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Priority Queue and Sorting: Using Heaps |

A Priority Queue is a data structure maintaining a set S of
elements, each with a key. A max-priority queue supports the
following operations:

e Insert(S, x): inserts the element x into the set S.
e Maximum(S): returns the element of S with the largest key.

e Extract-Max(S): removes and returns the elements of S
with the largest key.

e Increase-Key(S, X, k): increase the value of element x's key
to the new value K.
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Applications of Priority Queue |

Job Scheduler in Operating Systems.

e Each process is assigned a priority. (each process has an item in a
priority queue).

e When a new process comes in, system will assign it a priority. (Insert
into the priority queue).

e System picks the process with the highest priority to run. (Maximum).

e \When a process terminates, system needs to remove it from the queue.

(Extract-Max)

e Sometimes system needs increase or decrease the priority of certain
process. (Increase-Key).
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First implementation: Sorted Array |

- Insert: Need search for the proper place to insert and some

elements need be moved; worst case: ©(n).
- Maximum: ©(1)
- Extract-Max: ©(1)

Increase-Key: May need to find a new place to put;
worst case: ©(n)
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Heap

- Heap is a complete binary tree, namely, it's filled at all
levels except at the lowest level (filled from left to right).

- (Max-Heap property) The value sorted in a node is
greater than or equal to the values stored at its children

z
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Heap Representation using Arrays |

Since there are no nodes at level [ unless level [ — 1 is
completely filled, a heap can be stored in an array level by level
(beginning with the root), left to right within each level.

- The ROQOT is always stored at A[1]
- PARENT(%) = |i/2]

- LEFT-CHILD() = 2i

- RIGHT-CHILD(:) =2i+ 1

- Length[A]: number of elements in the array A;

Heapsize[A]: number of elements in the heap stored within
array A.
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Examples of Heap Representations
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Maintain(Restore) the heap property |

If A[i]'s left subtree and right substree are Max-Heaps, but A[:] violates the
heap property, i.e., A[:] is smaller than its children, Max-Heapify(A, 1) is
called to let A[i] “float down” in the max-heap so that the subtree rooted
at index ¢+ becomes a Max-Heap.

Max-Heapify(A, 1)

max = 1q;

if (27 < Heapsize[A] AND A[max] < A[2i])
max = 21,

if (2¢+ 1 < Heapsize[A] AND A[max] < A[2i 4+ 1])
max = 2:+ 1,

if (4« &= max)
exchange Ali] and A[max];
Max-Heapify(A, max);

CS404 /504

Computer Science
Design and Analysis of Algorithms: Lecture 7 7



-

~

Max-Heapify |
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Complexity for MAX-HEAPIFY |

- Comparing Ali] with A[2i] and A[2i 4+ 1] takes ©(1) time.

- The children’'s subtree each has size at most 2n/3 — the
worst case occurs when the last row of the tree is exactly

half full.
T(n) <T(2n/3) +©(1)

= T'(n) = O(lgn) (Using Master Method)

- Another approach: the height of a complete binary tree
with n elements is ©(lgn). Why is that?
Because for a complete binary tree with height A , it has
at most 2"*t1 — 1 and at least 2" — 1 + 1 = 2" nodes.
=< p<2htl 1 = ig(n+1)—-1<h<lgn

Because T'(n) < h = T(n) = O(lgn)
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Build a Heap I

Use Max-Heapify in a bottom-up fashion to convert A[l..n] to
a Max-Heap.

Build-Max-Heap(A)

Heapsize[A] = Length[A];
for ¢ := | Length[A] /2| downto 1
Max-Heapify(A, i);
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An example of Build-Max-Heap |
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Complexity for BUILD-Max-HEAP |

- Assume that the binary tree is a full binary tree (the proof
is slighly more complicated if the binary tree is not full):

- T(n) = T(n/2) + T(n/2) + O(ign),
where the first T'(n/2) is to Build the left sub heap, the
second is for right sub heap. The O(lgn) is the complexity
for Max-Heapify(A, 1), which makes the whole tree a heap.

- Based on Master-Method case 1, T'(n) = ©(n).
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Sort using Heaps — HeapSort |

HEAPSORT(A)

Build-Max-Heap(A); — O(n)
for ¢« :==n to 2

exchange A[l] and Al[i];

Heapsize[A] := Heapsize[A] - 1;

Max-Heapify (A, 1); —— O(lgn)

Comments:

- A[l..Heapsize[A]] are the elements currently in the heap.
When elements are removed from the heap one by one,
Heapsize[A] is decremented. Length[A] does not change.

- Complexity: ©(n) 4+ O(nlgn) = O(nign).
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Examples of HeapSort |
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Priority Queue Operations: using Heaps |

Maximum(A)

return A[1];

—— Complexity: ©(1)

Extract-Max(A) // Remove and return the max.

MAX = A[1];

Exchange A[1l] and A[Heapsize[A]];
Heapsize := Heapsize - 1;
Max-Heapify(A, 1);

return MAX;

—— Complexity: O(h) = O(lgn).
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Priority Queue Operations, Cont’d |

Increase-Key(A, i, key) // Increase the value of Ali] to key.
// assume key is bigger than Ali].

Ali] ;= key;
while (: > 1 AND Alparent(z)] < A[:]) DO

exchange A[:] and A[parent(?)];
i .= parent(7);

—— Complexity: O(h) = O(lgn).
Insert(A, key) // Insert key into A

Heapsize[A] := Heapsize[A] 4+ 1;
A[Heapsize[A]] .= —o0;
Increase-Key (A, Heapsize[A], key);

—— Complexity: O(h) = O(ign).
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Summary:Complexities using Heaps |
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Operation Worst Case
Max-Heapify O(lgn)
Build-Max-Heap | O(n)
Heap-Sort O(nlgn)
Maximum o(1)
Extract-Max O(lgn)
Insert O(lgn)
Increase-Key O(lgn)
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