
Priority Queue and Sorting: Using HeapsPriority Queue and Sorting: Using Heaps

A Priority Queue is a data structure maintaining a set S of

elements, each with a key. A max-priority queue supports the

following operations:

• Insert(S, x): inserts the element x into the set S.

• Maximum(S): returns the element of S with the largest key.

• Extract-Max(S): removes and returns the elements of S

with the largest key.

• Increase-Key(S, x, k): increase the value of element x’s key

to the new value k.
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Applications of Priority QueueApplications of Priority Queue

Job Scheduler in Operating Systems.

• Each process is assigned a priority. (each process has an item in a
priority queue).

• When a new process comes in, system will assign it a priority. (Insert
into the priority queue).

• System picks the process with the highest priority to run. (Maximum).

• When a process terminates, system needs to remove it from the queue.
(Extract-Max)

• Sometimes system needs increase or decrease the priority of certain
process. (Increase-Key).
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First implementation: Sorted ArrayFirst implementation: Sorted Array

- Insert: Need search for the proper place to insert and some

elements need be moved; worst case: Θ(n).

- Maximum: Θ(1)

- Extract-Max: Θ(1)

- Increase-Key: May need to find a new place to put;

worst case: Θ(n)
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HeapHeap

- Heap is a complete binary tree, namely, it’s filled at all

levels except at the lowest level (filled from left to right).

- (Max-Heap property) The value sorted in a node is

greater than or equal to the values stored at its children

nodes.
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Heap Representation using ArraysHeap Representation using Arrays

Since there are no nodes at level l unless level l − 1 is

completely filled, a heap can be stored in an array level by level

(beginning with the root), left to right within each level.

- The ROOT is always stored at A[1]

- PARENT(i) = ⌊i/2⌋

- LEFT-CHILD(i) = 2i

- RIGHT-CHILD(i) = 2i + 1

- Length[A]: number of elements in the array A;

Heapsize[A]: number of elements in the heap stored within

array A.
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Examples of Heap RepresentationsExamples of Heap Representations
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Maintain(Restore) the heap propertyMaintain(Restore) the heap property

If A[i]’s left subtree and right substree are Max-Heaps, but A[i] violates the

heap property, i.e., A[i] is smaller than its children, Max-Heapify(A, i) is

called to let A[i] “float down” in the max-heap so that the subtree rooted

at index i becomes a Max-Heap.

Max-Heapify(A, i)

max := i;

if (2i ≤ Heapsize[A] AND A[max] < A[2i])

max := 2i;

if (2i + 1 ≤ Heapsize[A] AND A[max] < A[2i + 1])

max := 2i + 1;

if (i 6= max)

exchange A[i] and A[max];

Max-Heapify(A, max);
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Max-HeapifyMax-Heapify
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Complexity for MAX-HEAPIFYComplexity for MAX-HEAPIFY

- Comparing A[i] with A[2i] and A[2i + 1] takes Θ(1) time.

- The children’s subtree each has size at most 2n/3 — the

worst case occurs when the last row of the tree is exactly

half full.

T(n) ≤ T(2n/3) + Θ(1)

⇒ T(n) = O(lgn) (Using Master Method)

- Another approach: the height of a complete binary tree

with n elements is Θ(lgn). Why is that?

Because for a complete binary tree with height h , it has

at most 2h+1 − 1 and at least 2h − 1 + 1 = 2h nodes.

⇒ 2h ≤ n ≤ 2h+1 − 1 ⇒ lg (n + 1) − 1 ≤ h ≤ lgn

Because T(n) ≤ h ⇒ T(n) = O(lgn)
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Build a HeapBuild a Heap

Use Max-Heapify in a bottom-up fashion to convert A[1..n] to

a Max-Heap.

Build-Max-Heap(A)

Heapsize[A] = Length[A];

for i := ⌊Length[A]/2⌋ downto 1

Max-Heapify(A, i);
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An example of Build-Max-HeapAn example of Build-Max-Heap
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Complexity for BUILD-Max-HEAPComplexity for BUILD-Max-HEAP

- Assume that the binary tree is a full binary tree (the proof

is slighly more complicated if the binary tree is not full):

- T(n) = T(n/2) + T(n/2) + O(lgn),

where the first T(n/2) is to Build the left sub heap, the

second is for right sub heap. The O(lgn) is the complexity

for Max-Heapify(A, 1), which makes the whole tree a heap.

- Based on Master-Method case 1, T(n) = Θ(n).
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Sort using Heaps – HeapSortSort using Heaps – HeapSort

HEAPSORT(A)

Build-Max-Heap(A); —– Θ(n)

for i := n to 2

exchange A[1] and A[i];

Heapsize[A] := Heapsize[A] - 1;

Max-Heapify (A, 1); —– O(lgn)

Comments:

- A[1..Heapsize[A]] are the elements currently in the heap.

When elements are removed from the heap one by one,

Heapsize[A] is decremented. Length[A] does not change.

- Complexity: Θ(n) + O(nlgn) = O(nlgn).
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Examples of HeapSortExamples of HeapSort
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Priority Queue Operations: using HeapsPriority Queue Operations: using Heaps

Maximum(A)

return A[1];

−− Complexity: Θ(1)

Extract-Max(A) // Remove and return the max.

MAX := A[1];

Exchange A[1] and A[Heapsize[A]];

Heapsize := Heapsize - 1;

Max-Heapify(A, 1);

return MAX;

−− Complexity: O(h) = O(lgn).
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Priority Queue Operations, Cont’dPriority Queue Operations, Cont’d

Increase-Key(A, i, key) // Increase the value of A[i] to key.

// assume key is bigger than A[i].

A[i] := key;

while (i > 1 AND A[parent(i)] < A[i]) DO

exchange A[i] and A[parent(i)];

i := parent(i);

−− Complexity: O(h) = O(lgn).

Insert(A, key) // Insert key into A

Heapsize[A] := Heapsize[A] + 1;

A[Heapsize[A]] := −∞;

Increase-Key(A, Heapsize[A], key);

−− Complexity: O(h) = O(lgn).
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Summary:Complexities using HeapsSummary:Complexities using Heaps

Operation Worst Case

Max-Heapify O(lgn)

Build-Max-Heap O(n)

Heap-Sort O(nlgn)

Maximum Θ(1)

Extract-Max O(lgn)

Insert O(lgn)

Increase-Key O(lgn)
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