
Iteration/Recursion tree methodIteration/Recursion tree method

A recursion tree can be used to visualize the iteration

procedure.

Example:

T(n) = 2T(n/2) + n

T(n) = 2T(n
2) + n

= 2(2T(n
4) + n

2) + n

= 22T(n
22) + n + n

= 22(2T(n
23) + n

22) + 2n

= 23T(n
23) + 3n

...
= 2iT(n

2i) + in

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 6

Using a Recursion TreeUsing a Recursion Tree

The idea of a Recursion Tree is to expand T(n) to a tree with

the same total cost. Two things are important:

• The height of the tree.

• The cost of the nodes at each level.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 6

Cont’dCont’d

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 6

Recursion Tree method, Cont’dRecursion Tree method, Cont’d

Using a Recursion Tree is a good way to guess a solution.

Example:

T(n) = T(n/3) + T(2n/3) + n

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 6

Cont’dCont’d

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 6

A more powerful approach: Master MethodA more powerful approach: Master Method

Theorem 4.1 (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T(n) be

defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

Then T(n) can be bounded asymptotically as follows:

1. If f(n) = O(nlogba−ǫ) for some constant ǫ > 0, then

T(n) = Θ(nlogba).

2. If f(n) = Θ(nlogba), then T(n) = Θ(nlogba lgn).

3. If f(n) = Ω(nlogba+ǫ) for some constant ǫ > 0, and if

af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently

large n, then T(n) = Θ(f(n)).

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 6

What does the Master Theorem say?What does the Master Theorem say?

f(n) vs. nlogba

case 1: nlogba > f(n), T(n) = Θ(nlogba).

case 2: nlogba = f(n), T(n) = Θ(nlogba lgn) = Θ(f(n) lgn).

case 3: f(n) > nlogba, T(n) = Θ(f(n)).

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 6

ExamplesExamples

Example 1

T(n) = T(n/5) + 1

nlogba = nlog51 = 1

f(n) = 1

nlogba ↔ f(n) : case 2 ⇒ T(n) = Θ(lgn)

Example 2

T(n) = 2T(n/2) + n

nlogba = n

f(n) = n

nlogba ↔ f(n) : case 2 ⇒ T(n) = Θ(nlgn)

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 6

ExamplesExamples

Example 3

T(n) = 3T(n/4) + n2

nlogba = nlog43 < n1

f(n) = n2

f(n) = Ω(nlogba+ǫ), where ǫ can be 0.5. Possibly case 3. Need

to check the regular condition: af(n/b) ≤ cf(n) for some

constant c < 1 and all sufficiently large n:

af(n/b) ≤ cf(n)

3(n/4)2 ≤ cn2 as long as c ≥
3

16

So case 3: ⇒ T(n) = Θ(n2)

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 6

ExamplesExamples

Example 4

T(n) = 9T(n/3) + n

nlogba = nlog39 = n2

f(n) = n = O(n2−ǫ), where ǫ can be < 1.

Case 1 ⇒ T(n) = Θ(n2)

Example 5

T(n) = T(2n/3) + 1

nlogba = n
log3/21 = n0 = 1

f(n) = 1

Case 2 ⇒ T(n) = Θ(lgn)

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 6

ExamplesExamples

Example 6:
T(n) = 2T(n/2) + nlgn

nlogba = nlog22 = n

f(n) = nlgn

Can we find an ǫ such that f(n) = Ω(n1+ǫ)?

Based on the definition of Ω,

f(n) = Ω(n1+ǫ) ⇔ lim
n→∞

n1+ǫ

nlgn
= constant

⇔ lim
n→∞

nǫ

lgn
= constant

But limn→∞
nǫ

lgn = ∞ 6= constant, so this example falls into the

gap of master method.

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 6

