
Divide and ConquerDivide and Conquer

Algorithm D-and-C(n: input size)

if n ≤ n0 /* small size problem*/

Solve problem without futher sub-division;

else

Divide into m sub-problems;

Conquer the sub-problems by solving them

independently and recursively; /* D-and-C(n/k) */

Combine the solutions;

Advantage: straightforward and running times are often easily

determined.
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Complexity of Divide and ConquerComplexity of Divide and Conquer

Suppose we divide the original problem into m sub-problems,

each with a problem size n/k, and let D(n) be the time needed

to do the dividing, and C(n) the time needed to do the

combining. Then we got a very general formula to compute

T(n):

T(n) =

{

Θ(1) , for small sizes
mT(n/k) + D(n) + C(n) , otherwise
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Merge SortMerge Sort

MERGE-SORT(A, p, r) {

if (p == r) /* small size */

return;

else

q = (p + r)/2;

Merge-Sort(A, p, q);

Merge-Sort(A, q+1, r);

Merge(A, p, q, r);

}

To sort the whole array, Merge-Sort(A, 1, n) is called.
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Complexity of Merge SortComplexity of Merge Sort

Divide: The divide step only computes the middle, takes

only constant time. D(n) = Θ(1).

Conquer: Recursively sort 2 subarrays. C(n) = 2T(n/2).

Combine: Merge two n/2-element subarrays, in linear

time Θ(n).

Overall:

T(n) =

{

Θ(1) if n = 1 (or smallsize )
2T(n/2) + Θ(1) + Θ(n) if n > 1 (or smallsize)

Based on Master Method-Case 2,

T(n) = Θ(nlgn)

for best, worst and average cases.
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Quick SortQuick Sort

Basic Steps:

- Divide: split the array A[p..r] into two nonempty subarrays

A[p..q] and A[q+1..r] such that each element of A[p..q] is

less than or equal to each element of A[q+1..r].

- Conquer: Sort the two subarrays by calling quicksort

recursively.

- Combine: Trivial.
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Quick Sort algorithmQuick Sort algorithm

QUICK-SORT(A, p, r)

if (p ≥ r) /* small size problem*/

return;

else

q := Partition(A, p, r);

Quick-Sort(A, p, q-1);

Quick-Sort(A, q+1, r);

To sort the whole array, Quick-Sort(A, 1, n) is called.
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PartitionPartition

- There are several different strategies that can be used by

Partition.

- One possible strategy:

as we scan from left to right, we move the left bound to

the right when the element is less than the pivot, otherwise

we swap it with the rightmost unexplored element and

move the right bound one step closer to the left.

- Note: although the strategy used in CLRS textbook takes

different form, it is essentially the same as the above.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 8



Illustration of PartitionIllustration of Partition

Pivot about the last element: 10. We keep 3 sections: the

elements ≤ 10, elements > 10 and the unexplored elements.

| 17 12 6 19 23 8 5 ‖ 10

| 5 12 6 19 23 8 | 17 ‖ 10

5 | 12 6 19 23 8 | 17 ‖ 10

5 | 8 6 19 23 | 12 17 ‖ 10

5 8 | 6 19 23 | 12 17 ‖ 10

5 8 6 | 19 23 | 12 17 ‖ 10

5 8 6 | 23 | 19 12 17 ‖ 10

5 8 6 ||23 19 12 17 ‖ 10

5 8 6 |10| 19 12 17 23

Complexity: consists of n − 1 comparisons and at most n

swaps. So T(Partition) = Θ(n).
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Complexity of Quick SortComplexity of Quick Sort

Divide: The divide step Partition takes linear time Θ(n).

Conquer: Recursively sort 2 subarrays, one with size q − 1,

the other is n − q. C(n) = T(q − 1) + T(n − q).

Combine: Basically no Combine step.

T(n) = T(q − 1) + T(n − q) + Θ(n).

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 8



Worst CaseWorst Case

Partition always separates the array into one 0–length and one

(n − 1)–length subarrays. If we pick the last element as the

pivot, this situation happens when the input is sorted

ascendingly or descendingly.

T(n) = T(n − 1) + Θ(n)

T(n) = Θ(n2)
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Best CaseBest Case

T(n) = 2T(n/2) + Θ(n)

T(n) = Θ(nlgn)
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A case between the best and worst caseA case between the best and worst case

T(n) = T(9n/10) + T(n/10) + Θ(n) = Θ(nlgn)
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Average-Case Analysis of QuicksortAverage-Case Analysis of Quicksort

To do a precise average-case analysis of quicksort, we formulate a
recurrence given the exact expected time T(n):

T(n) =

n
∑

q=1

1

n
(T(q − 1) + T(n − q)) + n − 1

Each possible pivot p is selected with equal probability. The number of
comparisons needed to do the partition is n − 1.

T(n) =

n
∑

q=1

1

n
(T(q − 1) + T(n − q)) + n − 1

T(n) =
2

n

n
∑

q=1

T(q − 1) + n − 1

nT(n) = 2

n
∑

q=1

T(q − 1) + n(n − 1) multiply by n
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Cont’dCont’d

(n − 1)T(n − 1) = 2

n−1
∑

q=1

T(q − 1) + (n − 1)(n − 2) apply to n − 1

nT(n) − (n − 1)T(n − 1) = 2T(n − 1) + 2(n − 1)

rearranging the terms give us:

T (n)
n+1

= T (n−1)
n

+ 2(n−1)
n(n+1)

= T (n−1)
n

+ 2
n+1

− 2
n(n+1)

< T (n−1)
n

+ 2
n+1

< T (n−2)
n−1

+ 2
n
+ 2

n+1

< T (n−3)
n−2

+ 2
n−1

+ 2
n
+ 2

n+1

< T (1)
2

+ 2
3
+ 2

4
+ ... + 2

n
+ 2

n+1

But the harmonic series
∑n+1

k=1
1
k
= ln (n + 1) + O(1)

so T (n) < (n + 1)(2 ln (n + 1) + O(1)) = O(nlgn)
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