
Divide and ConquerDivide and Conquer

Algorithm D-and-C(n: input size)

if n ≤ n0 /* small size problem*/

Solve problem without futher sub-division;

else

Divide into m sub-problems;

Conquer the sub-problems by solving them

independently and recursively; /* D-and-C(n/k) */

Combine the solutions;

Advantage: straightforward and running times are often easily

determined.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 8

Complexity of Divide and ConquerComplexity of Divide and Conquer

Suppose we divide the original problem into m sub-problems,

each with a problem size n/k, and let D(n) be the time needed

to do the dividing, and C(n) the time needed to do the

combining. Then we got a very general formula to compute

T(n):

T(n) =

{

Θ(1) , for small sizes
mT(n/k) + D(n) + C(n) , otherwise

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 8

Merge SortMerge Sort

MERGE-SORT(A, p, r) {

if (p == r) /* small size */

return;

else

q = (p + r)/2;

Merge-Sort(A, p, q);

Merge-Sort(A, q+1, r);

Merge(A, p, q, r);

}

To sort the whole array, Merge-Sort(A, 1, n) is called.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 8

Complexity of Merge SortComplexity of Merge Sort

Divide: The divide step only computes the middle, takes

only constant time. D(n) = Θ(1).

Conquer: Recursively sort 2 subarrays. C(n) = 2T(n/2).

Combine: Merge two n/2-element subarrays, in linear

time Θ(n).

Overall:

T(n) =

{

Θ(1) if n = 1 (or smallsize)
2T(n/2) + Θ(1) + Θ(n) if n > 1 (or smallsize)

Based on Master Method-Case 2,

T(n) = Θ(nlgn)

for best, worst and average cases.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 8

Quick SortQuick Sort

Basic Steps:

- Divide: split the array A[p..r] into two nonempty subarrays

A[p..q] and A[q+1..r] such that each element of A[p..q] is

less than or equal to each element of A[q+1..r].

- Conquer: Sort the two subarrays by calling quicksort

recursively.

- Combine: Trivial.

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 8

Quick Sort algorithmQuick Sort algorithm

QUICK-SORT(A, p, r)

if (p ≥ r) /* small size problem*/

return;

else

q := Partition(A, p, r);

Quick-Sort(A, p, q-1);

Quick-Sort(A, q+1, r);

To sort the whole array, Quick-Sort(A, 1, n) is called.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 8

PartitionPartition

- There are several different strategies that can be used by

Partition.

- One possible strategy:

as we scan from left to right, we move the left bound to

the right when the element is less than the pivot, otherwise

we swap it with the rightmost unexplored element and

move the right bound one step closer to the left.

- Note: although the strategy used in CLRS textbook takes

different form, it is essentially the same as the above.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 8

Illustration of PartitionIllustration of Partition

Pivot about the last element: 10. We keep 3 sections: the

elements ≤ 10, elements > 10 and the unexplored elements.

| 17 12 6 19 23 8 5 ‖ 10

| 5 12 6 19 23 8 | 17 ‖ 10

5 | 12 6 19 23 8 | 17 ‖ 10

5 | 8 6 19 23 | 12 17 ‖ 10

5 8 | 6 19 23 | 12 17 ‖ 10

5 8 6 | 19 23 | 12 17 ‖ 10

5 8 6 | 23 | 19 12 17 ‖ 10

5 8 6 ||23 19 12 17 ‖ 10

5 8 6 |10| 19 12 17 23

Complexity: consists of n − 1 comparisons and at most n

swaps. So T(Partition) = Θ(n).

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 8

Complexity of Quick SortComplexity of Quick Sort

Divide: The divide step Partition takes linear time Θ(n).

Conquer: Recursively sort 2 subarrays, one with size q − 1,

the other is n − q. C(n) = T(q − 1) + T(n − q).

Combine: Basically no Combine step.

T(n) = T(q − 1) + T(n − q) + Θ(n).

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 8

Worst CaseWorst Case

Partition always separates the array into one 0–length and one

(n − 1)–length subarrays. If we pick the last element as the

pivot, this situation happens when the input is sorted

ascendingly or descendingly.

T(n) = T(n − 1) + Θ(n)

T(n) = Θ(n2)

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 8

Best CaseBest Case

T(n) = 2T(n/2) + Θ(n)

T(n) = Θ(nlgn)

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 8

A case between the best and worst caseA case between the best and worst case

T(n) = T(9n/10) + T(n/10) + Θ(n) = Θ(nlgn)

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 8

Average-Case Analysis of QuicksortAverage-Case Analysis of Quicksort

To do a precise average-case analysis of quicksort, we formulate a
recurrence given the exact expected time T(n):

T(n) =

n
∑

q=1

1

n
(T(q − 1) + T(n − q)) + n − 1

Each possible pivot p is selected with equal probability. The number of
comparisons needed to do the partition is n − 1.

T(n) =

n
∑

q=1

1

n
(T(q − 1) + T(n − q)) + n − 1

T(n) =
2

n

n
∑

q=1

T(q − 1) + n − 1

nT(n) = 2

n
∑

q=1

T(q − 1) + n(n − 1) multiply by n

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 8

Cont’dCont’d

(n − 1)T(n − 1) = 2

n−1
∑

q=1

T(q − 1) + (n − 1)(n − 2) apply to n − 1

nT(n) − (n − 1)T(n − 1) = 2T(n − 1) + 2(n − 1)

rearranging the terms give us:

T (n)
n+1

= T (n−1)
n

+ 2(n−1)
n(n+1)

= T (n−1)
n

+ 2
n+1

− 2
n(n+1)

< T (n−1)
n

+ 2
n+1

< T (n−2)
n−1

+ 2
n
+ 2

n+1

< T (n−3)
n−2

+ 2
n−1

+ 2
n
+ 2

n+1

< T (1)
2

+ 2
3
+ 2

4
+ ... + 2

n
+ 2

n+1

But the harmonic series
∑n+1

k=1
1
k
= ln (n + 1) + O(1)

so T (n) < (n + 1)(2 ln (n + 1) + O(1)) = O(nlgn)

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 8

