
Three time complexity functionsThree time complexity functions

• The worse case time complexity of the algorithm is the

function defined by the maximum number of operations

performed, taken across all instances of size n.

• The best case time complexity of the algorithm is the

function defined by the minimum number of operations

performed, taken across all instances of size n.

• The average-case time complexity of the algorithm is the

function defined by an average number of operations

performed, taken across all instances of size n.
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Which complexity is most important?Which complexity is most important?

1. The worst-case time complexity is an upper bound on the

running time for any input.

2. For some algorithms, the worst case occurs fairly often.

Binary search is an example.

3. Usually for a good algorithm, then average case is often

roughly as bad as the worse case. Insertion sort is an

example.
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Exact analysis is hard and not necessary
(in most cases)

Exact analysis is hard and not necessary
(in most cases)

The exact complexity of insertion sort is:

T(n) = (c5
2 + c6

2 + c7
2 )n2

+ (c1 + c2 + c4 + c5
2 − c6

2 − c7
2 + c8)n − (c2 + c4 + c5 + c8)

we prefer to write it as an2 + bn + c

Another example of exact function

n3 + 100n + 2 + 10 lgn + 0.1 ∗ 2n may look like this:
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What should we do? Simplify the analysisWhat should we do? Simplify the analysis

• Ignore the constants:

– We can erase the difference between T1(n) = 2n and

T2(n) = 8n by using different machines.

• Only look at “dominant” terms:

– n3 + 100n + 2 is “dominated” by n3 as n → ∞
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Asymptotic Notation: order of growthAsymptotic Notation: order of growth

• f(n) = O(g(n)) means C × g(n) is an asymptotic upper

bound on f(n).

• f(n) = Ω(g(n)) means C × g(n) is an asymptotic lower

bound on f(n).

• f(n) = Θ(g(n)) means C1 × g(n) is an asymptotic upper

bound on f(n) and C2 × g(n) is an asymptotic lower

bound on f(n).
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O, Ω and Θ notationsO, Ω and Θ notations

Definition:

• f(n) = O(g(n)) if ∃ positive constants n0 and c such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

• f(n) = Ω(g(n)) if ∃ positive constants n0 and c such that

f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• f(n) = Θ(g(n)) if ∃ positive constants c1, c2, and n0 such

that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
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O, Ω and Θ notations, Cont’dO, Ω and Θ notations, Cont’d
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ExamplesExamples

Example 1: f(n) = 3n2, g(n) = 10n2 + 5n

Claim: f(n) = O(g(n))

Proof:

c = 1;n0 = 1 3n2 ≤ 10n2 + 5n for all n >= 1

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 4



Examples (Cont’d)Examples (Cont’d)

Example 2: f(n) = 10n2 + 5n, g(n) = 3n2

Claim: f(n) = O(g(n))

Proof: c = 4;10n2 + 5n ≤ 12n2, for all n ≥ 10

Example 3: 10n2 + 4n + 2 = O(n2)

Proof: 10n2 + 4n + 2 ≤ 11n2 for all n ≥ 5.
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Example (Cont’d)Example (Cont’d)

Example 4: f(n) = adn
d + ad−1nd−1 + ... + a1n + a0,

Claim: f(n) = O(nd)

Proof:

f(n) = adn
d + ad−1nd−1 + ... + a1n + a0

≤ |ad|n
d + |ad−1|n

d−1 + ... + |a1|n + |a0|

=
∑d

i=0 |ai|n
i

= nd ∑d
i=0 |ai|n

i−d

≤ nd ∑d
i=0 |ai| for n ≥ 1, because ni−d ≤ 1 when n ≥ 1.
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Alternative DefinitionsAlternative Definitions

Definition:

f(n) = O(g(n)) ⇐⇒ lim
n→∞

f(n)

g(n)
= c;

where c is a constant c ≥ 0.

Definition:

f(n) = Ω(g(n)) ⇐⇒ lim
n→∞

g(n)

f(n)
= c;

where c is a constant c ≥ 0.

Theorem: f(n) = O(g(n)) ⇐⇒ g(n) = Ω(f(n)).
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ExamplesExamples

Claim: 12n2 + 5n = Θ(100n2)

Proof:

limn→∞
12n2 + 5n

100n2
= limn→∞

12

100
+ limn→∞

5

100n
=

12

100
.

(1)
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Examples (Cont’d)Examples (Cont’d)

Claim: 10n2 + 5n = Θ(n3)?

Proof:

limn→∞
10n2 + 5n

n3
= limn→∞

10

n
+ limn→∞

5

n2
= 0 + 0 = 0

But:

limn→∞
n3

10n2 + 5n
=

1

limn→∞
10n2+5n

n3

= ∞

Hence, 10n2 + 5n is only O(n3).
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Examples (Cont’d)Examples (Cont’d)

Compare: 2n, n2 and lg n.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 4



Examples, Cont’dExamples, Cont’d

2n2 − 10n + 5 = O(n2), (Yes)

2n2 − 10n + 5 = O(n3), (Yes)

2n2 − 10n + 5 = O(n), (No)

2n2 − 10n + 5 = Ω(n2), (Yes)

2n2 − 10n + 5 = Ω(n3), (No)

2n2 − 10n + 5 = Ω(n), (Yes)

2n2 − 10n + 5 = Θ(n2), (Yes)

2n2 − 10n + 5 = Θ(n3), (No)

2n2 − 10n + 5 = Θ(n), (No)
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