Three time complexity functions

- The worse case time complexity of the algorithm is the function defined by the maximum number of operations performed, taken across all instances of size n.
- The best case time complexity of the algorithm is the function defined by the minimum number of operations performed, taken across all instances of size n.
- The average-case time complexity of the algorithm is the function defined by an average number of operations performed, taken across all instances of size n.

Which complexity is most important?

1. The worst-case time complexity is an upper bound on the running time for any input.
2. For some algorithms, the worst case occurs fairly often. Binary search is an example.
3. Usually for a good algorithm, then average case is often roughly as bad as the worse case. Insertion sort is an example.

Exact analysis is hard and not necessary (in most cases)

The exact complexity of insertion sort is:

$$
\begin{aligned}
T(n)= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2} \\
& +\left(c_{1}+c_{2}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

we prefer to write it as $a n^{2}+b n+c$
Another example of exact function $n^{3}+100 n+2+10 \lg n+0.1 * 2^{n}$ may look like this:

What should we do? Simplify the analysis

- Ignore the constants:
- We can erase the difference between $T_{1}(n)=2 n$ and $T_{2}(n)=8 n$ by using different machines.
- Only look at "dominant" terms:
$-n^{3}+100 n+2$ is "dominated" by n^{3} as $n \rightarrow \infty$

Asymptotic Notation: order of growth

- $f(n)=O(g(n))$ means $C \times g(n)$ is an asymptotic upper bound on $f(n)$.
- $f(n)=\Omega(g(n))$ means $C \times g(n)$ is an asymptotic lower bound on $f(n)$.
- $f(n)=\Theta(g(n))$ means $C_{1} \times g(n)$ is an asymptotic upper bound on $f(n)$ and $C_{2} \times g(n)$ is an asymptotic lower bound on $f(n)$.

O, Ω and Θ notations

Definition:

- $f(n)=O(g(n))$ if \exists positive constants n_{0} and c such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- $f(n)=\Omega(g(n))$ if \exists positive constants n_{0} and c such that $f(n) \geq c g(n) \geq 0$ for all $n \geq n_{0}$.
- $f(n)=\Theta(g(n))$ if \exists positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$.

O, Ω and Θ notations, Cont'd

(a)

(b)

(c)

Examples

Example 1: $f(n)=3 n^{2}, g(n)=10 n^{2}+5 n$
Claim: $f(n)=O(g(n))$
Proof:
$c=1 ; n_{0}=13 n^{2} \leq 10 n^{2}+5 n$ for all $n>=1$

Examples (Cont'd)

Example 2: $f(n)=10 n^{2}+5 n, g(n)=3 n^{2}$

Claim: $f(n)=O(g(n))$
Proof: $c=4 ; 10 n^{2}+5 n \leq 12 n^{2}$, for all $n \geq 10$

Example 3: $10 n^{2}+4 n+2=O\left(n^{2}\right)$
Proof: $10 n^{2}+4 n+2 \leq 11 n^{2}$ for all $n \geq 5$.

Example (Cont'd)

Example 4: $f(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\ldots+a_{1} n+a_{0}$,
Claim: $f(n)=O\left(n^{d}\right)$
Proof:

$$
\begin{aligned}
f(n) & =a_{d} n^{d}+a_{d-1} n^{d-1}+\ldots+a_{1} n+a_{0} \\
& \leq\left|a_{d}\right| n^{d}+\left|a_{d-1}\right| n^{d-1}+\ldots+\left|a_{1}\right| n+\left|a_{0}\right| \\
& =\sum_{i=0}^{d}\left|a_{i}\right| n^{i} \\
& =n^{d} \sum_{i=0}^{d}\left|a_{i}\right| n^{i-d} \\
& \leq n^{d} \sum_{i=0}^{d}\left|a_{i}\right| \text { for } n \geq 1, \text { because } n^{i-d} \leq 1 \text { when } n \geq 1
\end{aligned}
$$

Alternative Definitions

Definition:

$$
f(n)=O(g(n)) \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c ;
$$

where c is a constant $c \geq 0$.

Definition:

$$
f(n)=\Omega(g(n)) \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=c ;
$$

where c is a constant $c \geq 0$.

Theorem: $f(n)=O(g(n)) \Longleftrightarrow g(n)=\Omega(f(n))$.

Examples

Claim: $12 n^{2}+5 n=\Theta\left(100 n^{2}\right)$
Proof:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{12 n^{2}+5 n}{100 n^{2}}=\lim _{n \rightarrow \infty} \frac{12}{100}+\lim _{n \rightarrow \infty} \frac{5}{100 n}=\frac{12}{100} . \tag{1}
\end{equation*}
$$

Examples (Cont'd)

Claim: $10 n^{2}+5 n=\Theta\left(n^{3}\right)$?
Proof:

$$
\lim _{n \rightarrow \infty} \frac{10 n^{2}+5 n}{n^{3}}=\lim _{n \rightarrow \infty} \frac{10}{n}+\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=0+0=0
$$

But:

$$
\lim _{n \rightarrow \infty} \frac{n^{3}}{10 n^{2}+5 n}=\frac{1}{\lim _{n \rightarrow \infty} \frac{10 n^{2}+5 n}{n^{3}}}=\infty
$$

Hence, $10 n^{2}+5 n$ is only $O\left(n^{3}\right)$.

Examples (Cont'd)

Compare: $2^{n}, n^{2}$ and $\lg n$.

Examples, Cont'd

$$
\begin{aligned}
& 2 n^{2}-10 n+5=O\left(n^{2}\right),(\mathrm{Yes}) \\
& 2 n^{2}-10 n+5=O\left(n^{3}\right),(\mathrm{Yes}) \\
& 2 n^{2}-10 n+5=O(n),(\text { No }) \\
& 2 n^{2}-10 n+5=\Omega\left(n^{2}\right),(\mathrm{Yes}) \\
& 2 n^{2}-10 n+5=\Omega\left(n^{3}\right), \text { (No) } \\
& 2 n^{2}-10 n+5=\Omega(n), \text { (Yes) } \\
& 2 n^{2}-10 n+5=\Theta\left(n^{2}\right),(\mathrm{Yes}) \\
& 2 n^{2}-10 n+5=\Theta\left(n^{3}\right),(\text { No }) \\
& 2 n^{2}-10 n+5=\Theta(n),(\text { No })
\end{aligned}
$$

