
Order of functionsOrder of functions

An analogy between the asymptotic comparison of two

functions f and g and the comparison of two real numbers a

and b:

f(n) = O(g(n)) ≈ a ≤ b
f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = Θ(g(n)) ≈ a = b

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 5

Order of functions (cont’d)Order of functions (cont’d)

Question:

What’s the order of the following widely used functions:

lgn, n, n2, 1, n3, 2n, n2n, (n + 1)!, 22n
, (lgn)!, en, n!

Answer:

1 ≤ lgn ≤ n ≤ n2 ≤ n3 ≤ (lgn)! ≤ 2n

≤ n2n ≤ en ≤ n! ≤ (n + 1)! ≤ 22n
, where a ≤ b means a = O(b)

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 5

Order of functions (Cont’d)Order of functions (Cont’d)

Suppose one basic operation needs CPU time 0.000001 second.

10 20 30 40 50 60
n 0.00001 s 0.00002 s 0.00003 s 0.00004 s 0.00005 s 0.00006 s
n2 0.0001 s 0.0004 s 0.0009 s 0.016 s 0.025 s 0.036 s
n3 0.001 s 0.008 s 0.027 s 0.064 s 0.125 s 0.216 s
n5 0.1 s 3.2 s 24.3 s 1.7 min 5.2 min 13.0 min
2n 0.001 s 1.0 s 17.9 min 12.7 days 35.7 years 366 cent
3n 0.59 s 58 min 6.5 years 3855 cent 2 × 108 cent 1.3 × 1013 cent

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 5

A Recurrence Example: Merge SortA Recurrence Example: Merge Sort

Merge sort is a good example to show how divide and conquer

works. The idea is: Given an array A[1..n], divide it into two

sub-array A[1..n/2] and A[n/2+1..n]. Each sub-array is

individually sorted, and the resulting sub-arrays are merged to

produce a single sorted array of n elements. The algorithm:

MERGE-SORT(A, p, r)

1 if (p == r) return;

2 q = (p + r)/2;

3 Merge-Sort(A, p, q);

4 Merge-Sort(A, q+1, r);

5 Merge(A, p, q, r);

To sort the whole array, Merge-Sort(A, 1, n) is called.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 5

The operation of Merge SortThe operation of Merge Sort

Input: 5, 2, 4, 7, 1, 3, 2, 6

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 5

Complexity of Merge SortComplexity of Merge Sort

Divide: The divide step only compute the middle, takes

constant time. D(n) = Θ(1).

Conquer: Recursively sort 2 subarrays. C(n) = 2T(n/2).

Combine: Merge two n/2-element subarrays, takes linear

time Θ(n).

Overall:

T(n) =

{

Θ(1) if n = 1 (or smallsize)
2T(n/2) + Θ(1) + Θ(n) if n > 1 (or smallsize)

=

{

C1 if n = 1 (or smallsize)
2T(n/2) + C2n if n > 1 (or smallsize)

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 5

How to solve this recurrence?How to solve this recurrence?

Solution 1: Substitution method

1. Guess the form of the solution.

2. Use mathematical induction to find the

constants and show the solution works.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 5

Example: Merge SortExample: Merge Sort

T(n) =

{

C1 if n = 1
2T(n/2) + C2n if n > 1

Step 1: give a guess: T(n) = O(n lg n)

Step 2: to show ∃ const c and n0, such that T(n) ≤ c · nlgn

for all n ≥ n0

Base case:

T(1) = C1 ≤ c 1 lg 1 = 0.... Impossible

Take T(2) as the base case.

T(2) = 2C1 + 2C2 ≤ c 2 lg 2 = 2c

as long as c ≥ (C1 + C2).

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 5

Cont’dCont’d

Induction Step:

Suppose there exist a constant c such that

T(n) ≤ c · nlgn for all n = 2, 3,...., k-1

We want to show T(n) ≤ c · nlgn

holds for n = k.

T(k) = 2T(k/2) + C2k Note: k/2 is in {2, 3. .., k-1}

≤ 2(c (k/2) lg (k/2)) + C2k

= ck lg k - ck lg2 + C2k

= ck lg k - ck + C2k

≤ ck lg k as long as c ≥ C2.

So we pick n0 = 2, c = C1 + C2,

T(n) ≤ c · nlgn for all n ≥ n0 =⇒ T(n) = O(nlgn).

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 5

Where to get the good guess?Where to get the good guess?

Solution 2: Iteration/Recursion tree method: used to

generate a good guess; can also be used as a direct proof.

Example:

T(n) =

{

1 if n = 1
2T(n/2) + n if n > 1

T(n) = 2T(n
2) + n

= 2(2T(n
4) + n

2) + n

= 22T(n
22) + n + n

= 22(2T(n
23) + n

22) + 2n

= 23T(n
23) + 3n

...
= 2iT(n

2i) + in

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 5

Cont’dCont’d

Question: When will the iteration procedure reach

the boundary condition (hit the ground)?

Answer: (n/2i) = 1 ⇐⇒ i = lgn

Then T(n) = 2lgn T(1) + lgn × n

= n + nlgn

= Θ(nlgn).

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 5

