step 1: Initialization (the base case) when $j=2$, the sub-array $A[1 . . j-1]$, consists of $A[1]$, which is obviously sorted.
Step 2: Maintenance (the inductive step)
Step 3: Termination The algorithms terminates when j exceeds n, namely $j=n+1$. So based on the loop invariant, $A[1 . . j-1]=A[1 . . n]$ is sorted.

Efficiency

- Why don't we just use a super computer?
- What if the computer is infinitely fast and the memory is free?

Measure of efficiency: space complexity and time complexity

Space complexity: the amount of storage needed to solve the problem. Typically expressed as a function of the input size (number of bits to represent input).
Time complexity: the amount of time needed to solve the problem?

RAM (Random Access Machine) Model

1) Each simple operation takes constant time. What are simple operations? arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling) data movement (load, store, copy) and control (conditional and unconditional branch, subroutine call and return).
2) Things that do not take constant time are loops and subroutine calls like sort.
3) Each memory access takes the same amount of time.

Time Complexity

Time Complexity: the total number of basic operations performed, expressed as a function of the input size.

Input Size:

- the number of elements in the input (e.g. sorting), or
- the number of bits needed to represent the input (e.g. integer multiplication).

Exact Analysis of Insertion Sort

Note: In for loops and while statements, the loop header will be executed one more time than the body.

	InsertionSort(A)	cost	times
1	for $\mathrm{j}:=2$ to length of A do	c_{1}	n
2	key $:=\mathrm{A}[\mathrm{j}]$	c_{2}	$n-1$
3	/* put A[j] into A[1..j-1] */	$c_{3}=0$	
4	$\mathrm{i}:=\mathrm{j}-1$	c_{4}	$n-1$
5	while ($i>0$ AND $\mathrm{A}[\mathrm{i}]>$ key)	c_{5}	$\sum_{j=2}^{n} t_{j}$
6	$\mathrm{A}[\mathrm{i}+1]:=\mathrm{A}[\mathrm{i}]$	${ }^{\text {c } 6}$	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
7	$\mathrm{i}=\mathrm{=}-1$	c_{7}	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
8	$\mathrm{A}[\mathrm{i}+1]:=\mathrm{key}$	c_{8}	$n-1$

Exact Analysis of Insertion Sort

- $t_{j}=\#$ of times the while loop runs for the value j.
- $t_{j}=1+\#$ of elements that have to be shifted to the right to insert the $j^{\text {th }}$ item.
- \# of step $5=t_{2}+t_{3}+\ldots+t_{n}$.
- \# of step $6=\left(t_{2}-1\right)+\left(t_{3}-1\right)+\ldots+\left(t_{n}-1\right)$.
- \# of step $7=\left(t_{2}-1\right)+\left(t_{3}-1\right)+\ldots+\left(t_{n}-1\right)$.

General Case and Best Case

General Case:

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} t_{j}+ \\
& c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{8}(n-1)
\end{aligned}
$$

Best Case:

If the input array is already sorted, all $t_{j} s$ are 1 . Hence, the best case time complexity is:
$T(n)_{b e s t}=c_{1} n+\left(c_{2}+c_{4}+c_{5}+c_{8}\right)(n-1)$
which is a linear function of n.

Worst Case

Worst Case:

If the input is sorted in descending order, we will have to shift all of the already-sorted elements, so $t_{j}=j$ for $j=2,3, \ldots n$.

Note that: $\sum_{j=2}^{n}=\frac{n(n+1)}{2}-1 \quad \sum_{j=2}^{n-1}=\frac{n(n-1)}{2}$
$T(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}\left(\frac{n(n+1)}{2}-1\right)$
$+c_{6}\left(\frac{n(n-1)}{2}\right)+c_{7}\left(\frac{n(n-1)}{2}\right)+c_{8}(n-1) ;$
which is a quadratic function of n.

