
The Selection ProblemThe Selection Problem

• Definition

- Given an array L containing n keys, find the ith smallest

(or largest) key in L (1 ≤ i ≤ n).

• Different cases

- if i = 1, find the smallest key

- if i = 2, find the second smallest key

- by median, we mean:

i =

{

(n+1)/2 if n is odd
⌊(n+1)/2⌋ if n is even

(tell the difference between median and average).

- if i = n, find the largest key

✬

✫

✩

✪CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 11

First Try: SortingFirst Try: Sorting

• The solution is trivial:

1. Sort the sequence.

2. Choose the ith element from the sorted sequence.

• What is the complexity?

Can we do better than this?

✬

✫

✩

✪CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 11

Problem 1: Finding the smallest keyProblem 1: Finding the smallest key

MINNUM(A)

min:= A[1];

for i:=2 to n do

if (min > A[i])

min := A[i];

return min;

Complexity: n− 1 comparisons (Note: this is the exact

running time, not an asymptotic one)

✬

✫

✩

✪CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 11

Problem 2: Find the minimum and maximum
simultaneously (straightforward way)

Problem 2: Find the minimum and maximum
simultaneously (straightforward way)

FIND-BOTH(A)

min := A[1];

max := A[1];

for i:=2 to n do

if (min > A[i])

min := A[i];

if (max < A[i])

max := A[i];

return min, max;

Complexity: 2(n− 1) comparisons (same as finding the largest

and smallest keys independently)

✬

✫

✩

✪CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 11

Can we do better?Can we do better?

A smarter way:

- Pair the keys and find the minimum and maximum in each

pair (about n/2 comparisons)

- Collect the smaller keys in a list and find the smallest

(about n/2 comparisons)

- Collect the larger keys in a list and find the largest

(about n/2 comparisons)

- Total number of comparisons:

✬

✫

✩

✪CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 11

AlgorithmAlgorithm

FIND-BOTH-SMARTER(A, n)

if n is odd
k := 2;
min := A[1]; max := A[1];

else
k := 3
if A[1] < A[2]

min := A[1]; max := A[2];
else

min := A[2]; max := A[1];

for i := k to n− 1 by 2 do
if A[i] > A[i+ 1]

exchange A[i] and A[i+1];
if A[i] < min

min := A[i];
if A[i+1] > max

max := A[i+ 1];

✬

✫

✩

✪CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 11

What makes the difference here?What makes the difference here?

Using the ordinary way, each
pair require 4 comparisons. With
the “smarter” way, the number
of comparisons is reduced to 3.

MAX

A[i+1]

The smarter way:

A[i]

A[i] A[i+1]

The ordinary way:
MAX

MIN MIN

MAX

MIN

✬

✫

✩

✪CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 11

Problem 3: Find the ith smallest keyProblem 3: Find the ith smallest key

Idea: Divide and Conquer

Divide: split the input array recursively (using the routine

“Partition” (in QuickSort))

Conquer: recursively solve ONE sub-problem (Process only

the subarray which contains the ith smallest

key (note that QuickSort processes both subarrays!))

Combine: no need to combine

✬

✫

✩

✪CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 11

Algorithm: first tryAlgorithm: first try

SELECT(A, p, r, i) /*Find the ith smallest element in A[p..r] */

if (p == r) return;

q := Partition(A, p , r);

k := q - p + 1;

q

q - p + 1

rp

rp

if (i == k)
return A[q];

else if (i < k)
return Select(A, p , q-1, i);

else
return Select(A, q + 1, r, i-k);

✬

✫

✩

✪CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 11

Complexity for the first tryComplexity for the first try

• If the partition is balanced (q = n/2), we have T(n) = ?

• Worst Case, when Partition always results in 2 subarrays

with 0 and n− 1 elements: Tw(n) = ?

When will the worst-case happen?

✬

✫

✩

✪CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 11

Second Try: Selection in Worst-Case linear
time

Second Try: Selection in Worst-Case linear
time

Basic Idea: to find a split element q such that we always

eliminate a fraction α of the elements:

T(n) ≤ T((1− α)n) +Θ(n) then T(n) = O(n)

• For example, each time, if we can guarantee to eliminate at

least 10% elements, then T(n) ≤ T(0.9n) + cn.

Since T ′(n) = T ′(0.9n) + cn ⇒ T ′(n) = Θ(n),

Then T(n) ≤ T(0.9n) + cn ⇒ T(n) = O(n).

✬

✫

✩

✪CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 11

Selection with Linear Time in Worst-CaseSelection with Linear Time in Worst-Case

SELECT(i)

1 Divide n elements into groups of 5.

2 Select median of each group (⇒ ⌈n
5
⌉ selected elements)

3 Use SELECT recursively to find median q of the medians

4 Partition the array (all elements) based on q
q

k n-k

5 Use SELECT recursively to find ith element

– if i == k, we are done

– if i < k, then SELECT(i) on k − 1 elements

– if i > k, then SELECT(i - k) on n− k elements

✬

✫

✩

✪CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 11

How the algorithm worksHow the algorithm works
lo

w
hi

gh

low high

median of medians

array of medians

>median of medians

<median of mediansmedian of medians

✬

✫

✩

✪CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 11

AnalysisAnalysis

As our first step in the analysis, we are going to find a lower bound on the

of elements that are greater than the partitioning element s.

• at least 1
2 of the medians found in step 2 are greater than

or equal to s;

• at least 1
2 of the ⌈n5⌉ groups contribute 3 elements that are

> s, except for the one group that has fewer than 5

elements and the one group containing s itself;

• Thus the number of elements > s is at least

3(⌈12⌈
n
5⌉⌉ − 2) ≥ 3

10n− 6; (Note: “3” is from “contribute 3

elements”; “⌈ ⌉” is from “at least”; “n
5” is the total number

of groups, “-2” is from “except 2 groups”)

✬

✫

✩

✪CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 11

Analysis, Cont’dAnalysis, Cont’d

• Similarly, the number of elements that are < s is at least
3n
10 − 6.

• So no matter which sub-array is picked to continue the

search, at least 3n
10 − 6 elements will be eliminated;

Equivalently to say, the next call for SELECT will have an

input size no bigger than 7n
10 +6.

✬

✫

✩

✪CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 11

Linear Time Selection: An ExampleLinear Time Selection: An Example

Select (i=7,n=25)

24 12 9 21 2
17 13 4 23 18
1 6 19 16 10
25 22 3 5 7
8 11 14 15 20

✬

✫

✩

✪CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 11

Example, cont’dExample, cont’d

Step 1:

Break the Array a into ⌈n5⌉ = 5 groups of 5.

Step 2:

Sort each group of 5 elements using the insertion sort. This

can be done using 8 comparisons.

2 4 1 3 8
9 13 6 5 11

12 17 10 7 14

21 18 16 22 15
24 23 19 25 20

✬

✫

✩

✪CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 11

Example, cont’dExample, cont’d

Step 3:

Find the median of median of medians found in step 2. 12 is

the median of medians in this case.

Step 4:

Partition the array about the median of medians.

Lower side: 2 9 12 1 6 10 3 5 7 11 4 8

Upper side: 21 24 17 18 23 14 15 20 16 19 22 25 13

So, k = 12

✬

✫

✩

✪CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 11

Example, cont’dExample, cont’d

Step 5:

Call select recursively on

2 9 12 1 6 10 3 5 7 11 4 8

with i = 7

As we saw last time, both the low side and high side of the

partition have at most 7n
10 +6 elements.

✬

✫

✩

✪CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 11

ComplexityComplexity

Step 1: Divide elements into groups of 5; Θ(n)

Step 2: To find the median of 5 elements requires constant

time; total ⌈n5⌉ groups, so Θ(n).

Step 3: Total ⌈n5⌉ medians; To find the median

of medians (a selection problem): T(⌈n5⌉)

Step 4: Partition takes linear time: Θ(n).

Step 5: Recursively call SELECT with input size equal or

smaller than 7n
10 +6, complexity for this

step: ≤ T(7n10 +6).

Overall:

T(n) ≤ T(
7n

10
+ 6)+ T(⌈

n

5
⌉) +Θ(n)

✬

✫

✩

✪CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 11

Analysis, cont’dAnalysis, cont’d

Note:

7n
10 +6 < n for all n > 20 and let’s take n ≤ 140 (nothing special

about 140, you will see) as small size problems, and it takes

constant time to solve them O(1).

We will use the following recurrence relation for T(n):

T(n) ≤

{

Θ(1) if n ≤ 140

T(⌈n5⌉) + T(7n10 +6)+Θ(n) if n > 140

We can show that T(n) = O(n) by substitution.

✬

✫

✩

✪CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 11

T (n) = O(n)T (n) = O(n)

Proof using the Substitution Method:

Basis:

Assume that T(n) ≤ cn for some constant c and all n ≤ 140.

This is true by assumption. (However, we have not specified c,

yet).

Induction Step

Assume that T(n) ≤ cn holds for all 1 ≤ n ≤ k − 1, or all

numbers in {1,2, ...k − 1},

✬

✫

✩

✪CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 11

Induction StepInduction Step

We want to show that T(n) ≤ cn also holds

for n = k, or T(k) ≤ ck

T(k) ≤ T(⌈k5⌉) + T(7k10 +6)+ ak

≤ c⌈k5⌉+ c(7k10 +6)+ ak (by Induction Hypothesis,

and because ⌈k5⌉ and 7k
10 +6

are both in {1, 2, .. k-1 })

≤ c(k5 +1)+ c(7k10 +6)+ ak (by the definition of ⌈ ⌉)

= 9ck/10 + 7c+ ak

= ck + (−ck/10 + 7c+ ak)

✬

✫

✩

✪CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 11

Cont’dCont’d

• We want to prove that: ∃ c, such that T(k) ≤ ck;

We can get this done by simply check if it is possible that

(−ck/10 + 7c+ ak) ≤ 0.

When n > 70, (−ck/10 + 7c+ ak) ≤ 0 ⇔ c ≥ 10ak
k−70,

so here (assume n > 140), we can choose a constant

c ≥ 20a ,

then T(k) ≤ ck. End of proof.

(Note: nothing special with 140; we could replace it by any

integer strictly greater than 70 and then choose c accordingly)

✬

✫

✩

✪CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 11

