
RankingRanking

- There are 8 questions in Quiz 1 and I figured out 6 of

them, what’s my ranking in the class?

- A straightforward way to find this out is to draw a

histogram. That’s the underlying idea for counting sort.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 10



’Beat’ the Lower Bound
Linear-Time Sorting Algorithms: Counting

Sort

’Beat’ the Lower Bound
Linear-Time Sorting Algorithms: Counting

Sort

• Assumptions

– Each of the n input elements is an integer in the range

[1..r] (i.e., 1 ≤ A[i] ≤ r, i ≤ n)

– r = O(n)(r ≤ cn) (e.g., if n = 100, then r can be equal

to 100, 200, but not 1002).

• Basic idea

– For each input element x, find the number of elements

≤ x (For each person, find the number of people who

scored less).

– Place x directly in the correct position (“ties” should be

taken care of).

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 10



ExampleExample

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 10



Get the value for each histogram binGet the value for each histogram bin

Finding the number of times A[i] appears in A,1 ≤ i ≤ n:

- Allocate C[1..r] (C is the histogram).

- For each 1 ≤ i ≤ n, do C[A[i]] + +.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 10



ExampleExample

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 10



Find the number of people who scored less
than you (Find the number of elements

≤ A[i])

Find the number of people who scored less
than you (Find the number of elements

≤ A[i])

Compute the cumulative sums (cumulative histogram)

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 10



Tie breaker: put people in their original orderTie breaker: put people in their original order

- Start from the last element of A.

- Decrease C[A[i]] every time A[i] is placed in the correct order.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 10



AlgorithmAlgorithm

COUNTING-SORT(A, B, r) {

for i := 0 to r

C[i] := 0 Θ(r)

for j := 1 to length[A]

C[A[j]] := C[A[j]] + 1; Θ(n)

/* Now C is the histogram */

for i := 1 to r

C[i] := C[i] + C[i − 1]; Θ(r)

/* Now C is the cumulative histogram */

for j := n to 1

B[C[A[j]] := A[j]; Θ(n)

C[A[j] := C[A[j]] - 1;

}

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 10



Analysis of Time ComplexityAnalysis of Time Complexity

Time Complexity is Θ(r) + Θ(n) = Θ(r + n).

If r = O(n), then Θ(r + n) = Θ(n).

Where did we beat the Ω(nlgn) lower bound?

• Comments:

– Counting sort is not an in place sort.

– Counting sort is stable (elements with the same value

appear in the output array in the same order they do in

the input array).

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 10



Radix SortRadix Sort

A radix is the number of unique digits used to represent a

number in a positional numeral system.

• In the decimal system, the radix is 10. For example the

number “42” has two digits, which are 4 and 2.

• In hexadecimal, the radix is 16, and each digit is 4 bits

wide. For example the hexadecimal number 0xAB has two

digits, A and B.

The Radix Sort first sorts the input values according to their

least significant digit, then according to the second lest

significant digit, and so on. The Radix Sort is then a multipass

sort, and the number of passes equals the number of digits in

the input values.

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 10



Least Significant Digit FirstLeast Significant Digit First

4 3 6

3 5 54 5 7

6 5 7

8 3 9

4 3 6

7 2 07 2 0

7 2 0

3 5 5

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

4 5 7

3 2 9

6 5 7

8 3 9

3 5 5

4 5 7

4 3 6

3 2 9

3 2 9

8 3 9

6 5 7

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 10



AlgorithmAlgorithm

RADIX-SORT(A, d) {

for i := 1 to d

use a stable sort to sort array A on digit i

}

Complexity: Given n d-digit numbers in which each digit can

take up to r possible values, Radix-Sort correctly sorts

these numbers in Θ(d(n + r)).

Can we sort on the “most significant digit first”?

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 10



Why must it be “a stable sort”?Why must it be “a stable sort”?

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

6 5 7 4 3 6

4 5 7

3 2 9

6 5 7

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9
3 2 9

3 5 5

4 3 6

3 2 9

6 5 7

3 5 5

4 5 7

8 3 9

4 5 7

6 5 7

7 2 0

4 5 7

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 10


