The Selection Problem

- Definition
- Given an array L containing n keys, find the i th smallest (or largest) key in $L(1 \leq i \leq n)$.
- Different cases
- if $i=1$, find the smallest key
- if $i=2$, find the second smallest key
- by median, we mean:

$$
i=\left\{\begin{array}{lr}
(n+1) / 2 & \text { if } n \text { is odd } \\
\lfloor(n+1) / 2\rfloor & \text { if } n \text { is even }
\end{array}\right.
$$

(tell the difference between median and average).

- if $i=n$, find the largest key

First Try: Sorting

- The solution is trivial:

1. Sort the sequence.
2. Choose the i th element from the sorted sequence.

- What is the complexity?

Can we do better than this?

Problem 1: Finding the smallest key

Minnum(A)

```
min:= A[1];
for i:=2 to n do
    if (min > A[i])
        min}:=A[i]
```

return min;

Complexity: $n-1$ comparisons (Note: this is the exact running time, not an asymptotic one)

Problem 2: Find the minimum and maximum simultaneously (straightforward way)

FIND-BOTH(A)

$$
\begin{aligned}
& \min :=\mathrm{A}[1] ; \\
& \max :=\mathrm{A}[1] ; \\
& \text { for } i:=2 \text { to } \mathrm{n} \text { do } \\
& \text { if }(\min >\mathrm{A}[\mathrm{i}) \\
& \quad \min :=\mathrm{A}[\mathrm{i}] ; \\
& \text { if }(\max <\mathrm{A}[\mathrm{i}]) \\
& \quad \max :=\mathrm{A}[\mathrm{i}] ;
\end{aligned}
$$

return min, max;
Complexity: $2(n-1)$ comparisons (same as finding the largest and smallest keys independently)

Can we do better?

A smarter way:

- Pair the keys and find the minimum and maximum in each pair (about $n / 2$ comparisons)
- Collect the smaller keys in a list and find the smallest (about $n / 2$ comparisons)
- Collect the larger keys in a list and find the largest (about $n / 2$ comparisons)
- Total number of comparisons:

Algorithm

FIND-BOTH-SMARTER(A, n)

```
if \(n\) is odd
    \(k:=2\);
    \(\min :=A[1] ; \quad \max :=A[1] ;\)
else
    \(k:=3\)
    if \(\mathrm{A}[1]<\mathrm{A}[2]\)
        \(\min :=A[1] ; \quad \max :=A[2] ;\)
    else
        \(\min :=A[2] ; \quad \max :=A[1] ;\)
for \(i:=k\) to \(n-1\) by 2 do
    if \(\mathrm{A}[i]>\mathrm{A}[i+1]\)
        exchange \(\mathrm{A}[i]\) and \(\mathrm{A}[i+1]\);
    if \(\mathrm{A}[i]<\min\)
        \(\min :=A[i] ;\)
    if \(\mathrm{A}[i+1]>\max\)
        \(\max :=\mathrm{A}[i+1]\);
```


What makes the difference here?

Using the ordinary way, each pair require 4 comparisons. With the "smarter" way, the number of comparisons is reduced to 3 .

Problem 3: Find the i th smallest key

Idea: Divide and Conquer

Divide: split the input array recursively (using the routine "Partition" (in QuickSort))

Conquer: recursively solve ONE sub-problem (Process only the subarray which contains the i th smallest key (note that QuickSort processes both subarrays!))

Combine: no need to combine

Algorithm: first try

$\operatorname{SELECT}(\mathrm{A}, \mathrm{p}, \mathrm{r}, \mathrm{i}) \quad / *$ Find the i th smallest element in $\mathrm{A}[\mathrm{p} . \mathrm{r}]$ */

```
if (p == r) return;
q := Partition(A, p , r);
```



```
k:=q-p + 1;
    \square-p+1 \longrightarrow
if (i== k)
    return A[q];
else if (i<k)
    return Select(A, p , q-1, i);
        else
            return Select(A, q + 1, r, i-k);
```


Complexity for the first try

- If the partition is balanced ($\mathrm{q}=\mathrm{n} / 2$), we have $T(n)=$?
- Worst Case, when Partition always results in 2 subarrays with 0 and $n-1$ elements: $T_{w}(n)=$?

When will the worst-case happen?

Second Try: Selection in Worst-Case linear time

Basic Idea: to find a split element q such that we always eliminate a fraction α of the elements:

$$
T(n) \leq T((1-\alpha) n)+\Theta(n) \text { then } T(n)=O(n)
$$

- For example, each time, if we can guarantee to eliminate at least 10% elements, then $T(n) \leq T(0.9 n)+c n$.

$$
\begin{aligned}
& \text { Since } T^{\prime}(n)=T^{\prime}(0.9 n)+c n \Rightarrow T^{\prime}(n)=\Theta(n) \\
& \text { Then } T(n) \leq T(0.9 n)+c n \Rightarrow T(n)=O(n)
\end{aligned}
$$

Selection with Linear Time in Worst-Case

Select(i)

1 Divide n elements into groups of 5 .
2 Select median of each group ($\Rightarrow\left\lceil\frac{n}{5}\right\rceil$ selected elements)
3 Use $S_{\text {ELECT }}$ recursively to find median q of the medians
4 Partition the array (all elements) based on q

5 Use SELECT recursively to find i th element

- if $i==k$, we are done
- if $i<k$, then $\mathrm{S}_{\text {ELECT }}(\mathrm{i})$ on $k-1$ elements
- if $i>k$, then $\operatorname{SELECT}(\mathrm{i}-\mathrm{k})$ on $n-k$ elements

How the algorithm works

Analysis

As our first step in the analysis, we are going to find a lower bound on the \# of elements that are greater than the partitioning element s.

- at least $\frac{1}{2}$ of the medians found in step 2 are greater than or equal to s;
- at least $\frac{1}{2}$ of the $\left\lceil\frac{n}{5}\right\rceil$ groups contribute 3 elements that are $>s$, except for the one group that has fewer than 5 elements and the one group containing s itself;
- Thus the number of elements $>s$ is at least $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3}{10} n-6$; (Note: " 3 " is from "contribute 3 elements"; " $\left\lceil 7\right.$ " is from "at least"; " $\frac{n}{5}$ " is the total number of groups, "-2" is from "except 2 groups")

Analysis, Cont'd

- Similarly, the number of elements that are $<s$ is at least $\frac{3 n}{10}-6$.
- So no matter which sub-array is picked to continue the search, at least $\frac{3 n}{10}-6$ elements will be eliminated; Equivalently to say, the next call for SELECT will have an input size no bigger than $\frac{7 n}{10}+6$.

Linear Time Selection: An Example

Select $(i=7, n=25)$

24	12	9	21	2
17	13	4	23	18
1	6	19	16	10
25	22	3	5	7
8	11	14	15	20

Example, cont'd

Step 1:
Break the Array a into $\left\lceil\frac{n}{5}\right\rceil=5$ groups of 5 .
Step 2:
Sort each group of 5 elements using the insertion sort. This can be done using 8 comparisons.

2	4	1	3	8
9	13	6	5	11
12	17	10	7	14
21	18	16	22	15
24	23	19	25	20

Example, cont'd

Step 3:
Find the median of median of medians found in step 2. 12 is the median of medians in this case.

Step 4:
Partition the array about the median of medians.
Lower side: 291216103571148
Upper side: 21241718231415201619222513
So, $k=12$

Example, cont'd

Step 5:
Call select recursively on
291216103571148
with $i=7$
As we saw last time, both the low side and high side of the partition have at most $\frac{7 n}{10}+6$ elements.

Complexity

Step 1: Divide elements into groups of $5 ; \Theta(n)$
Step 2: To find the median of 5 elements requires constant time; total $\left\lceil\frac{n}{5}\right\rceil$ groups, so $\Theta(n)$.

Step 3: Total $\left\lceil\frac{n}{5}\right\rceil$ medians; To find the median of medians (a selection problem): $T\left(\left\lceil\frac{n}{5}\right\rceil\right.$)

Step 4: Partition takes linear time: $\Theta(n)$.
Step 5: Recursively call SELECT with input size equal or smaller than $\frac{7 n}{10}+6$, complexity for this step: $\leq T\left(\frac{7 n}{10}+6\right)$.

Overall:

CS404/504

$$
T(n) \leq T\left(\frac{7 n}{10}+6\right)+T\left(\left\lceil\frac{n}{5}\right\rceil\right)+\Theta(n)
$$

Analysis, cont'd

Note:
$\frac{7 n}{10}+6<n$ for all $n>20$ and let's take $n \leq 140$ (nothing special about 140, you will see) as small size problems, and it takes constant time to solve them $O(1)$.

We will use the following recurrence relation for $T(n)$:

$$
T(n) \leq \begin{cases}\Theta(1) & \text { if } n \leq 140 \\ T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n) & \text { if } n>140\end{cases}
$$

We can show that $T(n)=O(n)$ by substitution.

$T(n)=O(n)$

Proof using the Substitution Method:

Basis:

Assume that $T(n) \leq c n$ for some constant c and all $n \leq 140$.
This is true by assumption. (However, we have not specified c, yet).

Induction Step

Assume that $T(n) \leq c n$ holds for all $1 \leq n \leq k-1$, or all numbers in $\{1,2, \ldots k-1\}$,

Induction Step

We want to show that $T(n) \leq c n$ also holds for $n=k$, or $T(k) \leq c k$

$$
\begin{aligned}
& T(k) \leq T\left(\left\lceil\frac{k}{5}\right\rceil\right)+T\left(\frac{7 k}{10}+6\right)+a k \\
& \leq c\left\lceil\frac{k}{5}\right\rceil+c\left(\frac{7 k}{10}+6\right)+a k \\
& \text { (by Induction Hypothesis, } \\
& \text { and because }\left\lceil\frac{k}{5}\right\rceil \text { and } \frac{7 k}{10}+6 \\
& \text { are both in }\{1,2, . . \text { k-1 \}) } \\
& \leq c\left(\frac{k}{5}+1\right)+c\left(\frac{7 k}{10}+6\right)+a k \quad \text { (by the definition of 「7) } \\
& =9 c k / 10+7 c+a k \\
& =c k+(-c k / 10+7 c+a k)
\end{aligned}
$$

Cont'd

- We want to prove that: $\exists c$, such that $T(k) \leq c k$;

We can get this done by simply check if it is possible that $(-c k / 10+7 c+a k) \leq 0$.

When $n>70,(-c k / 10+7 c+a k) \leq 0 \Leftrightarrow c \geq \frac{10 a k}{k-70}$,
so here (assume $n>140$), we can choose a constant $c \geq 20 a$,
then $T(k) \leq c k . \quad$ End of proof.
(Note: nothing special with 140; we could replace it by any integer strictly greater than 70 and then choose c accordingly)

