Order of functions

An analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b:

$$\begin{array}{rcl} f(n) &=& O(g(n)) &\approx & \mathsf{a} &\leq & \mathsf{b} \\ f(n) &=& \Omega(g(n)) &\approx & \mathsf{a} &\geq & \mathsf{b} \\ f(n) &=& \Theta(g(n)) &\approx & \mathsf{a} &= & \mathsf{b} \end{array}$$

CS404/504

— Computer Science

Order of functions (cont'd)

Question:

What's the order of the following widely used functions: $lgn, n, n^2, 1, n^3, 2^n, n2^n, (n+1)!, 2^{2^n}, (lgn)!, e^n, n!$

Answer:

$$1 \leq lgn \leq n \leq n^2 \leq n^3 \leq (lgn)! \leq 2^n$$

 $\leq n2^n \leq e^n \leq n! \leq (n+1)! \leq 2^{2^n}$, where $a \leq b$ means a = O(b)

CS404/504

Order of functions (Cont'd)

Suppose one basic operation needs CPU time 0.000001 second.

	10	20	30	40	50	60
n	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s	0.00006 s
n^2	0.0001 s	0.0004 s	0.0009 s	0.016 s	0.025 s	0.036 s
n^3	0.001 s	0.008 s	0.027 s	0.064 s	0.125 s	0.216 s
n^5	0.1 s	3.2 s	24.3 s	1.7 min	5.2 min	13.0 min
2 ⁿ	0.001 s	1.0 s	17.9 min	12.7 days	35.7 years	366 cent
3 ⁿ	0.59 s	58 min	6.5 years	3855 cent	$2 imes 10^8$ cent	$1.3 imes10^13$ cent

CS404/504 -

— Computer Science

Design and Analysis of Algorithms: Lecture 5

A Recurrence Example: Merge Sort

Merge sort is a good example to show how divide and conquer works. The idea is: Given an array A[1..n], divide it into two sub-array A[1..n/2] and A[n/2+1..n]. Each sub-array is individually sorted, and the resulting sub-arrays are merged to produce a single sorted array of n elements. The algorithm:

$\mathsf{MERGE}\text{-}\mathsf{SORT}(\mathsf{A},\,\mathsf{p},\,\mathsf{r})$

1 if
$$(p == r)$$
 return;

- 2 q = (p + r)/2;
- 3 Merge-Sort(A, p, q);
- 4 Merge-Sort(A, q+1, r);
- 5 Merge(A, p, q, r);

To sort the whole array, Merge-Sort(A, 1, n) is called.

CS404/504

The operation of Merge Sort

Input: 5, 2, 4, 7, 1, 3, 2, 6

Complexity of Merge Sort

Divide: The divide step only compute the middle, takes constant time. $D(n) = \Theta(1)$.

Conquer: Recursively sort 2 subarrays. C(n) = 2T(n/2).

Combine: Merge two n/2-element subarrays, takes linear time $\Theta(n)$.

Overall:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \text{ (or smallsize)} \\ 2T(n/2) + \Theta(1) + \Theta(n) & \text{if } n > 1 \text{ (or smallsize)} \end{cases}$$
$$= \begin{cases} C_1 & \text{if } n = 1 \text{ (or smallsize)} \\ 2T(n/2) + C_2n & \text{if } n > 1 \text{ (or smallsize)} \end{cases}$$

How to solve this recurrence?

Solution 1: Substitution method

- 1. Guess the form of the solution.
- 2. Use mathematical induction to find the constants and show the solution works.

CS404/504

- Computer Science

Example: Merge Sort

$$T(n) = \begin{cases} C_1 & \text{if } n = 1\\ 2T(n/2) + C_2 n & \text{if } n > 1 \end{cases}$$

Step 1: give a guess: $T(n) = O(n \lg n)$

Step 2: to show \exists const c and n_0 , such that $T(n) \leq c \cdot nlgn$ for all $n \geq n_0$ Base case: $T(1) = C_1 \leq c \ 1 \ lg \ 1 = 0....$ Impossible Take T(2) as the base case. $T(2) = 2C_1 + 2C_2 \leq c \ 2 \ lg \ 2 = 2c$ as long as $c \geq (C_1 + C_2)$.

CS404/504

Cont'd

Where to get the good guess?

Solution 2: Iteration/Recursion tree method: used to generate a good guess; can also be used as a direct proof.

Example:

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = 2T(\frac{n}{2}) + n$$

= $2(2T(\frac{n}{4}) + \frac{n}{2}) + n$
= $2^2T(\frac{n}{2^2}) + n + n$
= $2^2(2T(\frac{n}{2^3}) + \frac{n}{2^2}) + 2n$
= $2^3T(\frac{n}{2^3}) + 3n$
= $2^iT(\frac{n}{2^i}) + in$

CS404/504

