Order of functions

An analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b :

$$
\begin{aligned}
& f(n)=O(g(n)) \approx \mathrm{a} \leq \mathrm{b} \\
& f(n)=\Omega(g(n)) \approx \mathrm{a} \geq \mathrm{b} \\
& f(n)=\Theta(g(n)) \approx \mathrm{a}=\mathrm{b}
\end{aligned}
$$

Order of functions (cont'd)

Question:
What's the order of the following widely used functions: $\lg n, n, n^{2}, 1, n^{3}, 2^{n}, n 2^{n},(n+1)!, 2^{2^{n}}$, (lgn)!, $e^{n}, n!$

Answer:
$1 \leq \lg n \leq n \leq n^{2} \leq n^{3} \leq(\lg n)!\leq 2^{n}$
$\leq n 2^{n} \leq e^{n} \leq n!\leq(n+1)!\leq 2^{2^{n}}$, where $a \leq b$ means $a=O(b)$

Order of functions (Cont'd)

Suppose one basic operation needs CPU time 0.000001 second.

	10	20	30	40	50	60
n	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s	0.00006 s
n^{2}	0.0001 s	0.0004 s	0.0009 s	0.016 s	0.025 s	0.036 s
n^{3}	0.001 s	0.008 s	0.027 s	0.064 s	0.125 s	0.216 s
n^{5}	0.1 s	3.2 s	24.3 s	1.7 min	5.2 min	13.0 min
2^{n}	0.001 s	1.0 s	17.9 min	12.7 days	35.7 years	366 cent
3^{n}	0.59 s	58 min	6.5 years	3855 cent	2×10^{8} cent	$1.3 \times 10^{1} 3$ cent

A Recurrence Example: Merge Sort

Merge sort is a good example to show how divide and conquer works. The idea is: Given an array $\mathrm{A}[1 . . \mathrm{n}]$, divide it into two sub-array $A[1 . . n / 2]$ and $A[n / 2+1 . . n]$. Each sub-array is individually sorted, and the resulting sub-arrays are merged to produce a single sorted array of n elements. The algorithm:

Merge-Sort(A, p, r)
1 if ($p==r$) return;
$2 \quad q=(p+r) / 2$;
3 Merge-Sort(A, p, q);
4 Merge-Sort(A, q+1, r);
5 Merge(A, p, q, r);

To sort the whole array, Merge-Sort(A, 1, \mathbf{n}) is called.

The operation of Merge Sort

Input: 5, 2, 4, 7, 1, 3, 2, 6

Figure 2.4 The operation of merge sort on the array $A=(5,2,4,7,1,3,2,6)$. The length of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Complexity of Merge Sort

Divide: The divide step only compute the middle, takes constant time. $D(n)=\Theta(1)$.

Conquer: Recursively sort 2 subarrays. $C(n)=2 T(n / 2)$.

Combine: Merge two $n / 2$-element subarrays, takes linear time $\Theta(n)$.

Overall:

$$
\begin{aligned}
T(n)= & \begin{cases}\Theta(1) & \text { if } n=1 \text { (or smallsize) } \\
2 T(n / 2)+\Theta(1)+\Theta(n) & \text { if } n>1 \text { (or smallsize) }\end{cases} \\
& = \begin{cases}C_{1} & \text { if } n=1 \text { (or smallsize) } \\
2 T(n / 2)+C_{2} n & \text { if } n>1 \text { (or smallsize) }\end{cases}
\end{aligned}
$$

How to solve this recurrence?

Solution 1: Substitution method

1. Guess the form of the solution.
2. Use mathematical induction to find the constants and show the solution works.

Example: Merge Sort

$$
T(n)= \begin{cases}C_{1} & \text { if } n=1 \\ 2 T(n / 2)+C_{2} n & \text { if } n>1\end{cases}
$$

Step 1: give a guess: $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n} \lg \mathbf{n})$
Step 2: to show \exists const c and n_{0}, such that $T(n) \leq c \cdot n l g n$ for all $n \geq n_{0}$
Base case:

$$
\mathrm{T}(1)=C_{1} \leq \text { c } 1 \lg 1=0 \ldots . \text { Impossible }
$$

Take T(2) as the base case.
$\mathrm{T}(2)=2 C_{1}+2 C_{2} \leq \mathrm{c} 2 \lg 2=2 \mathrm{c}$
as long as $\mathrm{c} \geq\left(C_{1}+C_{2}\right)$.

Cont'd

Induction Step:

Suppose there exist a constant c such that

$$
T(n) \leq c \cdot n l g n \text { for all } \mathrm{n}=2,3, \ldots, \mathrm{k}-1
$$

We want to show $T(n) \leq c \cdot n l g n$ holds for $\mathrm{n}=\mathrm{k}$.

```
\(T(k)=2 T(k / 2)+C_{2} k \quad\) Note: \(k / 2\) is in \(\{2,3 . . ., k-1\}\)
    \(\leq 2(c(k / 2) \lg (k / 2))+C_{2} k\)
    \(=c k \lg \mathrm{k}-\mathrm{ck} \lg 2+C_{2} \mathrm{k}\)
    \(=\mathrm{ck} \lg \mathrm{k}-\mathrm{ck}+\mathrm{C}_{2} \mathrm{k}\)
    \(\leq \mathrm{ck} \lg \mathrm{k} \quad\) as long as \(c \geq C_{2}\).
```

So we pick $n_{0}=2, c=C_{1}+C_{2}$,
$T(n) \leq c \cdot n l g n$ for all $n \geq n_{0} \Longrightarrow T(n)=O(n \lg n)$.

Where to get the good guess?

Solution 2: Iteration/Recursion tree method: used to

 generate a good guess; can also be used as a direct proof.
Example:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 T(n / 2)+n & \text { if } n>1\end{cases}
$$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =2^{2} T\left(\frac{n}{2^{2}}\right)+n+n \\
& =2^{2}\left(2 T\left(\frac{n}{2^{3}}\right)+\frac{n}{2^{2}}\right)+2 n \\
& =2^{3} T\left(\frac{n}{2^{3}}\right)+3 n \\
& =\cdots \\
& =2^{i} T\left(\frac{n}{2^{i}}\right)+i n
\end{aligned}
$$

Cont'd

Question: When will the iteration procedure reach the boundary condition (hit the ground)?

Answer: $\left(n / 2^{i}\right)=1 \Longleftrightarrow i=\lg n$

Then $T(n)=2^{\lg n} T(1)+\lg n \times n$

$$
\begin{aligned}
& =n+n l g n \\
& =\Theta(n \lg n)
\end{aligned}
$$

