4 N

Order of functions |

An analogy between the asymptotic comparison of two
functions f and g and the comparison of two real numbers a
and b:

f(n) = O(g(n)) =~ a < b
fn) = Q) = a > b
fn) = ©(h)) =~ a = b
CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 5 1

4 N

Order of functions (cont’d) |

Question:

What's the order of the following widely used functions:
lgn, n, n?, 1, n3, 2™ n2" (n+4+ 1), 22" (Ign)!, e, n!

Answer:

1<lgn<n<n?2<n3<(lgn)! <2

<n2" < e <nl < (n4 1) < 22" where a < b means a = O(b)

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 2

-

Order of functions (Cont’d)
Suppose one basic operation needs CPU time 0.000001 second.
10 20 30 40 50 60
n 0.00001 s | 0.00002 s | 0.00003 s | 0.00004 s 0.00005 s 0.00006 s
n? | 0.0001 s 0.0004 s 0.0009 s 0.016 s 0.025 s 0.036 s
n3 | 0.001 s 0.008 s 0.027 s 0.064 s 0.125 s 0.216 s
n® | 0.1s 3.2s 243 s 1.7 min 5.2 min 13.0 min
2" | 0.001 s 1.0s 17.9 min 12.7 days 35.7 years 366 cent
3" | 0.59 s 58 min 6.5 years | 3855 cent | 2 x 10% cent | 1.3 x 1013 cent
CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 3

4 N

A Recurrence Example: Merge Sort |

Merge sort is a good example to show how divide and conquer
works. The idea is: Given an array A[l..n], divide it into two
sub-array A[l1..n/2] and A[n/241..n]. Each sub-array is
individually sorted, and the resulting sub-arrays are merged to
produce a single sorted array of n elements. The algorithm:

MERGE-SORT(A, p, r)

if (p == r) return;
a=(P+ /2
Merge-Sort(A, p, q);
Merge-Sort(A, g+1, r);
Merge(A, p, 4, r);

a P WN B

To sort the whole array, Merge-Sort(A, 1, n) is called.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 4

4 N

The operation of Merge Sort |

Input: 5, 2,4, 7,1, 3, 2,6

sofled sequence

|G \

R ciane [3

7z /:--u-t\

 2E

Amg\ i Ail e merEe
~-FiL :
2] [1]

A [=l [z [s]

fard |

mnitial ReUCn

Figure 2.4 The operation of merge sort on the amay A = (5, 2,4, 7, 1,3, 2, 63, The lengths of the
sorted sequences being merged incresse as the algorithm progresses from bottom o lop.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 5

4 N

Complexity of Merge Sort |

Divide: The divide step only compute the middle, takes
constant time. D(n) = ©(1).

Conquer: Recursively sort 2 subarrays. C(n) = 2T(n/2).

Combine: Merge two n/2-element subarrays, takes linear
time ©(n).
Overall:

T | e(1) if n =1 (or smallsize)
(n) =13 27(n/2) + ©(1) + ©(n) ifn>1 (or smallsize)

e if n =1 (or smallsize)
| 2T (n/2) 4+ Con if n > 1 (or smallsize)

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 6

-

~

How to solve this recurrence? I

Solution 1:

CS404 /504

Substitution method

. Guess the form of the solution.

. Use mathematical induction to find the

constants and show the solution works.

Design and Analysis of Algorithms: Lecture 5

Computer Science

7

-

Step 1:

Step 2:

CS404 /504

Example: Merge Sort |

_] Cy ifn=1
T(n) = { 2T (n/2) + Con ifn>1

give a guess: T(n) = O(n Ig n)

to show 3 const ¢ and ng, such that T'(n) < c¢-nlgn
for all n > ng

Base case:
T(1) =C71 <cllgl=0.... Impossible

Take T(2) as the base case.
T(2) =2C1 + 20, <c2lg2=2C
as long as ¢ > (Cq1 4+ C»).

Design and Analysis of Algorithms: Lecture 5

~

Computer Science
8

4 N
Cont’d |

Induction Step:
Suppose there exist a constant ¢ such that
T(n) <c-nlgn for alln = 2, 3,...., k-1
We want to show T'(n) < c- nlgn
holds for n = K.

T(k) = 2T(k/2) 4+ Csk Note: k/2 is in {2, 3. .., k-1}
< 2(c (k/2) 1g (k/2)) + C2k

ck Ilg k - ck 1g2 4+ CHk

ck lg k - ck 4+ Csk

ck Ig K as long as ¢ > (.

A

So we pick ng = 2, c=C7 4+ O,
T(n) <c-nlgn for all n > ng = T'(n) = O(nlgn).

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 9

4 N

Where to get the good guess? |

Solution 2: Iteration/Recursion tree method: used to
generate a good guess; can also be used as a direct proof.

Example:

1 ifn=1
T(n) = { 2T(n/2) +n ifn>1

T(n) =2T(3) +n
=2T(7)+35) +n
= 22T(2—”’2) +n+n
= 22(27(Z5) + 32) + 2n
= 23T (3%) + 3n

= QiT(%) + in

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 5 10

Cont’d |

Question: When will the iteration procedure reach
the boundary condition (hit the ground)?

Answer: (n/2)) =1 < i=Ign

Then T(n) = 29" T(1) 4 lgn x n
= n + nign
= O(nlgn).
CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 5 11

