Iteration/Recursion tree method

A recursion tree can be used to visualize the iteration procedure.

Example:

$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(\frac{n}{2}) + n$$

= $2(2T(\frac{n}{4}) + \frac{n}{2}) + n$
= $2^2T(\frac{n}{2^2}) + n + n$
= $2^2(2T(\frac{n}{2^3}) + \frac{n}{2^2}) + 2n$
= $2^3T(\frac{n}{2^3}) + 3n$
= $2^iT(\frac{n}{2^i}) + in$

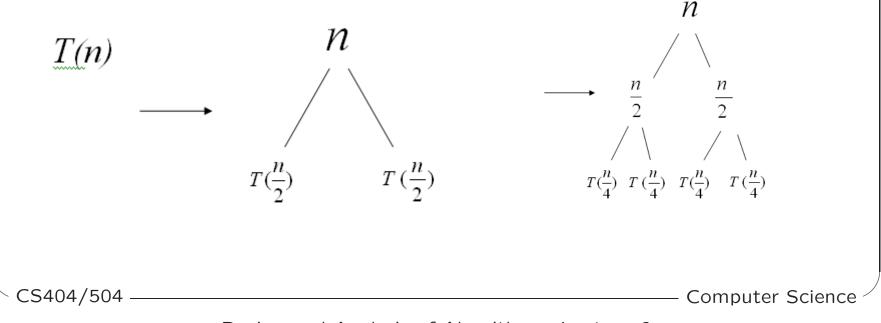
CS404/504

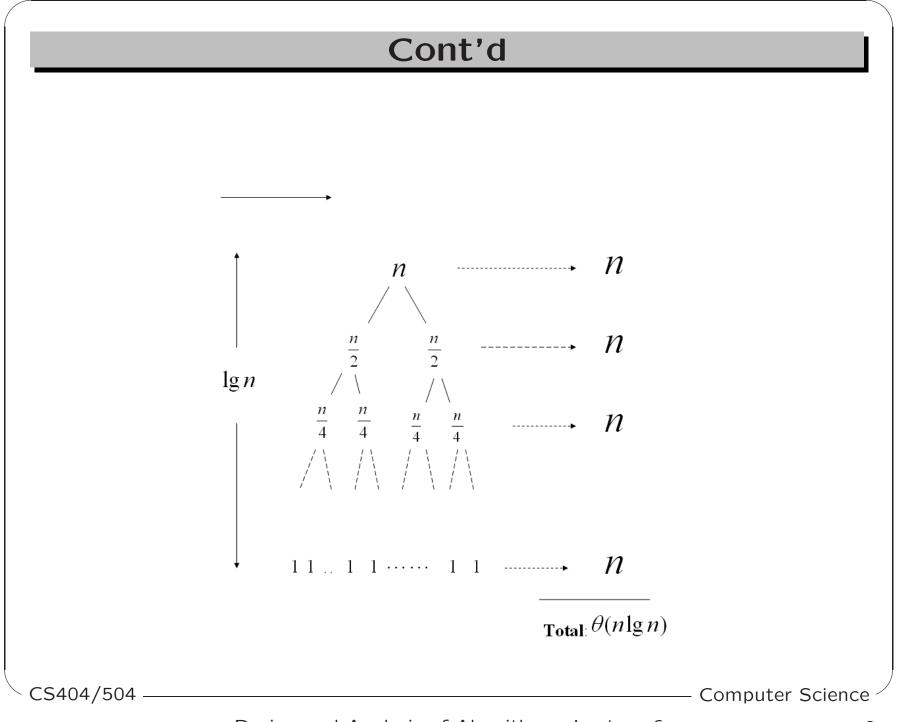
— Computer Science

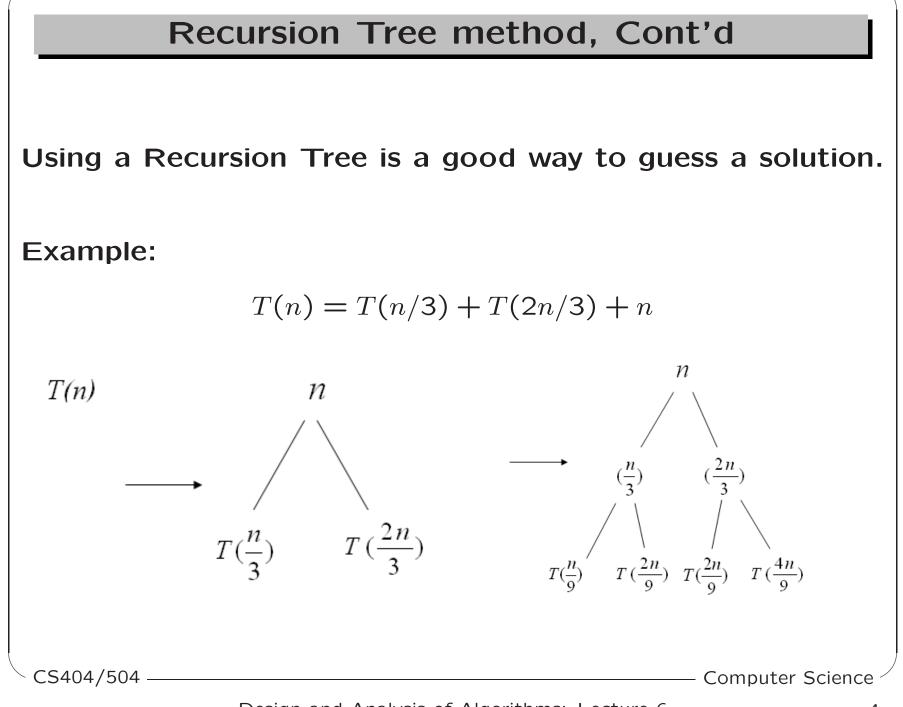
Using a Recursion Tree

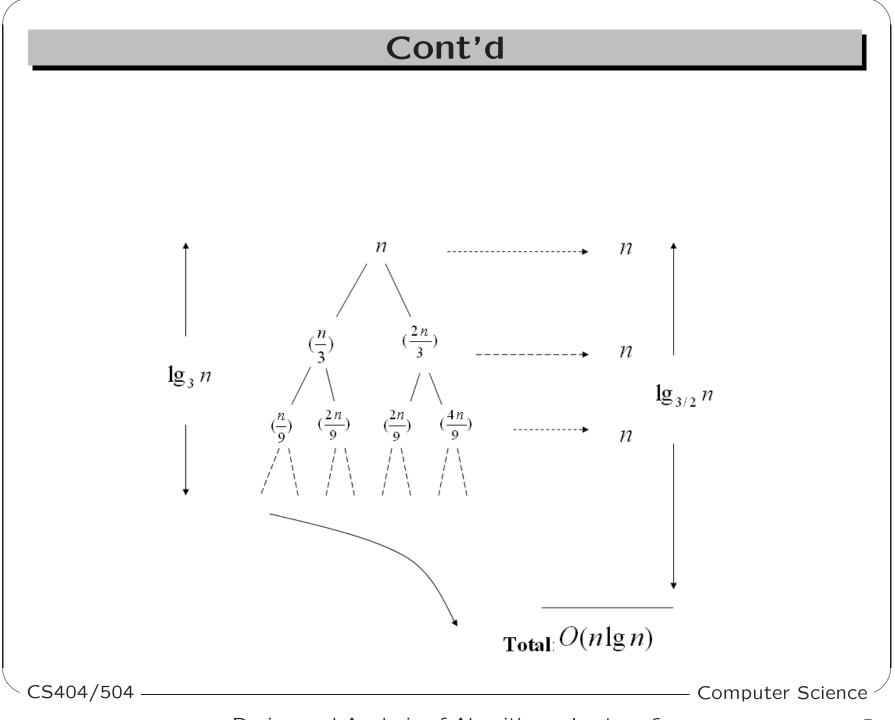
The idea of a Recursion Tree is to expand T(n) to a tree with the same total cost. Two things are important:

- The height of the tree.
- The cost of the nodes at each level.









A more powerful approach: Master Method

Theorem 4.1 (Master Theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

Then T(n) can be bounded asymptotically as follows:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a}).$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

CS404/504 -

Computer Science

What does the Master Theorem say?
$$f(n)$$
 vs. $n^{log_b a}$ case 1: $n^{log_b a} > f(n), T(n) = \Theta(n^{log_b a}).$ case 2: $n^{log_b a} = f(n), T(n) = \Theta(n^{log_b a} lgn) = \Theta(f(n) lgn).$ case 3: $f(n) > n^{log_b a}, T(n) = \Theta(f(n)).$

Example 1

$$T(n) = T(n/5) + 1$$
$$n^{\log_b a} = n^{\log_5 1} = 1$$
$$f(n) = 1$$

$$n^{log_b a} \leftrightarrow f(n)$$
 : case 2 \Rightarrow $T(n) = \Theta(lgn)$

Example 2

$$T(n) = 2T(n/2) + n$$
$$n^{\log_b a} = n$$
$$f(n) = n$$

$$n^{log_b a} \leftrightarrow f(n)$$
 : case 2 \Rightarrow $T(n) = \Theta(nlgn)$

CS404/504 — Computer Science

Example 3

$$T(n) = 3T(n/4) + n^2$$
$$n^{\log_b a} = n^{\log_4 3} < n^1$$
$$f(n) = n^2$$

 $f(n) = \Omega(n^{\log_b a + \epsilon})$, where ϵ can be 0.5. Possibly case 3. Need to check the regular condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n:

$$af(n/b) \leq cf(n)$$

 $3(n/4)^2 \leq cn^2$ as long as $c \geq \frac{3}{16}$

So case 3: $\Rightarrow T(n) = \Theta(n^2)$

CS404/504

Computer Science

Example 4

$$T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9} = n^2$$

$$f(n) = n = O(n^{2-\epsilon}), \text{ where } \epsilon \text{ can be } < 1.$$

Case 1
$$\Rightarrow T(n) = \Theta(n^2)$$

Example 5

$$T(n) = T(2n/3) + 1$$

$$n^{\log_{b} a} = n^{\log_{3/2} 1} = n^{0} = 1$$

$$f(n) = 1$$

Case 2
$$\Rightarrow$$
 $T(n) = \Theta(lgn)$

CS404/504 — Computer Science

Example 6:

$$T(n) = 2T(n/2) + nlgn$$
$$n^{log_b a} = n^{log_2 2} = n$$
$$f(n) = nlgn$$

Can we find an ϵ such that $f(n) = \Omega(n^{1+\epsilon})$? Based on the definition of Ω ,

$$f(n) = \Omega(n^{1+\epsilon}) \iff \lim_{n \to \infty} \frac{n^{1+\epsilon}}{nlgn} = constant$$
$$\Leftrightarrow \quad \lim_{n \to \infty} \frac{n^{\epsilon}}{lgn} = constant$$

But $\lim_{n\to\infty} \frac{n^{\epsilon}}{lgn} = \infty \neq constant$, so this example falls into the gap of master method.

CS404/504

Computer Science