The Selection Problem

- Definition
 - Given an array L containing n keys, find the ith smallest (or largest) key in L ($1 \le i \le n$).
- Different cases
 - if i = 1, find the smallest key
 - if i = 2, find the second smallest key
 - by median, we mean:

$$i = \begin{cases} (n+1)/2 & \text{if } n \text{ is odd} \\ \lfloor (n+1)/2 \rfloor & \text{if } n \text{ is even} \end{cases}$$

(tell the difference between median and average).

- if
$$i = n$$
, find the largest key

CS404/504

First Try: Sorting

- The solution is trivial:
 - 1. Sort the sequence.
 - 2. Choose the ith element from the sorted sequence.
- What is the complexity?

Can we do better than this?

CS404/504

Computer Science

Problem 1: Finding the smallest key

```
MINNUM(A)
```

min:= A[1];

for i:=2 to n do if (min > A[i]) min := A[i];

return min;

Complexity: n - 1 comparisons (Note: this is the exact running time, not an asymptotic one)

CS404/504

Problem 2: Find the minimum and maximum simultaneously (straightforward way)

```
FIND-BOTH(A)
```

```
min := A[1];
max := A[1];
```

```
for i:=2 to n do

if (min > A[i])

min := A[i];

if (max < A[i])

max := A[i];
```

return min, max;

Complexity: 2(n-1) comparisons (same as finding the largest and smallest keys independently)

CS404/504

Can we do better?

A smarter way:

- Pair the keys and find the minimum and maximum in each pair (about n/2 comparisons)
- Collect the smaller keys in a list and find the smallest (about n/2 comparisons)
- Collect the larger keys in a list and find the largest (about n/2 comparisons)
- Total number of comparisons:

CS404/504

Algorithm

```
FIND-BOTH-SMARTER(A, n)
     if n is odd
        k := 2;
         \min := A[1]; \max := A[1];
     else
         k := 3
         if A[1] < A[2]
           \min := A[1]; \max := A[2];
         else
           \min := A[2]; \max := A[1];
     for i := k to n - 1 by 2 do
         if A[i] > A[i+1]
               exchange A[i] and A[i+1];
         if A[i] < \min
               \min := A[i];
         if A[i+1] > \max
               \max := A[i+1];
CS404/504
```

Computer Science

Problem 3: Find the *i***th smallest key**

Idea: Divide and Conquer

Divide: split the input array recursively (using the routine "Partition" (in QuickSort))

Conquer: recursively solve **ONE** sub-problem (Process only the subarray which contains the *i*th smallest key (note that QuickSort processes both subarrays!))

Combine: no need to combine

CS404/504

Algorithm: first try

SELECT(A, p, r, i) /*Find the *i*th smallest element in A[p..r] */ if (p == r) return; q := Partition(A, p, r);p r q p r - q - p + 1k := q - p + 1;if (i == k)return A[q]; else if (i < k)return Select(A, p , q-1, i); else return Select(A, q + 1, r, i-k); CS404/504 **Computer Science**

Complexity for the first try

- If the partition is balanced (q = n/2), we have T(n) = ?
- Worst Case, when Partition always results in 2 subarrays with 0 and n-1 elements: $T_w(n) = ?$

When will the worst-case happen?

CS404/504

Second Try: Selection in Worst-Case linear time

Basic Idea: to find a split element q such that we always eliminate a fraction α of the elements:

$$T(n) \leq T((1-\alpha)n) + \Theta(n)$$
 then $T(n) = O(n)$

• For example, each time, if we can guarantee to eliminate at least 10% elements, then $T(n) \leq T(0.9n) + cn$.

Since
$$T'(n) = T'(0.9n) + cn \Rightarrow T'(n) = \Theta(n)$$
,

Then
$$T(n) \leq T(0.9n) + cn \Rightarrow T(n) = O(n)$$
.

CS404/504

Selection with Linear Time in Worst-Case

$\mathsf{S}\mathsf{ELECT}(\mathsf{i})$

- 1 Divide n elements into groups of 5.
- 2 Select median of each group $(\Rightarrow \lceil \frac{n}{5} \rceil$ selected elements)
- 3 Use S_{ELECT} recursively to find median q of the medians
- 4 Partition the array (all elements) based on q

5 Use SELECT recursively to find *i*th element

- if
$$i == k$$
, we are done

- if
$$i < k$$
, then SELECT(i) on $k-1$ elements

- if
$$i > k$$
, then SELECT(i - k) on $n - k$ elements

CS404/504

Analysis

As our first step in the analysis, we are going to find a lower bound on the # of elements that are greater than the partitioning element s.

- at least $\frac{1}{2}$ of the medians found in step 2 are greater than or equal to s;
- at least ¹/₂ of the [ⁿ/₅] groups contribute 3 elements that are > s, except for the one group that has fewer than 5 elements and the one group containing s itself;
- Thus the number of elements > s is at least $3(\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \ge \frac{3}{10}n - 6$; (Note: "3" is from "contribute 3 elements"; "[]" is from "at least"; " $\frac{n}{5}$ " is the total number of groups, "-2" is from "except 2 groups")

CS404/504

Analysis, Cont'd

- Similarly, the number of elements that are < s is at least $\frac{3n}{10} 6$.
- So no matter which sub-array is picked to continue the search, at least $\frac{3n}{10} 6$ elements will be eliminated; Equivalently to say, the next call for SELECT will have an input size no bigger than $\frac{7n}{10} + 6$.

CS404/504

Example, cont'd

Step 1:

Break the Array *a* into $\lceil \frac{n}{5} \rceil = 5$ groups of 5.

Step 2:

Sort each group of 5 elements using the insertion sort. This can be done using 8 comparisons.

2	4	1	3	8
9	13	6	5	11
12	17	10	7	14
21	18	16	22	15
24	23	19	25	20

CS404/504

— Computer Science

Example, cont'd

Step 3:

Find the median of median of medians found in step 2. 12 is the median of medians in this case.

Step 4:

Partition the array about the median of medians. **Lower side:** 2 9 12 1 6 10 3 5 7 11 4 8 **Upper side:** 21 24 17 18 23 14 15 20 16 19 22 25 13 So, k = 12

CS404/504

Example, cont'd

```
Step 5:
```

Call select recursively on

```
2 9 12 1 6 10 3 5 7 11 4 8
```

with i = 7

As we saw last time, both the low side and high side of the partition have at most $\frac{7n}{10}$ + 6 elements.

CS404/504

Complexity

Step 1: Divide elements into groups of 5; $\Theta(n)$

Step 2: To find the median of 5 elements requires constant time; total $\lceil \frac{n}{5} \rceil$ groups, so $\Theta(n)$.

Step 3: Total $\lceil \frac{n}{5} \rceil$ medians; To find the median of medians (a selection problem): $T(\lceil \frac{n}{5} \rceil)$

Step 4: Partition takes linear time: $\Theta(n)$.

Step 5: Recursively call **S**ELECT with input size equal or smaller than $\frac{7n}{10} + 6$, complexity for this step: $\leq T(\frac{7n}{10} + 6)$.

Overall:

$$T(n) \leq T(\frac{7n}{10} + 6) + T(\lceil \frac{n}{5} \rceil) + \Theta(n)$$
 Computer Science

CS404/504 _____

Analysis, cont'd

Note:

CS404/504

 $\frac{7n}{10}$ + 6 < n for all n > 20 and let's take $n \le 140$ (nothing special about 140, you will see) as small size problems, and it takes constant time to solve them O(1).

We will use the following recurrence relation for T(n):

$$T(n) \leq \begin{cases} \Theta(1) & \text{if } n \leq 140\\ T(\lceil \frac{n}{5} \rceil) + T(\frac{7n}{10} + 6) + \Theta(n) & \text{if } n > 140 \end{cases}$$

We can show that T(n) = O(n) by substitution.

Computer Science

T(n) = O(n)

Proof using the Substitution Method:

Basis:

Assume that $T(n) \leq cn$ for some constant c and all $n \leq 140$. This is true by assumption. (However, we have not specified c, yet).

Induction Step

Assume that $T(n) \leq cn$ holds for all $1 \leq n \leq k-1$, or all numbers in $\{1, 2, ..., k-1\}$,

CS404/504

Induction Step

We want to show that
$$T(n) \leq cn$$
 also holds
for $n = k$, or $T(k) \leq ck$
$$T(k) \leq T(\lceil \frac{k}{5} \rceil) + T(\frac{7k}{10} + 6) + ak$$
$$\leq c\lceil \frac{k}{5} \rceil + c(\frac{7k}{10} + 6) + ak$$
(by Induction Hypothesis,
and because $\lceil \frac{k}{5} \rceil$ and $\frac{7k}{10} + 6$
are both in $\{1, 2, ..., k-1\}$)
$$\leq c(\frac{k}{5} + 1) + c(\frac{7k}{10} + 6) + ak$$
(by the definition of $\lceil \rceil$)
$$= 9ck/10 + 7c + ak$$
$$= ck + (-ck/10 + 7c + ak)$$
CS404/504 — Computer Science

Cont'd

• We want to prove that: $\exists c$, such that $T(k) \leq ck$;

We can get this done by simply check if it is possible that $(-ck/10 + 7c + ak) \le 0$.

When
$$n > 70$$
, $(-ck/10 + 7c + ak) \le 0 \Leftrightarrow c \ge \frac{10ak}{k-70}$,

so here (assume n> 140), we can choose a constant $c\geq 20a$,

then $T(k) \leq ck$. End of proof.

(Note: nothing special with 140; we could replace it by any integer strictly greater than 70 and then choose c accordingly)

CS404/504 -